Commit 7fb8b0f2 authored by Christopher Shallue's avatar Christopher Shallue
Browse files

Replace deprecated functions

parent 2fa6057a
...@@ -92,7 +92,7 @@ def process_image(encoded_image, ...@@ -92,7 +92,7 @@ def process_image(encoded_image,
# only logged in thread 0. # only logged in thread 0.
def image_summary(name, image): def image_summary(name, image):
if not thread_id: if not thread_id:
tf.image_summary(name, tf.expand_dims(image, 0)) tf.summary.image(name, tf.expand_dims(image, 0))
# Decode image into a float32 Tensor of shape [?, ?, 3] with values in [0, 1). # Decode image into a float32 Tensor of shape [?, ?, 3] with values in [0, 1).
with tf.name_scope("decode", values=[encoded_image]): with tf.name_scope("decode", values=[encoded_image]):
......
...@@ -116,7 +116,7 @@ def prefetch_input_data(reader, ...@@ -116,7 +116,7 @@ def prefetch_input_data(reader,
enqueue_ops.append(values_queue.enqueue([value])) enqueue_ops.append(values_queue.enqueue([value]))
tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner( tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner(
values_queue, enqueue_ops)) values_queue, enqueue_ops))
tf.scalar_summary( tf.summary.scalar(
"queue/%s/fraction_of_%d_full" % (values_queue.name, capacity), "queue/%s/fraction_of_%d_full" % (values_queue.name, capacity),
tf.cast(values_queue.size(), tf.float32) * (1. / capacity)) tf.cast(values_queue.size(), tf.float32) * (1. / capacity))
...@@ -197,8 +197,8 @@ def batch_with_dynamic_pad(images_and_captions, ...@@ -197,8 +197,8 @@ def batch_with_dynamic_pad(images_and_captions,
if add_summaries: if add_summaries:
lengths = tf.add(tf.reduce_sum(mask, 1), 1) lengths = tf.add(tf.reduce_sum(mask, 1), 1)
tf.scalar_summary("caption_length/batch_min", tf.reduce_min(lengths)) tf.summary.scalar("caption_length/batch_min", tf.reduce_min(lengths))
tf.scalar_summary("caption_length/batch_max", tf.reduce_max(lengths)) tf.summary.scalar("caption_length/batch_max", tf.reduce_max(lengths))
tf.scalar_summary("caption_length/batch_mean", tf.reduce_mean(lengths)) tf.summary.scalar("caption_length/batch_mean", tf.reduce_mean(lengths))
return images, input_seqs, target_seqs, mask return images, input_seqs, target_seqs, mask
...@@ -311,14 +311,14 @@ class ShowAndTellModel(object): ...@@ -311,14 +311,14 @@ class ShowAndTellModel(object):
batch_loss = tf.div(tf.reduce_sum(tf.mul(losses, weights)), batch_loss = tf.div(tf.reduce_sum(tf.mul(losses, weights)),
tf.reduce_sum(weights), tf.reduce_sum(weights),
name="batch_loss") name="batch_loss")
tf.contrib.losses.add_loss(batch_loss) tf.losses.add_loss(batch_loss)
total_loss = tf.contrib.losses.get_total_loss() total_loss = tf.losses.get_total_loss()
# Add summaries. # Add summaries.
tf.scalar_summary("batch_loss", batch_loss) tf.summary.scalar("losses/batch_loss", batch_loss)
tf.scalar_summary("total_loss", total_loss) tf.summary.scalar("losses/total_loss", total_loss)
for var in tf.trainable_variables(): for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var) tf.summary.histogram("parameters/" + var.op.name, var)
self.total_loss = total_loss self.total_loss = total_loss
self.target_cross_entropy_losses = losses # Used in evaluation. self.target_cross_entropy_losses = losses # Used in evaluation.
......
...@@ -63,7 +63,7 @@ class ShowAndTellModelTest(tf.test.TestCase): ...@@ -63,7 +63,7 @@ class ShowAndTellModelTest(tf.test.TestCase):
def _countModelParameters(self): def _countModelParameters(self):
"""Counts the number of parameters in the model at top level scope.""" """Counts the number of parameters in the model at top level scope."""
counter = {} counter = {}
for v in tf.all_variables(): for v in tf.global_variables():
name = v.op.name.split("/")[0] name = v.op.name.split("/")[0]
num_params = v.get_shape().num_elements() num_params = v.get_shape().num_elements()
assert num_params assert num_params
...@@ -98,7 +98,7 @@ class ShowAndTellModelTest(tf.test.TestCase): ...@@ -98,7 +98,7 @@ class ShowAndTellModelTest(tf.test.TestCase):
fetches = expected_shapes.keys() fetches = expected_shapes.keys()
with self.test_session() as sess: with self.test_session() as sess:
sess.run(tf.initialize_all_variables()) sess.run(tf.global_variables_initializer())
outputs = sess.run(fetches, feed_dict) outputs = sess.run(fetches, feed_dict)
for index, output in enumerate(outputs): for index, output in enumerate(outputs):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment