Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
8b641b13
"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "7623091d9769f074680beefcdf23a6fb2ecac753"
Unverified
Commit
8b641b13
authored
Mar 26, 2022
by
Srihari Humbarwadi
Committed by
GitHub
Mar 26, 2022
Browse files
Merge branch 'tensorflow:master' into panoptic-deeplab
parents
7cffacfe
357fa547
Changes
503
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
137 additions
and
43 deletions
+137
-43
official/legacy/image_classification/resnet/resnet_config.py
official/legacy/image_classification/resnet/resnet_config.py
+0
-1
official/legacy/image_classification/vgg/vgg_config.py
official/legacy/image_classification/vgg/vgg_config.py
+0
-1
official/modeling/multitask/multitask.py
official/modeling/multitask/multitask.py
+6
-2
official/modeling/multitask/train_lib.py
official/modeling/multitask/train_lib.py
+2
-4
official/modeling/optimization/optimizer_factory.py
official/modeling/optimization/optimizer_factory.py
+2
-2
official/modeling/privacy/__init__.py
official/modeling/privacy/__init__.py
+0
-0
official/modeling/privacy/configs.py
official/modeling/privacy/configs.py
+9
-5
official/modeling/privacy/configs_test.py
official/modeling/privacy/configs_test.py
+16
-17
official/modeling/privacy/ops.py
official/modeling/privacy/ops.py
+42
-0
official/modeling/privacy/ops_test.py
official/modeling/privacy/ops_test.py
+52
-0
official/nlp/configs/wmt_transformer_experiments.py
official/nlp/configs/wmt_transformer_experiments.py
+0
-1
official/nlp/data/dual_encoder_dataloader.py
official/nlp/data/dual_encoder_dataloader.py
+1
-1
official/nlp/modeling/layers/gaussian_process.py
official/nlp/modeling/layers/gaussian_process.py
+0
-1
official/nlp/modeling/layers/gaussian_process_test.py
official/nlp/modeling/layers/gaussian_process_test.py
+0
-1
official/nlp/modeling/models/t5.py
official/nlp/modeling/models/t5.py
+7
-2
official/projects/assemblenet/configs/assemblenet.py
official/projects/assemblenet/configs/assemblenet.py
+0
-1
official/projects/assemblenet/configs/assemblenet_test.py
official/projects/assemblenet/configs/assemblenet_test.py
+0
-1
official/projects/assemblenet/modeling/assemblenet.py
official/projects/assemblenet/modeling/assemblenet.py
+0
-1
official/projects/assemblenet/modeling/rep_flow_2d_layer.py
official/projects/assemblenet/modeling/rep_flow_2d_layer.py
+0
-1
official/projects/assemblenet/train.py
official/projects/assemblenet/train.py
+0
-1
No files found.
official/legacy/image_classification/resnet/resnet_config.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Configuration definitions for ResNet losses, learning rates, and optimizers."""
"""Configuration definitions for ResNet losses, learning rates, and optimizers."""
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
division
...
...
official/legacy/image_classification/vgg/vgg_config.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Configuration definitions for VGG losses, learning rates, and optimizers."""
"""Configuration definitions for VGG losses, learning rates, and optimizers."""
import
dataclasses
import
dataclasses
...
...
official/modeling/multitask/multitask.py
View file @
8b641b13
...
@@ -23,9 +23,11 @@ from official.core import task_factory
...
@@ -23,9 +23,11 @@ from official.core import task_factory
from
official.modeling
import
optimization
from
official.modeling
import
optimization
from
official.modeling.multitask
import
base_model
from
official.modeling.multitask
import
base_model
from
official.modeling.multitask
import
configs
from
official.modeling.multitask
import
configs
from
official.modeling.privacy
import
configs
as
dp_configs
OptimizationConfig
=
optimization
.
OptimizationConfig
OptimizationConfig
=
optimization
.
OptimizationConfig
RuntimeConfig
=
config_definitions
.
RuntimeConfig
RuntimeConfig
=
config_definitions
.
RuntimeConfig
DifferentialPrivacyConfig
=
dp_configs
.
DifferentialPrivacyConfig
class
MultiTask
(
tf
.
Module
,
metaclass
=
abc
.
ABCMeta
):
class
MultiTask
(
tf
.
Module
,
metaclass
=
abc
.
ABCMeta
):
...
@@ -93,9 +95,11 @@ class MultiTask(tf.Module, metaclass=abc.ABCMeta):
...
@@ -93,9 +95,11 @@ class MultiTask(tf.Module, metaclass=abc.ABCMeta):
@
classmethod
@
classmethod
def
create_optimizer
(
cls
,
def
create_optimizer
(
cls
,
optimizer_config
:
OptimizationConfig
,
optimizer_config
:
OptimizationConfig
,
runtime_config
:
Optional
[
RuntimeConfig
]
=
None
):
runtime_config
:
Optional
[
RuntimeConfig
]
=
None
,
dp_config
:
Optional
[
DifferentialPrivacyConfig
]
=
None
):
return
base_task
.
Task
.
create_optimizer
(
return
base_task
.
Task
.
create_optimizer
(
optimizer_config
=
optimizer_config
,
runtime_config
=
runtime_config
)
optimizer_config
=
optimizer_config
,
runtime_config
=
runtime_config
,
dp_config
=
dp_config
)
def
joint_train_step
(
self
,
task_inputs
,
def
joint_train_step
(
self
,
task_inputs
,
multi_task_model
:
base_model
.
MultiTaskBaseModel
,
multi_task_model
:
base_model
.
MultiTaskBaseModel
,
...
...
official/modeling/multitask/train_lib.py
View file @
8b641b13
...
@@ -66,8 +66,7 @@ def run_experiment(
...
@@ -66,8 +66,7 @@ def run_experiment(
is_training
=
'train'
in
mode
is_training
=
'train'
in
mode
is_eval
=
'eval'
in
mode
is_eval
=
'eval'
in
mode
with
distribution_strategy
.
scope
():
with
distribution_strategy
.
scope
():
optimizer
=
task
.
create_optimizer
(
params
.
trainer
.
optimizer_config
,
optimizer
=
train_utils
.
create_optimizer
(
task
,
params
)
params
.
runtime
)
kwargs
=
dict
(
multi_task
=
task
,
multi_task_model
=
model
,
optimizer
=
optimizer
)
kwargs
=
dict
(
multi_task
=
task
,
multi_task_model
=
model
,
optimizer
=
optimizer
)
if
params
.
trainer
.
trainer_type
==
'interleaving'
:
if
params
.
trainer
.
trainer_type
==
'interleaving'
:
sampler
=
task_sampler
.
get_task_sampler
(
params
.
trainer
.
task_sampler
,
sampler
=
task_sampler
.
get_task_sampler
(
params
.
trainer
.
task_sampler
,
...
@@ -183,8 +182,7 @@ def run_experiment_with_multitask_eval(
...
@@ -183,8 +182,7 @@ def run_experiment_with_multitask_eval(
config
=
params
,
config
=
params
,
task
=
train_task
,
task
=
train_task
,
model
=
train_task
.
build_model
(),
model
=
train_task
.
build_model
(),
optimizer
=
train_task
.
create_optimizer
(
params
.
trainer
.
optimizer_config
,
optimizer
=
train_utils
.
create_optimizer
(
train_task
,
params
),
params
.
runtime
),
train
=
True
,
train
=
True
,
evaluate
=
False
)
evaluate
=
False
)
else
:
else
:
...
...
official/modeling/optimization/optimizer_factory.py
View file @
8b641b13
...
@@ -28,9 +28,9 @@ from official.nlp import optimization as nlp_optimization
...
@@ -28,9 +28,9 @@ from official.nlp import optimization as nlp_optimization
OPTIMIZERS_CLS
=
{
OPTIMIZERS_CLS
=
{
'sgd'
:
tf
.
keras
.
optimizers
.
SGD
,
'sgd'
:
tf
.
keras
.
optimizers
.
SGD
,
'sgd_experimental'
:
tf
.
keras
.
optimizers
.
experimental
.
SGD
,
# TODO(chenmoneygithub):
experimental.SGD
'adam'
:
tf
.
keras
.
optimizers
.
Adam
,
'adam'
:
tf
.
keras
.
optimizers
.
Adam
,
'adam_experimental'
:
tf
.
keras
.
optimizers
.
experimental
.
Adam
,
# TODO(chenmoneygithub):
experimental.Adam
'adamw'
:
nlp_optimization
.
AdamWeightDecay
,
'adamw'
:
nlp_optimization
.
AdamWeightDecay
,
'lamb'
:
tfa_optimizers
.
LAMB
,
'lamb'
:
tfa_optimizers
.
LAMB
,
'rmsprop'
:
tf
.
keras
.
optimizers
.
RMSprop
,
'rmsprop'
:
tf
.
keras
.
optimizers
.
RMSprop
,
...
...
official/
vision/beta/data
/__init__.py
→
official/
modeling/privacy
/__init__.py
View file @
8b641b13
File moved
official/
vision/beta/modeling/decoders/__init__
.py
→
official/
modeling/privacy/configs
.py
View file @
8b641b13
...
@@ -12,9 +12,13 @@
...
@@ -12,9 +12,13 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Configs for differential privacy."""
"""Decoders package definition."""
from
official.vision.beta.modeling.decoders.aspp
import
ASPP
from
official.modeling.hyperparams
import
base_config
from
official.vision.beta.modeling.decoders.fpn
import
FPN
from
official.vision.beta.modeling.decoders.nasfpn
import
NASFPN
class
DifferentialPrivacyConfig
(
base_config
.
Config
):
# Applied to the gradients
# Setting to a large number so nothing is clipped.
clipping_norm
:
float
=
100000000.0
# 10^9
noise_multiplier
:
float
=
0.0
official/
vision/beta/modeling/layers/roi_aligner
_test.py
→
official/
modeling/privacy/configs
_test.py
View file @
8b641b13
...
@@ -12,30 +12,29 @@
...
@@ -12,30 +12,29 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""Tests for
roi_aligner.py
."""
"""Tests for
configs
."""
# Import libraries
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.modeling.privacy
import
configs
from
official.vision.beta.modeling.layers
import
roi_aligner
class
ConfigsTest
(
tf
.
test
.
TestCase
):
class
MultilevelROIAlignerTest
(
tf
.
test
.
TestCase
):
def
test_clipping_norm_default
(
self
):
clipping_norm
=
configs
.
DifferentialPrivacyConfig
().
clipping_norm
self
.
assertEqual
(
100000000.0
,
clipping_norm
)
def
test_serialize_deserialize
(
self
):
def
test_noise_multiplier_default
(
self
):
kwargs
=
dict
(
noise_multiplier
=
configs
.
DifferentialPrivacyConfig
().
noise_multiplier
crop_size
=
7
,
self
.
assertEqual
(
0.0
,
noise_multiplier
)
sample_offset
=
0.5
,
)
aligner
=
roi_aligner
.
MultilevelROIAligner
(
**
kwargs
)
expected_config
=
dict
(
kwargs
)
def
test_config
(
self
):
self
.
assertEqual
(
aligner
.
get_config
(),
expected_c
onfig
)
dp_config
=
configs
.
DifferentialPrivacyC
onfig
({
'clipping_norm'
:
1.0
,
new_aligner
=
roi_aligner
.
MultilevelROIAligner
.
from_config
(
'noise_multiplier'
:
1.0
aligner
.
get_config
()
)
}
)
self
.
assertEqual
(
1.0
,
dp_config
.
clipping_norm
)
self
.
assert
All
Equal
(
aligner
.
get_config
(),
new_aligner
.
get_config
()
)
self
.
assertEqual
(
1.0
,
dp_config
.
noise_multiplier
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
official/
vision/beta/dataloaders/tfds_classification_decoder
s.py
→
official/
modeling/privacy/op
s.py
View file @
8b641b13
...
@@ -12,27 +12,31 @@
...
@@ -12,27 +12,31 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""
TFDS Classification decoder
s."""
"""
Ops for differential privacy (gradient) transform
s."""
from
typing
import
List
,
Tuple
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.vision.beta.dataloaders
import
decoder
class
ClassificationDecorder
(
decoder
.
Decoder
):
def
clip_l2_norm
(
grads_vars
:
List
[
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
]],
"""A tf.Example decoder for tfds classification datasets."""
l2_norm_clip
:
float
)
->
List
[
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
]]:
"""Clip gradients by global norm."""
def
decode
(
self
,
serialized_example
):
gradients
=
[]
sample_dict
=
{
variables
=
[]
'image/encoded'
:
for
(
g
,
v
)
in
grads_vars
:
tf
.
io
.
encode_jpeg
(
serialized_example
[
'image'
],
quality
=
100
),
gradients
.
append
(
g
)
'image/class/label'
:
variables
.
append
(
v
)
serialized_example
[
'label'
],
clipped_gradients
=
tf
.
clip_by_global_norm
(
gradients
,
l2_norm_clip
)[
0
]
}
return
list
(
zip
(
clipped_gradients
,
variables
))
return
sample_dict
TFDS_ID_TO_DECODER_MAP
=
{
def
add_noise
(
grads_vars
:
List
[
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
]],
'cifar10'
:
ClassificationDecorder
,
noise_stddev
:
float
)
->
List
[
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
]]:
'cifar100'
:
ClassificationDecorder
,
"""Add noise to gradients."""
'imagenet2012'
:
ClassificationDecorder
,
ret
=
[]
}
for
(
g
,
v
)
in
grads_vars
:
noise
=
tf
.
random
.
normal
(
tf
.
shape
(
g
),
stddev
=
noise_stddev
)
ret
.
append
((
g
+
noise
,
v
))
return
ret
official/
vision/beta/ops/mask_
ops_test.py
→
official/
modeling/privacy/
ops_test.py
View file @
8b641b13
...
@@ -12,43 +12,40 @@
...
@@ -12,43 +12,40 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""Tests for ops."""
"""Tests f
or m
ask_ops.py."""
from
unittest
imp
or
t
m
ock
# Import libraries
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.vision.beta.ops
import
mask_ops
from
official.modeling.privacy
import
ops
class
MaskUtilsTest
(
tf
.
test
.
TestCase
):
def
testPasteInstanceMasks
(
self
):
class
OpsTest
(
tf
.
test
.
TestCase
):
image_height
=
10
image_width
=
10
def
test_clip_l2_norm
(
self
):
mask_height
=
6
x
=
tf
.
constant
([
4.0
,
3.0
])
mask_width
=
6
y
=
tf
.
constant
([[
12.0
]])
masks
=
np
.
random
.
randint
(
0
,
255
,
(
1
,
mask_height
,
mask_width
))
tensors
=
[(
x
,
x
),
(
y
,
y
)]
detected_boxes
=
np
.
array
([[
0.0
,
2.0
,
mask_width
,
mask_height
]])
clipped
=
ops
.
clip_l2_norm
(
tensors
,
1.0
)
for
a
,
b
in
zip
(
clipped
,
tensors
):
_
=
mask_ops
.
paste_instance_masks
(
self
.
assertAllClose
(
a
[
0
],
b
[
0
]
/
13.0
)
# sqrt(4^2 + 3^2 + 12 ^3) = 13
masks
,
detected_boxes
,
image_height
,
image_width
)
self
.
assertAllClose
(
a
[
1
],
b
[
1
])
def
testPasteInstanceMasksV2
(
self
):
@
mock
.
patch
.
object
(
tf
.
random
,
image_height
=
10
'normal'
,
image_width
=
10
autospec
=
True
)
mask_height
=
6
def
test_add_noise
(
self
,
mock_random
):
mask_width
=
6
x
=
tf
.
constant
([
0.0
,
0.0
])
masks
=
np
.
random
.
randint
(
0
,
255
,
(
1
,
mask_height
,
mask_width
))
y
=
tf
.
constant
([[
0.0
]])
detected_boxes
=
np
.
array
([[
0.0
,
2.0
,
mask_width
,
mask_height
]])
tensors
=
[(
x
,
x
),
(
y
,
y
)]
mock_random
.
side_effect
=
[
tf
.
constant
([
1.0
,
1.0
]),
tf
.
constant
([[
1.0
]])]
image_masks
=
mask_ops
.
paste_instance_masks_v2
(
added
=
ops
.
add_noise
(
tensors
,
10.0
)
masks
,
detected_boxes
,
image_height
,
image_width
)
for
a
,
b
in
zip
(
added
,
tensors
):
self
.
assertAllClose
(
a
[
0
],
b
[
0
]
+
1.0
)
self
.
assertNDArrayNear
(
self
.
assertAllClose
(
a
[
1
],
b
[
1
])
image_masks
[:,
2
:
8
,
0
:
6
],
_
,
kwargs
=
mock_random
.
call_args
np
.
array
(
masks
>
0.5
,
dtype
=
np
.
uint8
),
self
.
assertEqual
(
kwargs
[
'stddev'
],
10.0
)
1e-5
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
official/nlp/configs/wmt_transformer_experiments.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
# pylint: disable=g-doc-return-or-yield,line-too-long
# pylint: disable=g-doc-return-or-yield,line-too-long
"""WMT translation configurations."""
"""WMT translation configurations."""
...
...
official/nlp/data/dual_encoder_dataloader.py
View file @
8b641b13
...
@@ -124,7 +124,7 @@ class DualEncoderDataLoader(data_loader.DataLoader):
...
@@ -124,7 +124,7 @@ class DualEncoderDataLoader(data_loader.DataLoader):
raise
ValueError
(
'Expected {} to start with {}'
.
format
(
string
,
old
))
raise
ValueError
(
'Expected {} to start with {}'
.
format
(
string
,
old
))
def
_switch_key_prefix
(
d
,
old
,
new
):
def
_switch_key_prefix
(
d
,
old
,
new
):
return
{
_switch_prefix
(
key
,
old
,
new
):
value
for
key
,
value
in
d
.
items
()}
return
{
_switch_prefix
(
key
,
old
,
new
):
value
for
key
,
value
in
d
.
items
()}
# pytype: disable=attribute-error # trace-all-classes
model_inputs
=
_switch_key_prefix
(
model_inputs
=
_switch_key_prefix
(
self
.
_bert_tokenize
(
record
,
self
.
_left_text_fields
),
self
.
_bert_tokenize
(
record
,
self
.
_left_text_fields
),
...
...
official/nlp/modeling/layers/gaussian_process.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Definitions for random feature Gaussian process layer."""
"""Definitions for random feature Gaussian process layer."""
import
math
import
math
import
tensorflow
as
tf
import
tensorflow
as
tf
...
...
official/nlp/modeling/layers/gaussian_process_test.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Tests for Gaussian process functions."""
"""Tests for Gaussian process functions."""
import
os
import
os
import
shutil
import
shutil
...
...
official/nlp/modeling/models/t5.py
View file @
8b641b13
...
@@ -1004,6 +1004,7 @@ class T5TransformerParams:
...
@@ -1004,6 +1004,7 @@ class T5TransformerParams:
num_heads
:
int
num_heads
:
int
d_ff
:
int
d_ff
:
int
vocab_size
:
int
vocab_size
:
int
target_vocab_size
:
Optional
[
int
]
=
None
dropout_rate
:
float
=
0.0
dropout_rate
:
float
=
0.0
layer_norm_epsilon
:
float
=
1e-6
layer_norm_epsilon
:
float
=
1e-6
shared_embedding
:
bool
=
False
shared_embedding
:
bool
=
False
...
@@ -1159,11 +1160,15 @@ class Decoder(Module):
...
@@ -1159,11 +1160,15 @@ class Decoder(Module):
self
.
compute_dtype
=
compute_dtype
self
.
compute_dtype
=
compute_dtype
if
self
.
config
.
num_decoder_layers
is
None
:
if
self
.
config
.
num_decoder_layers
is
None
:
self
.
config
.
num_decoder_layers
=
self
.
config
.
num_layers
self
.
config
.
num_decoder_layers
=
self
.
config
.
num_layers
if
not
hasattr
(
self
.
config
,
"target_vocab_size"
)
or
self
.
config
.
target_vocab_size
is
None
:
self
.
config
.
target_vocab_size
=
self
.
config
.
vocab_size
with
self
.
name_scope
:
with
self
.
name_scope
:
# Target Embedding.
# Target Embedding.
if
shared_embedding
is
None
:
if
shared_embedding
is
None
:
self
.
target_embed
=
Embed
(
self
.
target_embed
=
Embed
(
vocab_size
=
self
.
config
.
vocab_size
,
vocab_size
=
self
.
config
.
target_
vocab_size
,
features
=
self
.
config
.
d_model
,
features
=
self
.
config
.
d_model
,
embeddings_initializer
=
self
.
config
.
vocab_embeddings_initializer
,
embeddings_initializer
=
self
.
config
.
vocab_embeddings_initializer
,
dtype
=
self
.
dtype
,
dtype
=
self
.
dtype
,
...
@@ -1211,7 +1216,7 @@ class Decoder(Module):
...
@@ -1211,7 +1216,7 @@ class Decoder(Module):
if
not
self
.
config
.
logits_via_embedding
:
if
not
self
.
config
.
logits_via_embedding
:
self
.
logits_dense
=
Linear
(
self
.
logits_dense
=
Linear
(
in_features
=
self
.
config
.
d_model
,
in_features
=
self
.
config
.
d_model
,
out_features
=
self
.
config
.
vocab_size
,
out_features
=
self
.
config
.
target_
vocab_size
,
use_bias
=
False
,
use_bias
=
False
,
dtype
=
self
.
dtype
,
dtype
=
self
.
dtype
,
name
=
"logits"
)
name
=
"logits"
)
...
...
official/projects/assemblenet/configs/assemblenet.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Definitions for AssembleNet/++ structures.
"""Definitions for AssembleNet/++ structures.
This structure is a `list` corresponding to a graph representation of the
This structure is a `list` corresponding to a graph representation of the
...
...
official/projects/assemblenet/configs/assemblenet_test.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
from
absl.testing
import
parameterized
from
absl.testing
import
parameterized
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
config_definitions
as
cfg
...
...
official/projects/assemblenet/modeling/assemblenet.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Contains definitions for the AssembleNet [1] models.
"""Contains definitions for the AssembleNet [1] models.
Requires the AssembleNet architecture to be specified in
Requires the AssembleNet architecture to be specified in
...
...
official/projects/assemblenet/modeling/rep_flow_2d_layer.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
"""Contains definitions for 'Representation Flow' layer [1].
"""Contains definitions for 'Representation Flow' layer [1].
Representation flow layer is a generalization of optical flow extraction; the
Representation flow layer is a generalization of optical flow extraction; the
...
...
official/projects/assemblenet/train.py
View file @
8b641b13
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# Lint as: python3
r
"""Training driver.
r
"""Training driver.
Commandline:
Commandline:
...
...
Prev
1
2
3
4
5
6
…
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment