Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
8a78c154
Commit
8a78c154
authored
Aug 18, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Aug 18, 2020
Browse files
Enforce PY3 for official/nlp/modeling
PiperOrigin-RevId: 327363070
parent
22ce9979
Changes
27
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
3 additions
and
33 deletions
+3
-33
official/nlp/modeling/layers/self_attention_mask.py
official/nlp/modeling/layers/self_attention_mask.py
+0
-5
official/nlp/modeling/layers/talking_heads_attention_test.py
official/nlp/modeling/layers/talking_heads_attention_test.py
+0
-4
official/nlp/modeling/layers/transformer.py
official/nlp/modeling/layers/transformer.py
+2
-6
official/nlp/modeling/layers/transformer_scaffold.py
official/nlp/modeling/layers/transformer_scaffold.py
+1
-5
official/nlp/modeling/layers/transformer_scaffold_test.py
official/nlp/modeling/layers/transformer_scaffold_test.py
+0
-4
official/nlp/modeling/layers/transformer_test.py
official/nlp/modeling/layers/transformer_test.py
+0
-4
official/nlp/modeling/layers/util.py
official/nlp/modeling/layers/util.py
+0
-5
No files found.
official/nlp/modeling/layers/self_attention_mask.py
View file @
8a78c154
...
@@ -14,11 +14,6 @@
...
@@ -14,11 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Keras layer that creates a self-attention mask."""
"""Keras layer that creates a self-attention mask."""
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import google_type_annotations
from
__future__
import
print_function
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
from
official.modeling
import
tf_utils
...
...
official/nlp/modeling/layers/talking_heads_attention_test.py
View file @
8a78c154
...
@@ -14,10 +14,6 @@
...
@@ -14,10 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Tests for the attention layer."""
"""Tests for the attention layer."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
absl.testing
import
parameterized
from
absl.testing
import
parameterized
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
...
...
official/nlp/modeling/layers/transformer.py
View file @
8a78c154
...
@@ -14,10 +14,6 @@
...
@@ -14,10 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Keras-based transformer block layer."""
"""Keras-based transformer block layer."""
# pylint: disable=g-classes-have-attributes
# pylint: disable=g-classes-have-attributes
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import google_type_annotations
from
__future__
import
print_function
import
gin
import
gin
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -108,7 +104,7 @@ class Transformer(tf.keras.layers.Layer):
...
@@ -108,7 +104,7 @@ class Transformer(tf.keras.layers.Layer):
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
input_tensor
=
input_shape
[
0
]
if
len
(
input_shape
)
==
2
else
input_shape
input_tensor
=
input_shape
[
0
]
if
len
(
input_shape
)
==
2
else
input_shape
input_tensor_shape
=
tf
.
TensorShape
(
input_tensor
)
input_tensor_shape
=
tf
.
TensorShape
(
input_tensor
)
if
len
(
input_tensor_shape
)
!=
3
:
if
len
(
input_tensor_shape
.
as_list
()
)
!=
3
:
raise
ValueError
(
"TransformerLayer expects a three-dimensional input of "
raise
ValueError
(
"TransformerLayer expects a three-dimensional input of "
"shape [batch, sequence, width]."
)
"shape [batch, sequence, width]."
)
batch_size
,
sequence_length
,
hidden_size
=
input_tensor_shape
batch_size
,
sequence_length
,
hidden_size
=
input_tensor_shape
...
@@ -367,7 +363,7 @@ class TransformerDecoderLayer(tf.keras.layers.Layer):
...
@@ -367,7 +363,7 @@ class TransformerDecoderLayer(tf.keras.layers.Layer):
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
target_tensor_shape
=
tf
.
TensorShape
(
input_shape
[
0
])
target_tensor_shape
=
tf
.
TensorShape
(
input_shape
[
0
])
if
len
(
target_tensor_shape
)
!=
3
:
if
len
(
target_tensor_shape
.
as_list
()
)
!=
3
:
raise
ValueError
(
"TransformerLayer expects a three-dimensional input of "
raise
ValueError
(
"TransformerLayer expects a three-dimensional input of "
"shape [batch, sequence, width]."
)
"shape [batch, sequence, width]."
)
hidden_size
=
target_tensor_shape
[
2
]
hidden_size
=
target_tensor_shape
[
2
]
...
...
official/nlp/modeling/layers/transformer_scaffold.py
View file @
8a78c154
...
@@ -14,10 +14,6 @@
...
@@ -14,10 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Keras-based transformer scaffold layer."""
"""Keras-based transformer scaffold layer."""
# pylint: disable=g-classes-have-attributes
# pylint: disable=g-classes-have-attributes
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import google_type_annotations
from
__future__
import
print_function
import
gin
import
gin
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -115,7 +111,7 @@ class TransformerScaffold(tf.keras.layers.Layer):
...
@@ -115,7 +111,7 @@ class TransformerScaffold(tf.keras.layers.Layer):
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
input_tensor
=
input_shape
[
0
]
if
len
(
input_shape
)
==
2
else
input_shape
input_tensor
=
input_shape
[
0
]
if
len
(
input_shape
)
==
2
else
input_shape
input_tensor_shape
=
tf
.
TensorShape
(
input_tensor
)
input_tensor_shape
=
tf
.
TensorShape
(
input_tensor
)
if
len
(
input_tensor_shape
)
!=
3
:
if
len
(
input_tensor_shape
.
as_list
()
)
!=
3
:
raise
ValueError
(
raise
ValueError
(
"TransformerScaffold expects a three-dimensional input of "
"TransformerScaffold expects a three-dimensional input of "
"shape [batch, sequence, width]."
)
"shape [batch, sequence, width]."
)
...
...
official/nlp/modeling/layers/transformer_scaffold_test.py
View file @
8a78c154
...
@@ -14,10 +14,6 @@
...
@@ -14,10 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Tests for Keras-based transformer block layer."""
"""Tests for Keras-based transformer block layer."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
json
import
json
import
numpy
as
np
import
numpy
as
np
...
...
official/nlp/modeling/layers/transformer_test.py
View file @
8a78c154
...
@@ -14,10 +14,6 @@
...
@@ -14,10 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Tests for Keras-based transformer block layer."""
"""Tests for Keras-based transformer block layer."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
absl.testing
import
parameterized
from
absl.testing
import
parameterized
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
...
...
official/nlp/modeling/layers/util.py
View file @
8a78c154
...
@@ -14,11 +14,6 @@
...
@@ -14,11 +14,6 @@
# ==============================================================================
# ==============================================================================
"""Keras-based transformer block layer."""
"""Keras-based transformer block layer."""
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import google_type_annotations
from
__future__
import
print_function
import
functools
import
functools
import
tensorflow
as
tf
import
tensorflow
as
tf
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment