Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
8c232a47
Commit
8c232a47
authored
Apr 17, 2019
by
Jonathan Mitchell
Committed by
pkulzc
Apr 17, 2019
Browse files
Adds original mobilenetv2 keras implementation to Object Detection (#6592)
parent
f1a59682
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
542 additions
and
0 deletions
+542
-0
research/object_detection/models/keras_models/original_mobilenet_v2.py
...ct_detection/models/keras_models/original_mobilenet_v2.py
+542
-0
No files found.
research/object_detection/models/keras_models/original_mobilenet_v2.py
0 → 100644
View file @
8c232a47
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MobileNet v2 models for Keras.
MobileNetV2 is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby
reduce inference cost on mobile devices.
MobileNetV2 is very similar to the original MobileNet,
except that it uses inverted residual blocks with
bottlenecking features. It has a drastically lower
parameter count than the original MobileNet.
MobileNets support any input size greater
than 32 x 32, with larger image sizes
offering better performance.
The number of parameters and number of multiply-adds
can be modified by using the `alpha` parameter,
which increases/decreases the number of filters in each layer.
By altering the image size and `alpha` parameter,
all 22 models from the paper can be built, with ImageNet weights provided.
The paper demonstrates the performance of MobileNets using `alpha` values of
1.0 (also called 100 % MobileNet), 0.35, 0.5, 0.75, 1.0, 1.3, and 1.4
For each of these `alpha` values, weights for 5 different input image sizes
are provided (224, 192, 160, 128, and 96).
The following table describes the performance of
MobileNet on various input sizes:
------------------------------------------------------------------------
MACs stands for Multiply Adds
Classification Checkpoint| MACs (M) | Parameters (M)| Top 1 Accuracy| Top 5 Accuracy
--------------------------|------------|---------------|---------|----|-------------
| [mobilenet_v2_1.4_224] | 582 | 6.06 | 75.0 | 92.5 |
| [mobilenet_v2_1.3_224] | 509 | 5.34 | 74.4 | 92.1 |
| [mobilenet_v2_1.0_224] | 300 | 3.47 | 71.8 | 91.0 |
| [mobilenet_v2_1.0_192] | 221 | 3.47 | 70.7 | 90.1 |
| [mobilenet_v2_1.0_160] | 154 | 3.47 | 68.8 | 89.0 |
| [mobilenet_v2_1.0_128] | 99 | 3.47 | 65.3 | 86.9 |
| [mobilenet_v2_1.0_96] | 56 | 3.47 | 60.3 | 83.2 |
| [mobilenet_v2_0.75_224] | 209 | 2.61 | 69.8 | 89.6 |
| [mobilenet_v2_0.75_192] | 153 | 2.61 | 68.7 | 88.9 |
| [mobilenet_v2_0.75_160] | 107 | 2.61 | 66.4 | 87.3 |
| [mobilenet_v2_0.75_128] | 69 | 2.61 | 63.2 | 85.3 |
| [mobilenet_v2_0.75_96] | 39 | 2.61 | 58.8 | 81.6 |
| [mobilenet_v2_0.5_224] | 97 | 1.95 | 65.4 | 86.4 |
| [mobilenet_v2_0.5_192] | 71 | 1.95 | 63.9 | 85.4 |
| [mobilenet_v2_0.5_160] | 50 | 1.95 | 61.0 | 83.2 |
| [mobilenet_v2_0.5_128] | 32 | 1.95 | 57.7 | 80.8 |
| [mobilenet_v2_0.5_96] | 18 | 1.95 | 51.2 | 75.8 |
| [mobilenet_v2_0.35_224] | 59 | 1.66 | 60.3 | 82.9 |
| [mobilenet_v2_0.35_192] | 43 | 1.66 | 58.2 | 81.2 |
| [mobilenet_v2_0.35_160] | 30 | 1.66 | 55.7 | 79.1 |
| [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 |
| [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 |
The weights for all 16 models are obtained and translated from the Tensorflow checkpoints
from TensorFlow checkpoints found at
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md
# Reference
This file contains building code for MobileNetV2, based on
[MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
Tests comparing this model to the existing Tensorflow model can be
found at [mobilenet_v2_keras](https://github.com/JonathanCMitchell/mobilenet_v2_keras)
"""
from
__future__
import
print_function
from
__future__
import
absolute_import
from
__future__
import
division
import
os
import
warnings
import
h5py
import
numpy
as
np
from
..models
import
Model
from
..layers
import
Input
from
..layers
import
Activation
from
..layers
import
Dropout
from
..layers
import
Reshape
from
..layers
import
BatchNormalization
from
..layers
import
Conv2D
from
..layers
import
DepthwiseConv2D
from
..layers
import
GlobalAveragePooling2D
from
..layers
import
Add
from
..layers
import
Flatten
from
..layers
import
Dense
from
..
import
initializers
from
..
import
regularizers
from
..
import
constraints
from
..utils
import
conv_utils
from
..utils.data_utils
import
get_file
from
..engine
import
get_source_inputs
from
..engine.base_layer
import
InputSpec
from
.
import
imagenet_utils
from
.imagenet_utils
import
_obtain_input_shape
from
.imagenet_utils
import
decode_predictions
from
..
import
backend
as
K
# TODO Change path to v1.1
BASE_WEIGHT_PATH
=
'https://github.com/JonathanCMitchell/mobilenet_v2_keras/releases/download/v1.1/'
def
relu6
(
x
):
return
K
.
relu
(
x
,
max_value
=
6
)
def
preprocess_input
(
x
):
"""Preprocesses a numpy array encoding a batch of images.
This function applies the "Inception" preprocessing which converts
the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing
function is different from `imagenet_utils.preprocess_input()`.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
x
/=
128.
x
-=
1.
return
x
.
astype
(
np
.
float32
)
# This function is taken from the original tf repo.
# It ensures that all layers have a channel number that is divisible by 8
# It can be seen here:
# https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
def
_make_divisible
(
v
,
divisor
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
MobileNetV2
(
input_shape
=
None
,
alpha
=
1.0
,
depth_multiplier
=
1
,
dropout
=
1e-3
,
include_top
=
True
,
weights
=
'imagenet'
,
input_tensor
=
None
,
classes
=
1000
):
"""Instantiates the MobileNetV2 architecture.
To load a MobileNetV2 model via `load_model`, import the custom
objects `relu6` and pass them to the `custom_objects` parameter.
E.g.
model = load_model('mobilenet.h5', custom_objects={
'relu6': mobilenet.relu6})
# Arguments
input_shape: optional shape tuple, to be specified if you would
like to use a model with an input img resolution that is not
(224, 224, 3).
It should have exactly 3 inputs channels (224, 224, 3).
You can also omit this option if you would like
to infer input_shape from an input_tensor.
If you choose to include both input_tensor and input_shape then
input_shape will be used if they match, if the shapes
do not match then we will throw an error.
E.g. `(160, 160, 3)` would be one valid value.
alpha: controls the width of the network. This is known as the
width multiplier in the MobileNetV2 paper.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: depth multiplier for depthwise convolution
(also called the resolution multiplier)
dropout: dropout rate, dropout is currently not in use
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape or invalid depth_multiplier, alpha,
rows when weights='imagenet'
"""
if
not
(
weights
in
{
'imagenet'
,
None
}
or
os
.
path
.
exists
(
weights
)):
raise
ValueError
(
'The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.'
)
if
weights
==
'imagenet'
and
include_top
and
classes
!=
1000
:
raise
ValueError
(
'If using `weights` as ImageNet with `include_top` '
'as true, `classes` should be 1000'
)
# Determine proper input shape and default size.
# If both input_shape and input_tensor are used, they should match
if
input_shape
is
not
None
and
input_tensor
is
not
None
:
try
:
is_input_t_tensor
=
K
.
is_keras_tensor
(
input_tensor
)
except
ValueError
:
try
:
is_input_t_tensor
=
K
.
is_keras_tensor
(
get_source_inputs
(
input_tensor
))
except
ValueError
:
raise
ValueError
(
'input_tensor: '
,
input_tensor
,
'is not type input_tensor'
)
if
is_input_t_tensor
:
if
K
.
image_data_format
==
'channels_first'
:
if
input_tensor
.
_keras_shape
[
1
]
!=
input_shape
[
1
]:
raise
ValueError
(
'input_shape: '
,
input_shape
,
'and input_tensor: '
,
input_tensor
,
'do not meet the same shape requirements'
)
else
:
if
input_tensor
.
_keras_shape
[
2
]
!=
input_shape
[
1
]:
raise
ValueError
(
'input_shape: '
,
input_shape
,
'and input_tensor: '
,
input_tensor
,
'do not meet the same shape requirements'
)
else
:
raise
ValueError
(
'input_tensor specified: '
,
input_tensor
,
'is not a keras tensor'
)
# If input_shape is None, infer shape from input_tensor
if
input_shape
is
None
and
input_tensor
is
not
None
:
try
:
K
.
is_keras_tensor
(
input_tensor
)
except
ValueError
:
raise
ValueError
(
'input_tensor: '
,
input_tensor
,
'is type: '
,
type
(
input_tensor
),
'which is not a valid type'
)
if
input_shape
is
None
and
not
K
.
is_keras_tensor
(
input_tensor
):
default_size
=
224
elif
input_shape
is
None
and
K
.
is_keras_tensor
(
input_tensor
):
if
K
.
image_data_format
()
==
'channels_first'
:
rows
=
input_tensor
.
_keras_shape
[
2
]
cols
=
input_tensor
.
_keras_shape
[
3
]
else
:
rows
=
input_tensor
.
_keras_shape
[
1
]
cols
=
input_tensor
.
_keras_shape
[
2
]
if
rows
==
cols
and
rows
in
[
96
,
128
,
160
,
192
,
224
]:
default_size
=
rows
else
:
default_size
=
224
# If input_shape is None and no input_tensor
elif
input_shape
is
None
:
default_size
=
224
# If input_shape is not None, assume default size
else
:
if
K
.
image_data_format
()
==
'channels_first'
:
rows
=
input_shape
[
1
]
cols
=
input_shape
[
2
]
else
:
rows
=
input_shape
[
0
]
cols
=
input_shape
[
1
]
if
rows
==
cols
and
rows
in
[
96
,
128
,
160
,
192
,
224
]:
default_size
=
rows
else
:
default_size
=
224
input_shape
=
_obtain_input_shape
(
input_shape
,
default_size
=
default_size
,
min_size
=
32
,
data_format
=
K
.
image_data_format
(),
require_flatten
=
include_top
,
weights
=
weights
)
if
K
.
image_data_format
()
==
'channels_last'
:
row_axis
,
col_axis
=
(
0
,
1
)
else
:
row_axis
,
col_axis
=
(
1
,
2
)
rows
=
input_shape
[
row_axis
]
cols
=
input_shape
[
col_axis
]
if
weights
==
'imagenet'
:
if
depth_multiplier
!=
1
:
raise
ValueError
(
'If imagenet weights are being loaded, '
'depth multiplier must be 1'
)
if
alpha
not
in
[
0.35
,
0.50
,
0.75
,
1.0
,
1.3
,
1.4
]:
raise
ValueError
(
'If imagenet weights are being loaded, '
'alpha can be one of'
'`0.25`, `0.50`, `0.75` or `1.0` only.'
)
if
rows
!=
cols
or
rows
not
in
[
96
,
128
,
160
,
192
,
224
]:
if
rows
is
None
:
rows
=
224
warnings
.
warn
(
'MobileNet shape is undefined.'
' Weights for input shape'
'(224, 224) will be loaded.'
)
else
:
raise
ValueError
(
'If imagenet weights are being loaded, '
'input must have a static square shape'
'(one of (96, 96), (128, 128), (160, 160),'
'(192, 192), or (224, 224)).'
'Input shape provided = %s'
%
(
input_shape
,))
if
K
.
image_data_format
()
!=
'channels_last'
:
warnings
.
warn
(
'The MobileNet family of models is only available '
'for the input data format "channels_last" '
'(width, height, channels). '
'However your settings specify the default '
'data format "channels_first" (channels, width, height).'
' You should set `image_data_format="channels_last"` '
'in your Keras config located at ~/.keras/keras.json. '
'The model being returned right now will expect inputs '
'to follow the "channels_last" data format.'
)
K
.
set_image_data_format
(
'channels_last'
)
old_data_format
=
'channels_first'
else
:
old_data_format
=
None
if
input_tensor
is
None
:
img_input
=
Input
(
shape
=
input_shape
)
else
:
if
not
K
.
is_keras_tensor
(
input_tensor
):
img_input
=
Input
(
tensor
=
input_tensor
,
shape
=
input_shape
)
else
:
img_input
=
input_tensor
first_block_filters
=
_make_divisible
(
32
*
alpha
,
8
)
x
=
Conv2D
(
first_block_filters
,
kernel_size
=
3
,
strides
=
(
2
,
2
),
padding
=
'same'
,
use_bias
=
False
,
name
=
'Conv1'
)(
img_input
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'bn_Conv1'
)(
x
)
x
=
Activation
(
relu6
,
name
=
'Conv1_relu'
)(
x
)
x
=
_first_inverted_res_block
(
x
,
filters
=
16
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
1
,
block_id
=
0
)
x
=
_inverted_res_block
(
x
,
filters
=
24
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
1
)
x
=
_inverted_res_block
(
x
,
filters
=
24
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
2
)
x
=
_inverted_res_block
(
x
,
filters
=
32
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
3
)
x
=
_inverted_res_block
(
x
,
filters
=
32
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
4
)
x
=
_inverted_res_block
(
x
,
filters
=
32
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
5
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
6
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
7
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
8
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
9
)
x
=
_inverted_res_block
(
x
,
filters
=
96
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
10
)
x
=
_inverted_res_block
(
x
,
filters
=
96
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
11
)
x
=
_inverted_res_block
(
x
,
filters
=
96
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
12
)
x
=
_inverted_res_block
(
x
,
filters
=
160
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
13
)
x
=
_inverted_res_block
(
x
,
filters
=
160
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
14
)
x
=
_inverted_res_block
(
x
,
filters
=
160
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
15
)
x
=
_inverted_res_block
(
x
,
filters
=
320
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
16
)
# no alpha applied to last conv as stated in the paper:
# if the width multiplier is greater than 1 we
# increase the number of output channels
if
alpha
>
1.0
:
last_block_filters
=
_make_divisible
(
1280
*
alpha
,
8
)
else
:
last_block_filters
=
1280
x
=
Conv2D
(
last_block_filters
,
kernel_size
=
1
,
use_bias
=
False
,
name
=
'Conv_1'
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'Conv_1_bn'
)(
x
)
x
=
Activation
(
relu6
,
name
=
'out_relu'
)(
x
)
if
include_top
:
x
=
GlobalAveragePooling2D
()(
x
)
x
=
Dense
(
classes
,
activation
=
'softmax'
,
use_bias
=
True
,
name
=
'Logits'
)(
x
)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if
input_tensor
is
not
None
:
inputs
=
get_source_inputs
(
input_tensor
)
else
:
inputs
=
img_input
# Create model.
model
=
Model
(
inputs
,
x
,
name
=
'mobilenetv2_%0.2f_%s'
%
(
alpha
,
rows
))
# load weights
if
weights
==
'imagenet'
:
if
K
.
image_data_format
()
==
'channels_first'
:
raise
ValueError
(
'Weights for "channels_first" format '
'are not available.'
)
if
include_top
:
model_name
=
'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_'
+
\
str
(
alpha
)
+
'_'
+
str
(
rows
)
+
'.h5'
weigh_path
=
BASE_WEIGHT_PATH
+
model_name
weights_path
=
get_file
(
model_name
,
weigh_path
,
cache_subdir
=
'models'
)
else
:
model_name
=
'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_'
+
\
str
(
alpha
)
+
'_'
+
str
(
rows
)
+
'_no_top'
+
'.h5'
weigh_path
=
BASE_WEIGHT_PATH
+
model_name
weights_path
=
get_file
(
model_name
,
weigh_path
,
cache_subdir
=
'models'
)
model
.
load_weights
(
weights_path
)
elif
weights
is
not
None
:
model
.
load_weights
(
weights
)
if
old_data_format
:
K
.
set_image_data_format
(
old_data_format
)
return
model
def
_inverted_res_block
(
inputs
,
expansion
,
stride
,
alpha
,
filters
,
block_id
):
in_channels
=
inputs
.
_keras_shape
[
-
1
]
prefix
=
'features.'
+
str
(
block_id
)
+
'.conv.'
pointwise_conv_filters
=
int
(
filters
*
alpha
)
pointwise_filters
=
_make_divisible
(
pointwise_conv_filters
,
8
)
# Expand
x
=
Conv2D
(
expansion
*
in_channels
,
kernel_size
=
1
,
padding
=
'same'
,
use_bias
=
False
,
activation
=
None
,
name
=
'mobl%d_conv_expand'
%
block_id
)(
inputs
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'bn%d_conv_bn_expand'
%
block_id
)(
x
)
x
=
Activation
(
relu6
,
name
=
'conv_%d_relu'
%
block_id
)(
x
)
# Depthwise
x
=
DepthwiseConv2D
(
kernel_size
=
3
,
strides
=
stride
,
activation
=
None
,
use_bias
=
False
,
padding
=
'same'
,
name
=
'mobl%d_conv_depthwise'
%
block_id
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'bn%d_conv_depthwise'
%
block_id
)(
x
)
x
=
Activation
(
relu6
,
name
=
'conv_dw_%d_relu'
%
block_id
)(
x
)
# Project
x
=
Conv2D
(
pointwise_filters
,
kernel_size
=
1
,
padding
=
'same'
,
use_bias
=
False
,
activation
=
None
,
name
=
'mobl%d_conv_project'
%
block_id
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'bn%d_conv_bn_project'
%
block_id
)(
x
)
if
in_channels
==
pointwise_filters
and
stride
==
1
:
return
Add
(
name
=
'res_connect_'
+
str
(
block_id
))([
inputs
,
x
])
return
x
def
_first_inverted_res_block
(
inputs
,
expansion
,
stride
,
alpha
,
filters
,
block_id
):
in_channels
=
inputs
.
_keras_shape
[
-
1
]
prefix
=
'features.'
+
str
(
block_id
)
+
'.conv.'
pointwise_conv_filters
=
int
(
filters
*
alpha
)
pointwise_filters
=
_make_divisible
(
pointwise_conv_filters
,
8
)
# Depthwise
x
=
DepthwiseConv2D
(
kernel_size
=
3
,
strides
=
stride
,
activation
=
None
,
use_bias
=
False
,
padding
=
'same'
,
name
=
'mobl%d_conv_depthwise'
%
block_id
)(
inputs
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'bn%d_conv_depthwise'
%
block_id
)(
x
)
x
=
Activation
(
relu6
,
name
=
'conv_dw_%d_relu'
%
block_id
)(
x
)
# Project
x
=
Conv2D
(
pointwise_filters
,
kernel_size
=
1
,
padding
=
'same'
,
use_bias
=
False
,
activation
=
None
,
name
=
'mobl%d_conv_project'
%
block_id
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'bn%d_conv_project'
%
block_id
)(
x
)
if
in_channels
==
pointwise_filters
and
stride
==
1
:
return
Add
(
name
=
'res_connect_'
+
str
(
block_id
))([
inputs
,
x
])
return
x
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment