Commit 7dfef01d authored by Ruomei Yan's avatar Ruomei Yan
Browse files

Fix the two types of failed tests:

1. the dataset_num_private_threads flags
2. clustering does not support fp16 or mixed precision training
parent 55018881
......@@ -929,7 +929,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.enable_eager = True
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
FLAGS.batch_size = 128 * 8 # 8 GPUs
FLAGS.batch_size = 128 * 8
FLAGS.datasets_num_private_threads = 14
self._run_and_report_benchmark()
......@@ -996,7 +996,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.dataset_num_private_threads = 40
FLAGS.datasets_num_private_threads = 40
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16_dynamic_tweaked(self):
......@@ -1012,7 +1012,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.loss_scale = 'dynamic'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.dataset_num_private_threads = 40
FLAGS.datasets_num_private_threads = 40
self._run_and_report_benchmark()
def benchmark_xla_8_gpu_fp16(self):
......@@ -1870,6 +1870,8 @@ class KerasClusteringBenchmarkRealBase(Resnet50KerasBenchmarkBase):
'skip_eval': True,
'report_accuracy_metrics': False,
'data_dir': os.path.join(root_data_dir, 'imagenet'),
'clustering_method': 'selective_clustering',
'number_of_clusters': 256,
'train_steps': 110,
'log_steps': 10,
})
......
......@@ -243,15 +243,12 @@ def run(flags_obj):
classes=imagenet_preprocessing.NUM_CLASSES,
layers=tf.keras.layers)
elif flags_obj.model == 'mobilenet_pretrained':
shape = (224, 224, 3)
model = tf.keras.applications.mobilenet.MobileNet(
input_shape=shape,
alpha=1.0,
depth_multiplier=1,
dropout=1e-7,
include_top=True,
weights='imagenet',
input_tensor=tf.keras.layers.Input(shape),
pooling=None,
classes=1000,
layers=tf.keras.layers)
......@@ -277,7 +274,7 @@ def run(flags_obj):
raise NotImplementedError('Only polynomial_decay is currently supported.')
if flags_obj.clustering_method == 'selective_clustering':
if dtype != tf.float32:
if dtype != tf.float32 or flags_obj.fp16_implementation == 'graph_rewrite':
raise NotImplementedError(
'Clustering is currently only supported on dtype=tf.float32.')
clustering_params1 = {
......
......@@ -28,7 +28,7 @@ import math
import tensorflow as tf
from typing import Any, Dict, List, Optional, Text, Tuple
from tensorflow.python.keras.layers.preprocessing import image_preprocessing as image_ops
from tensorflow.python.keras.layers import image_preprocessing as image_ops
# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment