Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
8ee48095
Commit
8ee48095
authored
Oct 27, 2020
by
vishnubanna
Browse files
fixed module imports
parent
a0dd0e8a
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
143 additions
and
24 deletions
+143
-24
official/vision/beta/projects/yolo/modeling/backbones/darknet.py
...l/vision/beta/projects/yolo/modeling/backbones/darknet.py
+0
-0
official/vision/beta/projects/yolo/modeling/building_blocks/__init__.py
...n/beta/projects/yolo/modeling/building_blocks/__init__.py
+1
-0
official/vision/beta/projects/yolo/modeling/building_blocks/csp_connect_test.py
...rojects/yolo/modeling/building_blocks/csp_connect_test.py
+5
-7
official/vision/beta/projects/yolo/modeling/building_blocks/csp_downsample_test.py
...ects/yolo/modeling/building_blocks/csp_downsample_test.py
+4
-6
official/vision/beta/projects/yolo/modeling/building_blocks/dark_conv_test.py
.../projects/yolo/modeling/building_blocks/dark_conv_test.py
+3
-4
official/vision/beta/projects/yolo/modeling/building_blocks/dark_residual_test.py
...jects/yolo/modeling/building_blocks/dark_residual_test.py
+3
-4
official/vision/beta/projects/yolo/modeling/building_blocks/dark_tiny_test.py
.../projects/yolo/modeling/building_blocks/dark_tiny_test.py
+3
-3
training_dir/params.yaml
training_dir/params.yaml
+124
-0
No files found.
official/vision/beta/projects/yolo/modeling/backbones/
D
arknet.py
→
official/vision/beta/projects/yolo/modeling/backbones/
d
arknet.py
View file @
8ee48095
File moved
official/vision/beta/projects/yolo/modeling/building_blocks/__init__.py
View file @
8ee48095
...
...
@@ -4,3 +4,4 @@ from .dark_tiny import DarkTiny
from
.csp_connect
import
CSPConnect
from
.csp_downsample
import
CSPDownSample
from
.csp_tiny
import
CSPTiny
from
.identity
import
Identity
\ No newline at end of file
official/vision/beta/projects/yolo/modeling/building_blocks/csp_connect_test.py
View file @
8ee48095
...
...
@@ -3,9 +3,7 @@ import tensorflow.keras as ks
import
numpy
as
np
from
absl.testing
import
parameterized
from
official.vision.beta.projects.yolo.modeling.building_blocks
import
CSPDownSample
as
layer
from
official.vision.beta.projects.yolo.modeling.building_blocks
import
CSPConnect
as
layer_companion
from
official.vision.beta.projects.yolo.modeling
import
building_blocks
as
nn_blocks
class
CSPConnect
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
...
...
@@ -13,8 +11,8 @@ class CSPConnect(tf.test.TestCase, parameterized.TestCase):
(
"downsample"
,
224
,
224
,
64
,
2
))
def
test_pass_through
(
self
,
width
,
height
,
filters
,
mod
):
x
=
ks
.
Input
(
shape
=
(
width
,
height
,
filters
))
test_layer
=
layer
(
filters
=
filters
,
filter_reduce
=
mod
)
test_layer2
=
layer_companion
(
filters
=
filters
,
filter_reduce
=
mod
)
test_layer
=
nn_blocks
.
CSPDownSample
(
filters
=
filters
,
filter_reduce
=
mod
)
test_layer2
=
nn_blocks
.
CSPConnect
(
filters
=
filters
,
filter_reduce
=
mod
)
outx
,
px
=
test_layer
(
x
)
outx
=
test_layer2
([
outx
,
px
])
print
(
outx
)
...
...
@@ -29,8 +27,8 @@ class CSPConnect(tf.test.TestCase, parameterized.TestCase):
def
test_gradient_pass_though
(
self
,
filters
,
width
,
height
,
mod
):
loss
=
ks
.
losses
.
MeanSquaredError
()
optimizer
=
ks
.
optimizers
.
SGD
()
test_layer
=
layer
(
filters
,
filter_reduce
=
mod
)
path_layer
=
layer_companion
(
filters
,
filter_reduce
=
mod
)
test_layer
=
nn_blocks
.
CSPDownSample
(
filters
,
filter_reduce
=
mod
)
path_layer
=
nn_blocks
.
CSPConnect
(
filters
,
filter_reduce
=
mod
)
init
=
tf
.
random_normal_initializer
()
x
=
tf
.
Variable
(
...
...
official/vision/beta/projects/yolo/modeling/building_blocks/csp_downsample_test.py
View file @
8ee48095
...
...
@@ -3,9 +3,7 @@ import tensorflow.keras as ks
import
numpy
as
np
from
absl.testing
import
parameterized
from
official.vision.beta.projects.yolo.modeling.building_blocks
import
CSPDownSample
as
layer
from
official.vision.beta.projects.yolo.modeling.building_blocks
import
CSPConnect
as
layer_companion
from
official.vision.beta.projects.yolo.modeling
import
building_blocks
as
nn_blocks
class
CSPDownSample
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
...
...
@@ -13,7 +11,7 @@ class CSPDownSample(tf.test.TestCase, parameterized.TestCase):
(
"downsample"
,
224
,
224
,
64
,
2
))
def
test_pass_through
(
self
,
width
,
height
,
filters
,
mod
):
x
=
ks
.
Input
(
shape
=
(
width
,
height
,
filters
))
test_layer
=
layer
(
filters
=
filters
,
filter_reduce
=
mod
)
test_layer
=
nn_blocks
.
CSPDownSample
(
filters
=
filters
,
filter_reduce
=
mod
)
outx
,
px
=
test_layer
(
x
)
print
(
outx
)
print
(
outx
.
shape
.
as_list
())
...
...
@@ -27,8 +25,8 @@ class CSPDownSample(tf.test.TestCase, parameterized.TestCase):
def
test_gradient_pass_though
(
self
,
filters
,
width
,
height
,
mod
):
loss
=
ks
.
losses
.
MeanSquaredError
()
optimizer
=
ks
.
optimizers
.
SGD
()
test_layer
=
layer
(
filters
,
filter_reduce
=
mod
)
path_layer
=
layer_companion
(
filters
,
filter_reduce
=
mod
)
test_layer
=
nn_blocks
.
CSPDownSample
(
filters
,
filter_reduce
=
mod
)
path_layer
=
nn_blocks
.
CSPConnect
(
filters
,
filter_reduce
=
mod
)
init
=
tf
.
random_normal_initializer
()
x
=
tf
.
Variable
(
...
...
official/vision/beta/projects/yolo/modeling/building_blocks/dark_conv_test.py
View file @
8ee48095
...
...
@@ -2,8 +2,7 @@ import tensorflow as tf
import
tensorflow.keras
as
ks
import
tensorflow_datasets
as
tfds
from
absl.testing
import
parameterized
from
official.vision.beta.projects.yolo.modeling.building_blocks
import
DarkConv
from
official.vision.beta.projects.yolo.modeling
import
building_blocks
as
nn_blocks
class
DarkConvTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
...
...
@@ -17,7 +16,7 @@ class DarkConvTest(tf.test.TestCase, parameterized.TestCase):
else
:
pad_const
=
0
x
=
ks
.
Input
(
shape
=
(
224
,
224
,
3
))
test_layer
=
DarkConv
(
filters
=
64
,
test_layer
=
nn_blocks
.
DarkConv
(
filters
=
64
,
kernel_size
=
kernel_size
,
padding
=
padding
,
strides
=
strides
,
...
...
@@ -37,7 +36,7 @@ class DarkConvTest(tf.test.TestCase, parameterized.TestCase):
loss
=
ks
.
losses
.
MeanSquaredError
()
optimizer
=
ks
.
optimizers
.
SGD
()
with
tf
.
device
(
"/CPU:0"
):
test_layer
=
DarkConv
(
filters
,
kernel_size
=
(
3
,
3
),
padding
=
"same"
)
test_layer
=
nn_blocks
.
DarkConv
(
filters
,
kernel_size
=
(
3
,
3
),
padding
=
"same"
)
init
=
tf
.
random_normal_initializer
()
x
=
tf
.
Variable
(
initial_value
=
init
(
shape
=
(
1
,
224
,
224
,
...
...
official/vision/beta/projects/yolo/modeling/building_blocks/dark_residual_test.py
View file @
8ee48095
...
...
@@ -3,8 +3,7 @@ import tensorflow.keras as ks
import
numpy
as
np
from
absl.testing
import
parameterized
from
official.vision.beta.projects.yolo.modeling.building_blocks
import
DarkResidual
as
layer
from
official.vision.beta.projects.yolo.modeling
import
building_blocks
as
nn_blocks
class
DarkResidualTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
...
...
@@ -16,7 +15,7 @@ class DarkResidualTest(tf.test.TestCase, parameterized.TestCase):
if
downsample
:
mod
=
2
x
=
ks
.
Input
(
shape
=
(
width
,
height
,
filters
))
test_layer
=
layer
(
filters
=
filters
,
downsample
=
downsample
)
test_layer
=
nn_blocks
.
DarkResidual
(
filters
=
filters
,
downsample
=
downsample
)
outx
=
test_layer
(
x
)
print
(
outx
)
print
(
outx
.
shape
.
as_list
())
...
...
@@ -31,7 +30,7 @@ class DarkResidualTest(tf.test.TestCase, parameterized.TestCase):
def
test_gradient_pass_though
(
self
,
filters
,
width
,
height
,
downsample
):
loss
=
ks
.
losses
.
MeanSquaredError
()
optimizer
=
ks
.
optimizers
.
SGD
()
test_layer
=
layer
(
filters
,
downsample
=
downsample
)
test_layer
=
nn_blocks
.
DarkResidual
(
filters
,
downsample
=
downsample
)
if
downsample
:
mod
=
2
...
...
official/vision/beta/projects/yolo/modeling/building_blocks/dark_tiny_test.py
View file @
8ee48095
...
...
@@ -3,7 +3,7 @@ import tensorflow.keras as ks
import
numpy
as
np
from
absl.testing
import
parameterized
from
official.vision.beta.projects.yolo.modeling
.
building_blocks
import
DarkTiny
from
official.vision.beta.projects.yolo.modeling
import
building_blocks
as
nn_blocks
class
DarkTinyTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
...
...
@@ -12,7 +12,7 @@ class DarkTinyTest(tf.test.TestCase, parameterized.TestCase):
(
"last"
,
224
,
224
,
1024
,
1
))
def
test_pass_through
(
self
,
width
,
height
,
filters
,
strides
):
x
=
ks
.
Input
(
shape
=
(
width
,
height
,
filters
))
test_layer
=
DarkTiny
(
filters
=
filters
,
strides
=
strides
)
test_layer
=
nn_blocks
.
DarkTiny
(
filters
=
filters
,
strides
=
strides
)
outx
=
test_layer
(
x
)
self
.
assertEqual
(
width
%
strides
,
0
,
msg
=
"width % strides != 0"
)
self
.
assertEqual
(
height
%
strides
,
0
,
msg
=
"height % strides != 0"
)
...
...
@@ -24,7 +24,7 @@ class DarkTinyTest(tf.test.TestCase, parameterized.TestCase):
def
test_gradient_pass_though
(
self
,
width
,
height
,
filters
,
strides
):
loss
=
ks
.
losses
.
MeanSquaredError
()
optimizer
=
ks
.
optimizers
.
SGD
()
test_layer
=
DarkTiny
(
filters
=
filters
,
strides
=
strides
)
test_layer
=
nn_blocks
.
DarkTiny
(
filters
=
filters
,
strides
=
strides
)
init
=
tf
.
random_normal_initializer
()
x
=
tf
.
Variable
(
...
...
training_dir/params.yaml
0 → 100644
View file @
8ee48095
runtime
:
all_reduce_alg
:
null
batchnorm_spatial_persistent
:
false
dataset_num_private_threads
:
null
default_shard_dim
:
-1
distribution_strategy
:
mirrored
enable_xla
:
false
gpu_thread_mode
:
null
loss_scale
:
null
mixed_precision_dtype
:
float32
num_cores_per_replica
:
1
num_gpus
:
0
num_packs
:
1
per_gpu_thread_count
:
0
run_eagerly
:
false
task_index
:
-1
tpu
:
null
worker_hosts
:
null
task
:
gradient_clip_norm
:
0.0
init_checkpoint
:
'
'
logging_dir
:
null
losses
:
l2_weight_decay
:
0.0005
label_smoothing
:
0.0
one_hot
:
true
model
:
add_head_batch_norm
:
false
backbone
:
darknet
:
model_id
:
cspdarknettiny
type
:
darknet
dropout_rate
:
0.0
input_size
:
[
224
,
224
,
3
]
norm_activation
:
activation
:
relu
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
false
num_classes
:
1001
train_data
:
block_length
:
1
cache
:
false
cycle_length
:
10
deterministic
:
null
drop_remainder
:
true
dtype
:
float16
enable_tf_data_service
:
false
global_batch_size
:
128
input_path
:
imagenet-2012-tfrecord/train*
is_training
:
true
sharding
:
true
shuffle_buffer_size
:
10000
tf_data_service_address
:
null
tf_data_service_job_name
:
null
tfds_as_supervised
:
false
tfds_data_dir
:
'
'
tfds_download
:
false
tfds_name
:
'
'
tfds_skip_decoding_feature
:
'
'
tfds_split
:
'
'
validation_data
:
block_length
:
1
cache
:
false
cycle_length
:
10
deterministic
:
null
drop_remainder
:
false
dtype
:
float16
enable_tf_data_service
:
false
global_batch_size
:
128
input_path
:
imagenet-2012-tfrecord/valid*
is_training
:
true
sharding
:
true
shuffle_buffer_size
:
10000
tf_data_service_address
:
null
tf_data_service_job_name
:
null
tfds_as_supervised
:
false
tfds_data_dir
:
'
'
tfds_download
:
false
tfds_name
:
'
'
tfds_skip_decoding_feature
:
'
'
tfds_split
:
'
'
trainer
:
allow_tpu_summary
:
false
best_checkpoint_eval_metric
:
'
'
best_checkpoint_export_subdir
:
'
'
best_checkpoint_metric_comp
:
higher
checkpoint_interval
:
10000
continuous_eval_timeout
:
3600
eval_tf_function
:
true
max_to_keep
:
5
optimizer_config
:
ema
:
null
learning_rate
:
polynomial
:
cycle
:
false
decay_steps
:
799000
end_learning_rate
:
0.0001
initial_learning_rate
:
0.1
name
:
PolynomialDecay
power
:
4.0
type
:
polynomial
optimizer
:
sgd
:
clipnorm
:
null
clipvalue
:
null
decay
:
0.0
momentum
:
0.9
name
:
SGD
nesterov
:
false
type
:
sgd
warmup
:
linear
:
name
:
linear
warmup_learning_rate
:
0
warmup_steps
:
1000
type
:
linear
steps_per_loop
:
10000
summary_interval
:
10000
train_steps
:
800000
train_tf_function
:
true
train_tf_while_loop
:
true
validation_interval
:
10000
validation_steps
:
400
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment