"examples/interactive_asr/__init__.py" did not exist on "db2b0b7925739341002fe6ac6d748fcbf3ec33bf"
Commit 865631be authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 341966519
parent b15a86fc
......@@ -296,12 +296,78 @@ MNV3EdgeTPU_BLOCK_SPECS = {
]
}
"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf
"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiMAX',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'expand_ratio',
'use_normalization', 'use_bias'],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False),
('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False),
('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False),
('convbn', 1, 1, 960, 'relu', None, True, False),
('gpooling', None, None, None, None, None, None, None),
('convbn', 1, 1, 1280, 'relu', None, False, True),
]
}
MNMultiAVG_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiAVG',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'expand_ratio',
'use_normalization', 'use_bias'],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False),
('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False),
('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False),
('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False),
('convbn', 1, 1, 960, 'relu', None, True, False),
('gpooling', None, None, None, None, None, None, None),
('convbn', 1, 1, 1280, 'relu', None, False, True),
]
}
SUPPORTED_SPECS_MAP = {
'MobileNetV1': MNV1_BLOCK_SPECS,
'MobileNetV2': MNV2_BLOCK_SPECS,
'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
}
......
......@@ -26,9 +26,15 @@ from official.vision.beta.modeling.backbones import mobilenet
class MobileNetTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters('MobileNetV1', 'MobileNetV2',
'MobileNetV3Large', 'MobileNetV3Small',
'MobileNetV3EdgeTPU')
@parameterized.parameters(
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
)
def test_serialize_deserialize(self, model_id):
# Create a network object that sets all of its config options.
kwargs = dict(
......@@ -62,9 +68,18 @@ class MobileNetTest(parameterized.TestCase, tf.test.TestCase):
self.assertAllEqual(network.get_config(), new_network.get_config())
@parameterized.parameters(
itertools.product((1, 3),
('MobileNetV1', 'MobileNetV2', 'MobileNetV3Large',
'MobileNetV3Small', 'MobileNetV3EdgeTPU')))
itertools.product(
[1, 3],
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
],
))
def test_input_specs(self, input_dim, model_id):
"""Test different input feature dimensions."""
tf.keras.backend.set_image_data_format('channels_last')
......@@ -75,182 +90,88 @@ class MobileNetTest(parameterized.TestCase, tf.test.TestCase):
inputs = tf.keras.Input(shape=(128, 128, input_dim), batch_size=1)
_ = network(inputs)
@parameterized.parameters(32, 224)
def test_mobilenet_v1_creation(self, input_size):
"""Test creation of EfficientNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
network = mobilenet.MobileNet(model_id='MobileNetV1',
filter_size_scale=0.75)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 24],
endpoints[1].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 48],
endpoints[2].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 96],
endpoints[3].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 96],
endpoints[4].shape.as_list())
@parameterized.parameters(32, 224)
def test_mobilenet_v2_creation(self, input_size):
"""Test creation of EfficientNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
network = mobilenet.MobileNet(model_id='MobileNetV2',
filter_size_scale=1.0)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 32],
endpoints[1].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 16],
endpoints[2].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 24],
endpoints[3].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 24],
endpoints[4].shape.as_list())
@parameterized.parameters(32, 224)
def test_mobilenet_v3_small_creation(self, input_size):
"""Test creation of EfficientNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
network = mobilenet.MobileNet(model_id='MobileNetV3Small',
filter_size_scale=0.75)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 16],
endpoints[1].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 16],
endpoints[2].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 3, input_size / 2 ** 3, 24],
endpoints[3].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 3, input_size / 2 ** 3, 24],
endpoints[4].shape.as_list())
@parameterized.parameters(32, 224)
def test_mobilenet_v3_large_creation(self, input_size):
"""Test creation of EfficientNet family models."""
@parameterized.parameters(
itertools.product(
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
],
[32, 224],
))
def test_mobilenet_creation(self, model_id,
input_size):
"""Test creation of MobileNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
network = mobilenet.MobileNet(model_id='MobileNetV3Large',
filter_size_scale=0.75)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 16],
endpoints[1].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 16],
endpoints[2].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 24],
endpoints[3].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 24],
endpoints[4].shape.as_list())
@parameterized.parameters(32, 224)
def test_mobilenet_v3_edgetpu_creation(self, input_size):
"""Test creation of EfficientNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
mobilenet_layers = {
# The stride (relative to input) and number of filters
# of first few layers for filter_size_scale = 0.75
'MobileNetV1': [(1, 24), (1, 48), (2, 96), (2, 96)],
'MobileNetV2': [(1, 24), (1, 16), (2, 24), (2, 24)],
'MobileNetV3Small': [(1, 16), (2, 16), (3, 24), (3, 24)],
'MobileNetV3Large': [(1, 16), (1, 16), (2, 24), (2, 24)],
'MobileNetV3EdgeTPU': [(1, 24), (1, 16), (2, 24), (2, 24)],
'MobileNetMultiMAX': [(1, 24), (2, 24), (3, 48), (3, 48)],
'MobileNetMultiAVG': [(1, 24), (2, 24), (2, 24), (3, 48)],
}
network = mobilenet.MobileNet(model_id='MobileNetV3EdgeTPU',
network = mobilenet.MobileNet(model_id=model_id,
filter_size_scale=0.75)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 24],
endpoints[1].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 1, input_size / 2 ** 1, 16],
endpoints[2].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 24],
endpoints[3].shape.as_list())
self.assertAllEqual([1, input_size / 2 ** 2, input_size / 2 ** 2, 24],
endpoints[4].shape.as_list())
@parameterized.parameters(1.0, 0.75)
def test_mobilenet_v1_scaling(self, filter_size_scale):
mobilenet_v1_params = {
1.0: 3228864,
0.75: 1832976
}
input_size = 224
network = mobilenet.MobileNet(model_id='MobileNetV1',
filter_size_scale=filter_size_scale)
self.assertEqual(network.count_params(),
mobilenet_v1_params[filter_size_scale])
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
_ = network(inputs)
@parameterized.parameters(1.0, 0.75)
def test_mobilenet_v2_scaling(self, filter_size_scale):
mobilenet_v2_params = {
1.0: 2257984,
0.75: 1382064
}
input_size = 224
network = mobilenet.MobileNet(model_id='MobileNetV2',
filter_size_scale=filter_size_scale)
self.assertEqual(network.count_params(),
mobilenet_v2_params[filter_size_scale])
for idx, (stride, num_filter) in enumerate(mobilenet_layers[model_id]):
self.assertAllEqual(
[1, input_size / 2 ** stride, input_size / 2 ** stride, num_filter],
endpoints[idx+1].shape.as_list())
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
_ = network(inputs)
@parameterized.parameters(1.0, 0.75)
def test_mobilenet_v3_large_scaling(self, filter_size_scale):
mobilenet_v3_large_params = {
1.0: 4226432,
0.75: 2731616
}
input_size = 224
network = mobilenet.MobileNet(model_id='MobileNetV3Large',
filter_size_scale=filter_size_scale)
self.assertEqual(network.count_params(),
mobilenet_v3_large_params[filter_size_scale])
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
_ = network(inputs)
@parameterized.parameters(1.0, 0.75)
def test_mobilenet_v3_small_scaling(self, filter_size_scale):
mobilenet_v3_small_params = {
1.0: 1529968,
0.75: 1026552
@parameterized.parameters(
itertools.product(
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
],
[1.0, 0.75],
))
def test_mobilenet_scaling(self, model_id,
filter_size_scale):
"""Test for creation of a MobileNet classifier."""
mobilenet_params = {
('MobileNetV1', 1.0): 3228864,
('MobileNetV1', 0.75): 1832976,
('MobileNetV2', 1.0): 2257984,
('MobileNetV2', 0.75): 1382064,
('MobileNetV3Large', 1.0): 4226432,
('MobileNetV3Large', 0.75): 2731616,
('MobileNetV3Small', 1.0): 1529968,
('MobileNetV3Small', 0.75): 1026552,
('MobileNetV3EdgeTPU', 1.0): 2849312,
('MobileNetV3EdgeTPU', 0.75): 1737288,
('MobileNetMultiAVG', 1.0): 3700576,
('MobileNetMultiAVG', 0.75): 2345864,
('MobileNetMultiMAX', 1.0): 3170720,
('MobileNetMultiMAX', 0.75): 2041976,
}
input_size = 224
network = mobilenet.MobileNet(model_id='MobileNetV3Small',
network = mobilenet.MobileNet(model_id=model_id,
filter_size_scale=filter_size_scale)
self.assertEqual(network.count_params(),
mobilenet_v3_small_params[filter_size_scale])
mobilenet_params[(model_id, filter_size_scale)])
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
_ = network(inputs)
@parameterized.parameters(1.0, 0.75)
def test_mobilenet_v3_edgetpu_scaling(self, filter_size_scale):
mobilenet_v3_edgetpu_params = {
1.0: 2849312,
0.75: 1737288
}
input_size = 224
network = mobilenet.MobileNet(model_id='MobileNetV3EdgeTPU',
filter_size_scale=filter_size_scale)
self.assertEqual(network.count_params(),
mobilenet_v3_edgetpu_params[filter_size_scale])
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
_ = network(inputs)
if __name__ == '__main__':
tf.test.main()
......@@ -84,7 +84,9 @@ class ClassificationNetworkTest(parameterized.TestCase, tf.test.TestCase):
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU'
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
],
filter_size_scale=[1.0, 0.75],
))
......@@ -102,6 +104,10 @@ class ClassificationNetworkTest(parameterized.TestCase, tf.test.TestCase):
('MobileNetV3Small', 0.75): 2052577,
('MobileNetV3EdgeTPU', 1.0): 4131593,
('MobileNetV3EdgeTPU', 0.75): 3019569,
('MobileNetMultiAVG', 1.0): 4982857,
('MobileNetMultiAVG', 0.75): 3628145,
('MobileNetMultiMAX', 1.0): 4453001,
('MobileNetMultiMAX', 0.75): 3324257,
}
inputs = np.random.rand(2, 224, 224, 3)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment