"git@developer.sourcefind.cn:Wenxuan/LightX2V.git" did not exist on "3e67df1c040f57a7aa325cb2d0a4c2c47686604c"
Unverified Commit 78ddf6eb authored by cclauss's avatar cclauss Committed by GitHub
Browse files

Merge branch 'master' into patch-6

parents 50cb0365 1f34fcaf
# Brain Coder
*Authors: Daniel Abolafia, Mohammad Norouzi, Quoc Le*
Brain coder is a code synthesis experimental environment. We provide code that reproduces the results from our recent paper [Neural Program Synthesis with Priority Queue Training](https://arxiv.org/abs/1801.03526). See single_task/README.md for details on how to build and reproduce those experiments.
## Installation
First install dependencies seperately:
* [bazel](https://docs.bazel.build/versions/master/install.html)
* [TensorFlow](https://www.tensorflow.org/install/)
* [scipy](https://www.scipy.org/install.html)
* [absl-py](https://github.com/abseil/abseil-py)
Note: even if you already have these dependencies installed, make sure they are
up-to-date to avoid unnecessary debugging.
## Building
Use bazel from the top-level repo directory.
For example:
```bash
bazel build single_task:run
```
View README.md files in subdirectories for more details.
git_repository(
name = "subpar",
remote = "https://github.com/google/subpar",
tag = "1.0.0",
)
licenses(["notice"])
package(default_visibility = [
"//:__subpackages__",
])
py_library(
name = "bf",
srcs = ["bf.py"],
)
py_test(
name = "bf_test",
srcs = ["bf_test.py"],
deps = [
":bf",
# tensorflow dep
],
)
py_library(
name = "config_lib",
srcs = ["config_lib.py"],
)
py_test(
name = "config_lib_test",
srcs = ["config_lib_test.py"],
deps = [
":config_lib",
# tensorflow dep
],
)
py_library(
name = "reward",
srcs = ["reward.py"],
)
py_test(
name = "reward_test",
srcs = ["reward_test.py"],
deps = [
":reward",
# numpy dep
# tensorflow dep
],
)
py_library(
name = "rollout",
srcs = ["rollout.py"],
deps = [
":utils",
# numpy dep
# scipy dep
],
)
py_test(
name = "rollout_test",
srcs = ["rollout_test.py"],
deps = [
":rollout",
# numpy dep
# tensorflow dep
],
)
py_library(
name = "schedules",
srcs = ["schedules.py"],
deps = [":config_lib"],
)
py_test(
name = "schedules_test",
srcs = ["schedules_test.py"],
deps = [
":config_lib",
":schedules",
# numpy dep
# tensorflow dep
],
)
py_library(
name = "utils",
srcs = ["utils.py"],
deps = [
# file dep
# absl dep /logging
# numpy dep
# tensorflow dep
],
)
py_test(
name = "utils_test",
srcs = ["utils_test.py"],
deps = [
":utils",
# numpy dep
# tensorflow dep
],
)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""BrainF**k interpreter.
Language info: https://en.wikipedia.org/wiki/Brainfuck
Based on public implementation:
https://github.com/pocmo/Python-Brainfuck/blob/master/brainfuck.py
"""
from collections import namedtuple
import time
EvalResult = namedtuple(
'EvalResult', ['output', 'success', 'failure_reason', 'steps', 'time',
'memory', 'program_trace'])
ExecutionSnapshot = namedtuple(
'ExecutionSnapshot',
['codeptr', 'codechar', 'memptr', 'memval', 'memory', 'next_input',
'output_buffer'])
class Status(object):
SUCCESS = 'success'
TIMEOUT = 'timeout'
STEP_LIMIT = 'step-limit'
SYNTAX_ERROR = 'syntax-error'
CHARS = INT_TO_CHAR = ['>', '<', '+', '-', '[', ']', '.', ',']
CHAR_TO_INT = dict([(c, i) for i, c in enumerate(INT_TO_CHAR)])
class LookAheadIterator(object):
"""Same API as Python iterator, with additional peek method."""
def __init__(self, iterable):
self._it = iter(iterable)
self._current_element = None
self._done = False
self._preload_next()
def _preload_next(self):
try:
self._current_element = self._it.next()
except StopIteration:
self._done = True
def next(self):
if self._done:
raise StopIteration
element = self._current_element
self._preload_next()
return element
def peek(self, default_value=None):
if self._done:
if default_value is None:
raise StopIteration
return default_value
return self._current_element
def buildbracemap(code):
"""Build jump map.
Args:
code: List or string or BF chars.
Returns:
bracemap: dict mapping open and close brace positions in the code to their
destination jumps. Specifically, positions of matching open/close braces
if they exist.
correct_syntax: True if all braces match. False if there are unmatched
braces in the code. Even if there are unmatched braces, a bracemap will
be built, and unmatched braces will map to themselves.
"""
bracestack, bracemap = [], {}
correct_syntax = True
for position, command in enumerate(code):
if command == '[':
bracestack.append(position)
if command == ']':
if not bracestack: # Unmatched closing brace.
bracemap[position] = position # Don't jump to any position.
correct_syntax = False
continue
start = bracestack.pop()
bracemap[start] = position
bracemap[position] = start
if bracestack: # Unmatched opening braces.
for pos in bracestack:
bracemap[pos] = pos # Don't jump to any position.
correct_syntax = False
return bracemap, correct_syntax
def evaluate(code, input_buffer=None, init_memory=None, base=256, timeout=1.0,
max_steps=None, require_correct_syntax=True, output_memory=False,
debug=False):
"""Execute BF code.
Args:
code: String or list of BF characters. Any character not in CHARS will be
ignored.
input_buffer: A list of ints which will be used as the program's input
stream. Each read op "," will read an int from this list. 0's will be
read once the end of the list is reached, or if no input buffer is
given.
init_memory: A list of ints. Memory for first k positions will be
initialized to this list (where k = len(init_memory)). Memory positions
are initialized to 0 by default.
base: Integer base for the memory. When a memory value is incremented to
`base` it will overflow to 0. When a memory value is decremented to -1
it will underflow to `base` - 1.
timeout: Time limit for program execution in seconds. Set to None to
disable.
max_steps: Execution step limit. An execution step is the execution of one
operation (code character), even if that op has been executed before.
Execution exits when this many steps are reached. Set to None to
disable. Disabled by default.
require_correct_syntax: If True, unmatched braces will cause `evaluate` to
return without executing the code. The failure reason will be
`Status.SYNTAX_ERROR`. If False, unmatched braces are ignored
and execution will continue.
output_memory: If True, the state of the memory at the end of execution is
returned.
debug: If True, then a full program trace will be returned.
Returns:
EvalResult namedtuple containing
output: List of ints which were written out by the program with the "."
operation.
success: Boolean. Whether execution completed successfully.
failure_reason: One of the attributes of `Status`. Gives extra info
about why execution was not successful.
steps: Number of execution steps the program ran for.
time: Amount of time in seconds the program ran for.
memory: If `output_memory` is True, a list of memory cells up to the last
one written to. otherwise, None.
"""
input_iter = (
LookAheadIterator(input_buffer) if input_buffer is not None
else LookAheadIterator([]))
# Null memory value. This is the value of an empty memory. Also the value
# returned by the read operation when the input buffer is empty, or the
# end of the buffer is reached.
null_value = 0
code = list(code)
bracemap, correct_syntax = buildbracemap(code) # will modify code list
if require_correct_syntax and not correct_syntax:
return EvalResult([], False, Status.SYNTAX_ERROR, 0, 0.0,
[] if output_memory else None, [] if debug else None)
output_buffer = []
codeptr, cellptr = 0, 0
cells = list(init_memory) if init_memory else [0]
program_trace = [] if debug else None
success = True
reason = Status.SUCCESS
start_time = time.time()
steps = 0
while codeptr < len(code):
command = code[codeptr]
if debug:
# Add step to program trace.
program_trace.append(ExecutionSnapshot(
codeptr=codeptr, codechar=command, memptr=cellptr,
memval=cells[cellptr], memory=list(cells),
next_input=input_iter.peek(null_value),
output_buffer=list(output_buffer)))
if command == '>':
cellptr += 1
if cellptr == len(cells): cells.append(null_value)
if command == '<':
cellptr = 0 if cellptr <= 0 else cellptr - 1
if command == '+':
cells[cellptr] = cells[cellptr] + 1 if cells[cellptr] < (base - 1) else 0
if command == '-':
cells[cellptr] = cells[cellptr] - 1 if cells[cellptr] > 0 else (base - 1)
if command == '[' and cells[cellptr] == 0: codeptr = bracemap[codeptr]
if command == ']' and cells[cellptr] != 0: codeptr = bracemap[codeptr]
if command == '.': output_buffer.append(cells[cellptr])
if command == ',': cells[cellptr] = next(input_iter, null_value)
codeptr += 1
steps += 1
if timeout is not None and time.time() - start_time > timeout:
success = False
reason = Status.TIMEOUT
break
if max_steps is not None and steps >= max_steps:
success = False
reason = Status.STEP_LIMIT
break
if debug:
# Add step to program trace.
command = code[codeptr] if codeptr < len(code) else ''
program_trace.append(ExecutionSnapshot(
codeptr=codeptr, codechar=command, memptr=cellptr,
memval=cells[cellptr], memory=list(cells),
next_input=input_iter.peek(null_value),
output_buffer=list(output_buffer)))
return EvalResult(
output=output_buffer,
success=success,
failure_reason=reason,
steps=steps,
time=time.time() - start_time,
memory=cells if output_memory else None,
program_trace=program_trace)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Tests for common.bf."""
import tensorflow as tf
from common import bf # brain coder
class BfTest(tf.test.TestCase):
def assertCorrectOutput(self, target_output, eval_result):
self.assertEqual(target_output, eval_result.output)
self.assertTrue(eval_result.success)
self.assertEqual(bf.Status.SUCCESS, eval_result.failure_reason)
def testBasicOps(self):
self.assertCorrectOutput(
[3, 1, 2],
bf.evaluate('+++.--.+.'))
self.assertCorrectOutput(
[1, 1, 2],
bf.evaluate('+.<.>++.'))
self.assertCorrectOutput(
[0],
bf.evaluate('+,.'))
self.assertCorrectOutput(
[ord(char) for char in 'Hello World!\n'],
bf.evaluate(
'>++++++++[-<+++++++++>]<.>>+>-[+]++>++>+++[>[->+++<<+++>]<<]>-----'
'.>->+++..+++.>-.<<+[>[+>+]>>]<--------------.>>.+++.------.-------'
'-.>+.>+.'))
def testBase(self):
self.assertCorrectOutput(
[1, 4],
bf.evaluate('+.--.', base=5, input_buffer=[]))
def testInputBuffer(self):
self.assertCorrectOutput(
[2, 3, 4],
bf.evaluate('>,[>,]<[.<]', input_buffer=[4, 3, 2]))
def testBadChars(self):
self.assertCorrectOutput(
[2, 3, 4],
bf.evaluate('>,[>,]hello<world[.<]comments',
input_buffer=[4, 3, 2]))
def testUnmatchedBraces(self):
self.assertCorrectOutput(
[3, 6, 1],
bf.evaluate('+++.]]]]>----.[[[[[>+.',
input_buffer=[],
base=10,
require_correct_syntax=False))
eval_result = bf.evaluate(
'+++.]]]]>----.[[[[[>+.',
input_buffer=[],
base=10,
require_correct_syntax=True)
self.assertEqual([], eval_result.output)
self.assertFalse(eval_result.success)
self.assertEqual(bf.Status.SYNTAX_ERROR,
eval_result.failure_reason)
def testTimeout(self):
er = bf.evaluate('+.[].', base=5, input_buffer=[], timeout=0.1)
self.assertEqual(
([1], False, bf.Status.TIMEOUT),
(er.output, er.success, er.failure_reason))
self.assertTrue(0.07 < er.time < 0.21)
er = bf.evaluate('+.[-].', base=5, input_buffer=[], timeout=0.1)
self.assertEqual(
([1, 0], True, bf.Status.SUCCESS),
(er.output, er.success, er.failure_reason))
self.assertTrue(er.time < 0.15)
def testMaxSteps(self):
er = bf.evaluate('+.[].', base=5, input_buffer=[], timeout=None,
max_steps=100)
self.assertEqual(
([1], False, bf.Status.STEP_LIMIT, 100),
(er.output, er.success, er.failure_reason, er.steps))
er = bf.evaluate('+.[-].', base=5, input_buffer=[], timeout=None,
max_steps=100)
self.assertEqual(
([1, 0], True, bf.Status.SUCCESS),
(er.output, er.success, er.failure_reason))
self.assertTrue(er.steps < 100)
def testOutputMemory(self):
er = bf.evaluate('+>++>+++>++++.', base=256, input_buffer=[],
output_memory=True)
self.assertEqual(
([4], True, bf.Status.SUCCESS),
(er.output, er.success, er.failure_reason))
self.assertEqual([1, 2, 3, 4], er.memory)
def testProgramTrace(self):
es = bf.ExecutionSnapshot
er = bf.evaluate(',[.>,].', base=256, input_buffer=[2, 1], debug=True)
self.assertEqual(
[es(codeptr=0, codechar=',', memptr=0, memval=0, memory=[0],
next_input=2, output_buffer=[]),
es(codeptr=1, codechar='[', memptr=0, memval=2, memory=[2],
next_input=1, output_buffer=[]),
es(codeptr=2, codechar='.', memptr=0, memval=2, memory=[2],
next_input=1, output_buffer=[]),
es(codeptr=3, codechar='>', memptr=0, memval=2, memory=[2],
next_input=1, output_buffer=[2]),
es(codeptr=4, codechar=',', memptr=1, memval=0, memory=[2, 0],
next_input=1, output_buffer=[2]),
es(codeptr=5, codechar=']', memptr=1, memval=1, memory=[2, 1],
next_input=0, output_buffer=[2]),
es(codeptr=2, codechar='.', memptr=1, memval=1, memory=[2, 1],
next_input=0, output_buffer=[2]),
es(codeptr=3, codechar='>', memptr=1, memval=1, memory=[2, 1],
next_input=0, output_buffer=[2, 1]),
es(codeptr=4, codechar=',', memptr=2, memval=0, memory=[2, 1, 0],
next_input=0, output_buffer=[2, 1]),
es(codeptr=5, codechar=']', memptr=2, memval=0, memory=[2, 1, 0],
next_input=0, output_buffer=[2, 1]),
es(codeptr=6, codechar='.', memptr=2, memval=0, memory=[2, 1, 0],
next_input=0, output_buffer=[2, 1]),
es(codeptr=7, codechar='', memptr=2, memval=0, memory=[2, 1, 0],
next_input=0, output_buffer=[2, 1, 0])],
er.program_trace)
if __name__ == '__main__':
tf.test.main()
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Objects for storing configuration and passing config into binaries.
Config class stores settings and hyperparameters for models, data, and anything
else that may be specific to a particular run.
"""
import ast
import itertools
from six.moves import xrange
class Config(dict):
"""Stores model configuration, hyperparameters, or dataset parameters."""
def __getattr__(self, attr):
return self[attr]
def __setattr__(self, attr, value):
self[attr] = value
def pretty_str(self, new_lines=True, indent=2, final_indent=0):
prefix = (' ' * indent) if new_lines else ''
final_prefix = (' ' * final_indent) if new_lines else ''
kv = ['%s%s=%s' % (prefix, k,
(repr(v) if not isinstance(v, Config)
else v.pretty_str(new_lines=new_lines,
indent=indent+2,
final_indent=indent)))
for k, v in self.items()]
if new_lines:
return 'Config(\n%s\n%s)' % (',\n'.join(kv), final_prefix)
else:
return 'Config(%s)' % ', '.join(kv)
def _update_iterator(self, *args, **kwargs):
"""Convert mixed input into an iterator over (key, value) tuples.
Follows the dict.update call signature.
Args:
*args: (Optional) Pass a dict or iterable of (key, value) 2-tuples as
an unnamed argument. Only one unnamed argument allowed.
**kwargs: (Optional) Pass (key, value) pairs as named arguments, where the
argument name is the key and the argument value is the value.
Returns:
An iterator over (key, value) tuples given in the input.
Raises:
TypeError: If more than one unnamed argument is given.
"""
if len(args) > 1:
raise TypeError('Expected at most 1 unnamed arguments, got %d'
% len(args))
obj = args[0] if args else dict()
if isinstance(obj, dict):
return itertools.chain(obj.items(), kwargs.items())
# Assume obj is an iterable of 2-tuples.
return itertools.chain(obj, kwargs.items())
def make_default(self, keys=None):
"""Convert OneOf objects into their default configs.
Recursively calls into Config objects.
Args:
keys: Iterable of key names to check. If None, all keys in self will be
used.
"""
if keys is None:
keys = self.keys()
for k in keys:
# Replace OneOf with its default value.
if isinstance(self[k], OneOf):
self[k] = self[k].default()
# Recursively call into all Config objects, even those that came from
# OneOf objects in the previous code line (for nested OneOf objects).
if isinstance(self[k], Config):
self[k].make_default()
def update(self, *args, **kwargs):
"""Same as dict.update except nested Config objects are updated.
Args:
*args: (Optional) Pass a dict or list of (key, value) 2-tuples as unnamed
argument.
**kwargs: (Optional) Pass (key, value) pairs as named arguments, where the
argument name is the key and the argument value is the value.
"""
key_set = set(self.keys())
for k, v in self._update_iterator(*args, **kwargs):
if k in key_set:
key_set.remove(k) # This key is updated so exclude from make_default.
if k in self and isinstance(self[k], Config) and isinstance(v, dict):
self[k].update(v)
elif k in self and isinstance(self[k], OneOf) and isinstance(v, dict):
# Replace OneOf with the chosen config.
self[k] = self[k].update(v)
else:
self[k] = v
self.make_default(key_set)
def strict_update(self, *args, **kwargs):
"""Same as Config.update except keys and types are not allowed to change.
If a given key is not already in this instance, an exception is raised. If a
given value does not have the same type as the existing value for the same
key, an exception is raised. Use this method to catch config mistakes.
Args:
*args: (Optional) Pass a dict or list of (key, value) 2-tuples as unnamed
argument.
**kwargs: (Optional) Pass (key, value) pairs as named arguments, where the
argument name is the key and the argument value is the value.
Raises:
TypeError: If more than one unnamed argument is given.
TypeError: If new value type does not match existing type.
KeyError: If a given key is not already defined in this instance.
"""
key_set = set(self.keys())
for k, v in self._update_iterator(*args, **kwargs):
if k in self:
key_set.remove(k) # This key is updated so exclude from make_default.
if isinstance(self[k], Config):
if not isinstance(v, dict):
raise TypeError('dict required for Config value, got %s' % type(v))
self[k].strict_update(v)
elif isinstance(self[k], OneOf):
if not isinstance(v, dict):
raise TypeError('dict required for OneOf value, got %s' % type(v))
# Replace OneOf with the chosen config.
self[k] = self[k].strict_update(v)
else:
if not isinstance(v, type(self[k])):
raise TypeError('Expecting type %s for key %s, got type %s'
% (type(self[k]), k, type(v)))
self[k] = v
else:
raise KeyError(
'Key %s does not exist. New key creation not allowed in '
'strict_update.' % k)
self.make_default(key_set)
@staticmethod
def from_str(config_str):
"""Inverse of Config.__str__."""
parsed = ast.literal_eval(config_str)
assert isinstance(parsed, dict)
def _make_config(dictionary):
for k, v in dictionary.items():
if isinstance(v, dict):
dictionary[k] = _make_config(v)
return Config(**dictionary)
return _make_config(parsed)
@staticmethod
def parse(key_val_string):
"""Parse hyperparameter string into Config object.
Format is 'key=val,key=val,...'
Values can be any python literal, or another Config object encoded as
'c(key=val,key=val,...)'.
c(...) expressions can be arbitrarily nested.
Example:
'a=1,b=3e-5,c=[1,2,3],d="hello world",e={"a":1,"b":2},f=c(x=1,y=[10,20])'
Args:
key_val_string: The hyperparameter string.
Returns:
Config object parsed from the input string.
"""
if not key_val_string.strip():
return Config()
def _pair_to_kv(pair):
split_index = pair.find('=')
key, val = pair[:split_index].strip(), pair[split_index+1:].strip()
if val.startswith('c(') and val.endswith(')'):
val = Config.parse(val[2:-1])
else:
val = ast.literal_eval(val)
return key, val
return Config(**dict([_pair_to_kv(pair)
for pair in _comma_iterator(key_val_string)]))
class OneOf(object):
"""Stores branching config.
In some cases there may be options which each have their own set of config
params. For example, if specifying config for an environment, each environment
can have custom config options. OneOf is a way to organize branching config.
Usage example:
one_of = OneOf(
[Config(a=1, b=2),
Config(a=2, c='hello'),
Config(a=3, d=10, e=-10)],
a=1)
config = one_of.strict_update(Config(a=3, d=20))
config == {'a': 3, 'd': 20, 'e': -10}
"""
def __init__(self, choices, **kwargs):
"""Constructor.
Usage: OneOf([Config(...), Config(...), ...], attribute=default_value)
Args:
choices: An iterable of Config objects. When update/strict_update is
called on this OneOf, one of these Config will be selected.
**kwargs: Give exactly one config attribute to branch on. The value of
this attribute during update/strict_update will determine which
Config is used.
Raises:
ValueError: If kwargs does not contain exactly one entry. Should give one
named argument which is used as the attribute to condition on.
"""
if len(kwargs) != 1:
raise ValueError(
'Incorrect usage. Must give exactly one named argument. The argument '
'name is the config attribute to condition on, and the argument '
'value is the default choice. Got %d named arguments.' % len(kwargs))
key, default_value = kwargs.items()[0]
self.key = key
self.default_value = default_value
# Make sure each choice is a Config object.
for config in choices:
if not isinstance(config, Config):
raise TypeError('choices must be a list of Config objects. Got %s.'
% type(config))
# Map value for key to the config with that value.
self.value_map = {config[key]: config for config in choices}
self.default_config = self.value_map[self.default_value]
# Make sure there are no duplicate values.
if len(self.value_map) != len(choices):
raise ValueError('Multiple choices given for the same value of %s.' % key)
# Check that the default value is valid.
if self.default_value not in self.value_map:
raise ValueError(
'Default value is not an available choice. Got %s=%s. Choices are %s.'
% (key, self.default_value, self.value_map.keys()))
def default(self):
return self.default_config
def update(self, other):
"""Choose a config and update it.
If `other` is a Config, one of the config choices is selected and updated.
Otherwise `other` is returned.
Args:
other: Will update chosen config with this value by calling `update` on
the config.
Returns:
The chosen config after updating it, or `other` if no config could be
selected.
"""
if not isinstance(other, Config):
return other
if self.key not in other or other[self.key] not in self.value_map:
return other
target = self.value_map[other[self.key]]
target.update(other)
return target
def strict_update(self, config):
"""Choose a config and update it.
`config` must be a Config object. `config` must have the key used to select
among the config choices, and that key must have a value which one of the
config choices has.
Args:
config: A Config object. the chosen config will be update by calling
`strict_update`.
Returns:
The chosen config after updating it.
Raises:
TypeError: If `config` is not a Config instance.
ValueError: If `config` does not have the branching key in its key set.
ValueError: If the value of the config's branching key is not one of the
valid choices.
"""
if not isinstance(config, Config):
raise TypeError('Expecting Config instance, got %s.' % type(config))
if self.key not in config:
raise ValueError(
'Branching key %s required but not found in %s' % (self.key, config))
if config[self.key] not in self.value_map:
raise ValueError(
'Value %s for key %s is not a possible choice. Choices are %s.'
% (config[self.key], self.key, self.value_map.keys()))
target = self.value_map[config[self.key]]
target.strict_update(config)
return target
def _next_comma(string, start_index):
"""Finds the position of the next comma not used in a literal collection."""
paren_count = 0
for i in xrange(start_index, len(string)):
c = string[i]
if c == '(' or c == '[' or c == '{':
paren_count += 1
elif c == ')' or c == ']' or c == '}':
paren_count -= 1
if paren_count == 0 and c == ',':
return i
return -1
def _comma_iterator(string):
index = 0
while 1:
next_index = _next_comma(string, index)
if next_index == -1:
yield string[index:]
return
yield string[index:next_index]
index = next_index + 1
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Tests for common.config_lib."""
import tensorflow as tf
from common import config_lib # brain coder
class ConfigLibTest(tf.test.TestCase):
def testConfig(self):
config = config_lib.Config(hello='world', foo='bar', num=123, f=56.7)
self.assertEqual('world', config.hello)
self.assertEqual('bar', config['foo'])
config.hello = 'everyone'
config['bar'] = 9000
self.assertEqual('everyone', config['hello'])
self.assertEqual(9000, config.bar)
self.assertEqual(5, len(config))
def testConfigUpdate(self):
config = config_lib.Config(a=1, b=2, c=3)
config.update({'b': 10, 'd': 4})
self.assertEqual({'a': 1, 'b': 10, 'c': 3, 'd': 4}, config)
config = config_lib.Config(a=1, b=2, c=3)
config.update(b=10, d=4)
self.assertEqual({'a': 1, 'b': 10, 'c': 3, 'd': 4}, config)
config = config_lib.Config(a=1, b=2, c=3)
config.update({'e': 5}, b=10, d=4)
self.assertEqual({'a': 1, 'b': 10, 'c': 3, 'd': 4, 'e': 5}, config)
config = config_lib.Config(
a=1,
b=2,
x=config_lib.Config(
l='a',
y=config_lib.Config(m=1, n=2),
z=config_lib.Config(
q=config_lib.Config(a=10, b=20),
r=config_lib.Config(s=1, t=2))))
config.update(x={'y': {'m': 10}, 'z': {'r': {'s': 5}}})
self.assertEqual(
config_lib.Config(
a=1, b=2,
x=config_lib.Config(
l='a',
y=config_lib.Config(m=10, n=2),
z=config_lib.Config(
q=config_lib.Config(a=10, b=20),
r=config_lib.Config(s=5, t=2)))),
config)
config = config_lib.Config(
foo='bar',
num=100,
x=config_lib.Config(a=1, b=2, c=config_lib.Config(h=10, i=20, j=30)),
y=config_lib.Config(qrs=5, tuv=10),
d={'a': 1, 'b': 2},
l=[1, 2, 3])
config.update(
config_lib.Config(
foo='hat',
num=50.5,
x={'a': 5, 'z': -10},
y=config_lib.Config(wxyz=-1)),
d={'a': 10, 'c': 20},
l=[3, 4, 5, 6])
self.assertEqual(
config_lib.Config(
foo='hat',
num=50.5,
x=config_lib.Config(a=5, b=2, z=-10,
c=config_lib.Config(h=10, i=20, j=30)),
y=config_lib.Config(qrs=5, tuv=10, wxyz=-1),
d={'a': 10, 'c': 20},
l=[3, 4, 5, 6]),
config)
self.assertTrue(isinstance(config.x, config_lib.Config))
self.assertTrue(isinstance(config.x.c, config_lib.Config))
self.assertTrue(isinstance(config.y, config_lib.Config))
config = config_lib.Config(
foo='bar',
num=100,
x=config_lib.Config(a=1, b=2, c=config_lib.Config(h=10, i=20, j=30)),
y=config_lib.Config(qrs=5, tuv=10),
d={'a': 1, 'b': 2},
l=[1, 2, 3])
config.update(
config_lib.Config(
foo=1234,
num='hello',
x={'a': 5, 'z': -10, 'c': {'h': -5, 'k': 40}},
y=[1, 2, 3, 4],
d='stuff',
l={'a': 1, 'b': 2}))
self.assertEqual(
config_lib.Config(
foo=1234,
num='hello',
x=config_lib.Config(a=5, b=2, z=-10,
c=config_lib.Config(h=-5, i=20, j=30, k=40)),
y=[1, 2, 3, 4],
d='stuff',
l={'a': 1, 'b': 2}),
config)
self.assertTrue(isinstance(config.x, config_lib.Config))
self.assertTrue(isinstance(config.x.c, config_lib.Config))
self.assertTrue(isinstance(config.y, list))
def testConfigStrictUpdate(self):
config = config_lib.Config(a=1, b=2, c=3)
config.strict_update({'b': 10, 'c': 20})
self.assertEqual({'a': 1, 'b': 10, 'c': 20}, config)
config = config_lib.Config(a=1, b=2, c=3)
config.strict_update(b=10, c=20)
self.assertEqual({'a': 1, 'b': 10, 'c': 20}, config)
config = config_lib.Config(a=1, b=2, c=3, d=4)
config.strict_update({'d': 100}, b=10, a=20)
self.assertEqual({'a': 20, 'b': 10, 'c': 3, 'd': 100}, config)
config = config_lib.Config(
a=1,
b=2,
x=config_lib.Config(
l='a',
y=config_lib.Config(m=1, n=2),
z=config_lib.Config(
q=config_lib.Config(a=10, b=20),
r=config_lib.Config(s=1, t=2))))
config.strict_update(x={'y': {'m': 10}, 'z': {'r': {'s': 5}}})
self.assertEqual(
config_lib.Config(
a=1, b=2,
x=config_lib.Config(
l='a',
y=config_lib.Config(m=10, n=2),
z=config_lib.Config(
q=config_lib.Config(a=10, b=20),
r=config_lib.Config(s=5, t=2)))),
config)
config = config_lib.Config(
foo='bar',
num=100,
x=config_lib.Config(a=1, b=2, c=config_lib.Config(h=10, i=20, j=30)),
y=config_lib.Config(qrs=5, tuv=10),
d={'a': 1, 'b': 2},
l=[1, 2, 3])
config.strict_update(
config_lib.Config(
foo='hat',
num=50,
x={'a': 5, 'c': {'h': 100}},
y=config_lib.Config(tuv=-1)),
d={'a': 10, 'c': 20},
l=[3, 4, 5, 6])
self.assertEqual(
config_lib.Config(
foo='hat',
num=50,
x=config_lib.Config(a=5, b=2,
c=config_lib.Config(h=100, i=20, j=30)),
y=config_lib.Config(qrs=5, tuv=-1),
d={'a': 10, 'c': 20},
l=[3, 4, 5, 6]),
config)
def testConfigStrictUpdateFail(self):
config = config_lib.Config(a=1, b=2, c=3, x=config_lib.Config(a=1, b=2))
with self.assertRaises(KeyError):
config.strict_update({'b': 10, 'c': 20, 'd': 50})
with self.assertRaises(KeyError):
config.strict_update(b=10, d=50)
with self.assertRaises(KeyError):
config.strict_update(x={'c': 3})
with self.assertRaises(TypeError):
config.strict_update(a='string')
with self.assertRaises(TypeError):
config.strict_update(x={'a': 'string'})
with self.assertRaises(TypeError):
config.strict_update(x=[1, 2, 3])
def testConfigFromStr(self):
config = config_lib.Config.from_str("{'c': {'d': 5}, 'b': 2, 'a': 1}")
self.assertEqual(
{'c': {'d': 5}, 'b': 2, 'a': 1}, config)
self.assertTrue(isinstance(config, config_lib.Config))
self.assertTrue(isinstance(config.c, config_lib.Config))
def testConfigParse(self):
config = config_lib.Config.parse(
'hello="world",num=1234.5,lst=[10,20.5,True,"hi",("a","b","c")],'
'dct={9:10,"stuff":"qwerty","subdict":{1:True,2:False}},'
'subconfig=c(a=1,b=[1,2,[3,4]],c=c(f="f",g="g"))')
self.assertEqual(
{'hello': 'world', 'num': 1234.5,
'lst': [10, 20.5, True, 'hi', ('a', 'b', 'c')],
'dct': {9: 10, 'stuff': 'qwerty', 'subdict': {1: True, 2: False}},
'subconfig': {'a': 1, 'b': [1, 2, [3, 4]], 'c': {'f': 'f', 'g': 'g'}}},
config)
self.assertTrue(isinstance(config, config_lib.Config))
self.assertTrue(isinstance(config.subconfig, config_lib.Config))
self.assertTrue(isinstance(config.subconfig.c, config_lib.Config))
self.assertFalse(isinstance(config.dct, config_lib.Config))
self.assertFalse(isinstance(config.dct['subdict'], config_lib.Config))
self.assertTrue(isinstance(config.lst[4], tuple))
def testConfigParseErrors(self):
with self.assertRaises(SyntaxError):
config_lib.Config.parse('a=[1,2,b="hello"')
with self.assertRaises(SyntaxError):
config_lib.Config.parse('a=1,b=c(x="a",y="b"')
with self.assertRaises(SyntaxError):
config_lib.Config.parse('a=1,b=c(x="a")y="b"')
with self.assertRaises(SyntaxError):
config_lib.Config.parse('a=1,b=c(x="a"),y="b",')
def testOneOf(self):
def make_config():
return config_lib.Config(
data=config_lib.OneOf(
[config_lib.Config(task=1, a='hello'),
config_lib.Config(task=2, a='world', b='stuff'),
config_lib.Config(task=3, c=1234)],
task=2),
model=config_lib.Config(stuff=1))
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=1,a="hi")'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=1, a='hi'),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=2,a="hi")'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=2, a='hi', b='stuff'),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=3)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=3, c=1234),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=2, a='world', b='stuff'),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=4,d=9999)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=4, d=9999),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2),data=5'))
self.assertEqual(
config_lib.Config(
data=5,
model=config_lib.Config(stuff=2)),
config)
def testOneOfStrict(self):
def make_config():
return config_lib.Config(
data=config_lib.OneOf(
[config_lib.Config(task=1, a='hello'),
config_lib.Config(task=2, a='world', b='stuff'),
config_lib.Config(task=3, c=1234)],
task=2),
model=config_lib.Config(stuff=1))
config = make_config()
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=1,a="hi")'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=1, a='hi'),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=2,a="hi")'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=2, a='hi', b='stuff'),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=3)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=3, c=1234),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(task=2, a='world', b='stuff'),
model=config_lib.Config(stuff=2)),
config)
def testNestedOneOf(self):
def make_config():
return config_lib.Config(
data=config_lib.OneOf(
[config_lib.Config(task=1, a='hello'),
config_lib.Config(
task=2,
a=config_lib.OneOf(
[config_lib.Config(x=1, y=2),
config_lib.Config(x=-1, y=1000, z=4)],
x=1)),
config_lib.Config(task=3, c=1234)],
task=2),
model=config_lib.Config(stuff=1))
config = make_config()
config.update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=2,a=c(x=-1,z=8))'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(
task=2,
a=config_lib.Config(x=-1, y=1000, z=8)),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=2,a=c(x=-1,z=8))'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(
task=2,
a=config_lib.Config(x=-1, y=1000, z=8)),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.update(config_lib.Config.parse('model=c(stuff=2)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(
task=2,
a=config_lib.Config(x=1, y=2)),
model=config_lib.Config(stuff=2)),
config)
config = make_config()
config.strict_update(config_lib.Config.parse('model=c(stuff=2)'))
self.assertEqual(
config_lib.Config(
data=config_lib.Config(
task=2,
a=config_lib.Config(x=1, y=2)),
model=config_lib.Config(stuff=2)),
config)
def testOneOfStrictErrors(self):
def make_config():
return config_lib.Config(
data=config_lib.OneOf(
[config_lib.Config(task=1, a='hello'),
config_lib.Config(task=2, a='world', b='stuff'),
config_lib.Config(task=3, c=1234)],
task=2),
model=config_lib.Config(stuff=1))
config = make_config()
with self.assertRaises(TypeError):
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=[1,2,3]'))
config = make_config()
with self.assertRaises(KeyError):
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=3,c=5678,d=9999)'))
config = make_config()
with self.assertRaises(ValueError):
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=c(task=4,d=9999)'))
config = make_config()
with self.assertRaises(TypeError):
config.strict_update(config_lib.Config.parse(
'model=c(stuff=2),data=5'))
if __name__ == '__main__':
tf.test.main()
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Reward functions, distance functions, and reward managers."""
from abc import ABCMeta
from abc import abstractmethod
from math import log
# All sequences here are assumed to be lists of ints bounded
# between 0 and `base`-1 (inclusive).
#################################
### Scalar Distance Functions ###
#################################
def abs_diff(a, b, base=0):
"""Absolute value of difference between scalars.
abs_diff is symmetric, i.e. `a` and `b` are interchangeable.
Args:
a: First argument. An int.
b: Seconds argument. An int.
base: Dummy argument so that the argument signature matches other scalar
diff functions. abs_diff is the same in all bases.
Returns:
abs(a - b).
"""
del base # Unused.
return abs(a - b)
def mod_abs_diff(a, b, base):
"""Shortest distance between `a` and `b` in the modular integers base `base`.
The smallest distance between a and b is returned.
Example: mod_abs_diff(1, 99, 100) ==> 2. It is not 98.
mod_abs_diff is symmetric, i.e. `a` and `b` are interchangeable.
Args:
a: First argument. An int.
b: Seconds argument. An int.
base: The modulo base. A positive int.
Returns:
Shortest distance.
"""
diff = abs(a - b)
if diff >= base:
diff %= base
return min(diff, (-diff) + base)
###############################
### List Distance Functions ###
###############################
def absolute_distance(pred, target, base, scalar_diff_fn=abs_diff):
"""Asymmetric list distance function.
List distance is the sum of element-wise distances, like Hamming distance, but
where `pred` can be longer or shorter than `target`. For each position in both
`pred` and `target`, distance between those elements is computed with
`scalar_diff_fn`. For missing or extra elements in `pred`, the maximum
distance is assigned, which is equal to `base`.
Distance is 0 when `pred` and `target` are identical, and will be a positive
integer when they are not.
Args:
pred: Prediction list. Distance from this list is computed.
target: Target list. Distance to this list is computed.
base: The integer base to use. For example, a list of chars would use base
256.
scalar_diff_fn: Element-wise distance function.
Returns:
List distance between `pred` and `target`.
"""
d = 0
for i, target_t in enumerate(target):
if i >= len(pred):
d += base # A missing slot is worth the max distance.
else:
# Add element-wise distance for this slot.
d += scalar_diff_fn(pred[i], target_t, base)
if len(pred) > len(target):
# Each extra slot is worth the max distance.
d += (len(pred) - len(target)) * base
return d
def log_absolute_distance(pred, target, base):
"""Asymmetric list distance function that uses log distance.
A list distance which computes sum of element-wise distances, similar to
`absolute_distance`. Unlike `absolute_distance`, this scales the resulting
distance to be a float.
Element-wise distance are log-scale. Distance between two list changes
relatively less for elements that are far apart, but changes a lot (goes to 0
faster) when values get close together.
Args:
pred: List of ints. Computes distance from this list to the target.
target: List of ints. This is the "correct" list which the prediction list
is trying to match.
base: Integer base.
Returns:
Float distance normalized so that when `pred` is at most as long as `target`
the distance is between 0.0 and 1.0. Distance grows unboundedly large
as `pred` grows past `target` in length.
"""
if not target:
length_normalizer = 1.0
if not pred:
# Distance between [] and [] is 0.0 since they are equal.
return 0.0
else:
length_normalizer = float(len(target))
# max_dist is the maximum element-wise distance, before taking log and
# scaling. Since we use `mod_abs_diff`, it would be (base // 2), but we add
# 1 to it so that missing or extra positions get the maximum penalty.
max_dist = base // 2 + 1
# The log-distance will be scaled by a factor.
# Note: +1 is added to the numerator and denominator to avoid log(0). This
# only has a translational effect, i.e. log(dist + 1) / log(max_dist + 1).
factor = log(max_dist + 1)
d = 0.0 # Total distance to be computed.
for i, target_t in enumerate(target):
if i >= len(pred):
# Assign the max element-wise distance for missing positions. This is 1.0
# after scaling.
d += 1.0
else:
# Add the log-dist divided by a scaling factor.
d += log(mod_abs_diff(pred[i], target_t, base) + 1) / factor
if len(pred) > len(target):
# Add the max element-wise distance for each extra position.
# Since max dist after scaling is 1, this is just the difference in list
# lengths.
d += (len(pred) - len(target))
return d / length_normalizer # Normalize again by the target length.
########################
### Reward Functions ###
########################
# Reward functions assign reward based on program output.
# Warning: only use these functions as the terminal rewards in episodes, i.e.
# for the "final" programs.
def absolute_distance_reward(pred, target, base, scalar_diff_fn=abs_diff):
"""Reward function based on absolute_distance function.
Maximum reward, 1.0, is given when the lists are equal. Reward is scaled
so that 0.0 reward is given when `pred` is the empty list (assuming `target`
is not empty). Reward can go negative when `pred` is longer than `target`.
This is an asymmetric reward function, so which list is the prediction and
which is the target matters.
Args:
pred: Prediction sequence. This should be the sequence outputted by the
generated code. List of ints n, where 0 <= n < base.
target: Target sequence. The correct sequence that the generated code needs
to output. List of ints n, where 0 <= n < base.
base: Base of the computation.
scalar_diff_fn: Element-wise distance function.
Returns:
Reward computed based on `pred` and `target`. A float.
"""
unit_dist = float(base * len(target))
if unit_dist == 0:
unit_dist = base
dist = absolute_distance(pred, target, base, scalar_diff_fn=scalar_diff_fn)
return (unit_dist - dist) / unit_dist
def absolute_mod_distance_reward(pred, target, base):
"""Same as `absolute_distance_reward` but `mod_abs_diff` scalar diff is used.
Args:
pred: Prediction sequence. This should be the sequence outputted by the
generated code. List of ints n, where 0 <= n < base.
target: Target sequence. The correct sequence that the generated code needs
to output. List of ints n, where 0 <= n < base.
base: Base of the computation.
Returns:
Reward computed based on `pred` and `target`. A float.
"""
return absolute_distance_reward(pred, target, base, mod_abs_diff)
def absolute_log_distance_reward(pred, target, base):
"""Compute reward using `log_absolute_distance`.
Maximum reward, 1.0, is given when the lists are equal. Reward is scaled
so that 0.0 reward is given when `pred` is the empty list (assuming `target`
is not empty). Reward can go negative when `pred` is longer than `target`.
This is an asymmetric reward function, so which list is the prediction and
which is the target matters.
This reward function has the nice property that much more reward is given
for getting the correct value (at each position) than for there being any
value at all. For example, in base 100, lets say pred = [1] * 1000
and target = [10] * 1000. A lot of reward would be given for being 80%
accurate (worst element-wise distance is 50, distances here are 9) using
`absolute_distance`. `log_absolute_distance` on the other hand will give
greater and greater reward increments the closer each predicted value gets to
the target. That makes the reward given for accuracy somewhat independant of
the base.
Args:
pred: Prediction sequence. This should be the sequence outputted by the
generated code. List of ints n, where 0 <= n < base.
target: Target sequence. The correct sequence that the generated code needs
to output. List of ints n, where 0 <= n < base.
base: Base of the computation.
Returns:
Reward computed based on `pred` and `target`. A float.
"""
return 1.0 - log_absolute_distance(pred, target, base)
#######################
### Reward Managers ###
#######################
# Reward managers assign reward to many code attempts throughout an episode.
class RewardManager(object):
"""Reward managers administer reward across an episode.
Reward managers are used for "editor" environments. These are environments
where the agent has some way to edit its code over time, and run its code
many time in the same episode, so that it can make incremental improvements.
Reward managers are instantiated with a target sequence, which is the known
correct program output. The manager is called on the output from a proposed
code, and returns reward. If many proposal outputs are tried, reward may be
some stateful function that takes previous tries into account. This is done,
in part, so that an agent cannot accumulate unbounded reward just by trying
junk programs as often as possible. So reward managers should not give the
same reward twice if the next proposal is not better than the last.
"""
__metaclass__ = ABCMeta
def __init__(self, target, base, distance_fn=absolute_distance):
self._target = list(target)
self._base = base
self._distance_fn = distance_fn
@abstractmethod
def __call__(self, sequence):
"""Call this reward manager like a function to get reward.
Calls to reward manager are stateful, and will take previous sequences
into account. Repeated calls with the same sequence may produce different
rewards.
Args:
sequence: List of integers (each between 0 and base - 1). This is the
proposal sequence. Reward will be computed based on the distance
from this sequence to the target (distance function and target are
given in the constructor), as well as previous sequences tried during
the lifetime of this object.
Returns:
Float value. The reward received from this call.
"""
return 0.0
class DeltaRewardManager(RewardManager):
"""Simple reward manager that assigns reward for the net change in distance.
Given some (possibly asymmetric) list distance function, gives reward for
relative changes in prediction distance to the target.
For example, if on the first call the distance is 3.0, the change in distance
is -3 (from starting distance of 0). That relative change will be scaled to
produce a negative reward for this step. On the next call, the distance is 2.0
which is a +1 change, and that will be scaled to give a positive reward.
If the final call has distance 0 (the target is achieved), that is another
positive change of +2. The total reward across all 3 calls is then 0, which is
the highest posible episode total.
Reward is scaled so that the maximum element-wise distance is worth 1.0.
Maximum total episode reward attainable is 0.
"""
def __init__(self, target, base, distance_fn=absolute_distance):
super(DeltaRewardManager, self).__init__(target, base, distance_fn)
self._last_diff = 0
def _diff(self, seq):
return self._distance_fn(seq, self._target, self._base)
def _delta_reward(self, seq):
# Reward is relative to previous sequence diff.
# Reward is scaled so that maximum token difference is worth 1.0.
# Reward = (last_diff - this_diff) / self.base.
# Reward is positive if this sequence is closer to the target than the
# previous sequence, and negative if this sequence is further away.
diff = self._diff(seq)
reward = (self._last_diff - diff) / float(self._base)
self._last_diff = diff
return reward
def __call__(self, seq):
return self._delta_reward(seq)
class FloorRewardManager(RewardManager):
"""Assigns positive reward for each step taken closer to the target.
Given some (possibly asymmetric) list distance function, gives reward for
whenever a new episode minimum distance is reached. No reward is given if
the distance regresses to a higher value, so that the sum of rewards
for the episode is positive.
Reward is scaled so that the maximum element-wise distance is worth 1.0.
Maximum total episode reward attainable is len(target).
If the prediction sequence is longer than the target, a reward of -1 is given.
Subsequence predictions which are also longer get 0 reward. The -1 penalty
will be canceled out with a +1 reward when a prediction is given which is at
most the length of the target.
"""
def __init__(self, target, base, distance_fn=absolute_distance):
super(FloorRewardManager, self).__init__(target, base, distance_fn)
self._last_diff = 0
self._min_diff = self._max_diff()
self._too_long_penality_given = False
def _max_diff(self):
return self._distance_fn([], self._target, self._base)
def _diff(self, seq):
return self._distance_fn(seq, self._target, self._base)
def _delta_reward(self, seq):
# Reward is only given if this sequence is closer to the target than any
# previous sequence.
# Reward is scaled so that maximum token difference is worth 1.0
# Reward = (min_diff - this_diff) / self.base
# Reward is always positive.
diff = self._diff(seq)
if diff < self._min_diff:
reward = (self._min_diff - diff) / float(self._base)
self._min_diff = diff
else:
reward = 0.0
return reward
def __call__(self, seq):
if len(seq) > len(self._target): # Output is too long.
if not self._too_long_penality_given:
self._too_long_penality_given = True
reward = -1.0
else:
reward = 0.0 # Don't give this penalty more than once.
return reward
reward = self._delta_reward(seq)
if self._too_long_penality_given:
reward += 1.0 # Return the subtracted reward.
self._too_long_penality_given = False
return reward
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Tests for common.reward."""
from math import log
import numpy as np
import tensorflow as tf
from common import reward # brain coder
class RewardTest(tf.test.TestCase):
def testAbsDiff(self):
self.assertEqual(5, reward.abs_diff(15, 20))
self.assertEqual(5, reward.abs_diff(20, 15))
def testModAbsDiff(self):
self.assertEqual(5, reward.mod_abs_diff(15, 20, 25))
self.assertEqual(5, reward.mod_abs_diff(20, 15, 25))
self.assertEqual(2, reward.mod_abs_diff(1, 24, 25))
self.assertEqual(2, reward.mod_abs_diff(24, 1, 25))
self.assertEqual(0, reward.mod_abs_diff(0, 0, 5))
self.assertEqual(1, reward.mod_abs_diff(0, 1, 5))
self.assertEqual(2, reward.mod_abs_diff(0, 2, 5))
self.assertEqual(2, reward.mod_abs_diff(0, 3, 5))
self.assertEqual(1, reward.mod_abs_diff(0, 4, 5))
self.assertEqual(0, reward.mod_abs_diff(-1, 4, 5))
self.assertEqual(1, reward.mod_abs_diff(-5, 4, 5))
self.assertEqual(1, reward.mod_abs_diff(-7, 4, 5))
self.assertEqual(1, reward.mod_abs_diff(13, 4, 5))
self.assertEqual(1, reward.mod_abs_diff(15, 4, 5))
def testAbsoluteDistance_AbsDiffMethod(self):
self.assertEqual(
4,
reward.absolute_distance([0], [4], 5, scalar_diff_fn=reward.abs_diff))
self.assertEqual(
0,
reward.absolute_distance([4], [4], 5, scalar_diff_fn=reward.abs_diff))
self.assertEqual(
0,
reward.absolute_distance([], [], 5, scalar_diff_fn=reward.abs_diff))
self.assertEqual(
5,
reward.absolute_distance([1], [], 5, scalar_diff_fn=reward.abs_diff))
self.assertEqual(
5,
reward.absolute_distance([], [1], 5, scalar_diff_fn=reward.abs_diff))
self.assertEqual(
0,
reward.absolute_distance([1, 2, 3], [1, 2, 3], 5,
scalar_diff_fn=reward.abs_diff))
self.assertEqual(
1,
reward.absolute_distance([1, 2, 4], [1, 2, 3], 5,
scalar_diff_fn=reward.abs_diff))
self.assertEqual(
1,
reward.absolute_distance([1, 2, 2], [1, 2, 3], 5,
scalar_diff_fn=reward.abs_diff))
self.assertEqual(
5,
reward.absolute_distance([1, 2], [1, 2, 3], 5,
scalar_diff_fn=reward.abs_diff))
self.assertEqual(
5,
reward.absolute_distance([1, 2, 3, 4], [1, 2, 3], 5,
scalar_diff_fn=reward.abs_diff))
self.assertEqual(
6,
reward.absolute_distance([4, 4, 4], [1, 2, 3], 5,
scalar_diff_fn=reward.abs_diff))
def testAbsoluteDistance_ModDiffMethod(self):
self.assertEqual(
1,
reward.absolute_distance([0], [4], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
0,
reward.absolute_distance([4], [4], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
0,
reward.absolute_distance([], [], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
5,
reward.absolute_distance([1], [], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
5,
reward.absolute_distance([], [1], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
0,
reward.absolute_distance([1, 2, 3], [1, 2, 3], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
1,
reward.absolute_distance([1, 2, 4], [1, 2, 3], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
1,
reward.absolute_distance([1, 2, 2], [1, 2, 3], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
5,
reward.absolute_distance([1, 2], [1, 2, 3], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
5,
reward.absolute_distance([1, 2, 3, 4], [1, 2, 3], 5,
scalar_diff_fn=reward.mod_abs_diff))
self.assertEqual(
5,
reward.absolute_distance([4, 4, 4], [1, 2, 3], 5,
scalar_diff_fn=reward.mod_abs_diff))
def testLogAbsoluteDistance(self):
def log_diff(diff, base):
return log(diff + 1) / log(base // 2 + 2)
self.assertEqual(
log_diff(1, 5),
reward.log_absolute_distance([0], [4], 5))
self.assertEqual(
log_diff(2, 5),
reward.log_absolute_distance([1], [4], 5))
self.assertEqual(
log_diff(2, 5),
reward.log_absolute_distance([2], [4], 5))
self.assertEqual(
log_diff(1, 5),
reward.log_absolute_distance([3], [4], 5))
self.assertEqual(
log_diff(3, 5), # max_dist = base // 2 + 1 = 3
reward.log_absolute_distance([], [4], 5))
self.assertEqual(
0 + log_diff(3, 5), # max_dist = base // 2 + 1 = 3
reward.log_absolute_distance([4, 4], [4], 5))
self.assertEqual(
0,
reward.log_absolute_distance([4], [4], 5))
self.assertEqual(
0,
reward.log_absolute_distance([], [], 5))
self.assertEqual(
1,
reward.log_absolute_distance([1], [], 5))
self.assertEqual(
1,
reward.log_absolute_distance([], [1], 5))
self.assertEqual(
0,
reward.log_absolute_distance([1, 2, 3], [1, 2, 3], 5))
self.assertEqual(
log_diff(1, 5) / 3, # divided by target length.
reward.log_absolute_distance([1, 2, 4], [1, 2, 3], 5))
self.assertEqual(
log_diff(1, 5) / 3,
reward.log_absolute_distance([1, 2, 2], [1, 2, 3], 5))
self.assertEqual(
log_diff(3, 5) / 3, # max_dist
reward.log_absolute_distance([1, 2], [1, 2, 3], 5))
self.assertEqual(
log_diff(3, 5) / 3, # max_dist
reward.log_absolute_distance([1, 2, 3, 4], [1, 2, 3], 5))
# Add log differences for each position.
self.assertEqual(
(log_diff(2, 5) + log_diff(2, 5) + log_diff(1, 5)) / 3,
reward.log_absolute_distance([4, 4, 4], [1, 2, 3], 5))
def testAbsoluteDistanceReward(self):
self.assertEqual(
1,
reward.absolute_distance_reward([1, 2, 3], [1, 2, 3], 5))
self.assertEqual(
1 - 1 / (5 * 3.), # 1 - distance / (base * target_len)
reward.absolute_distance_reward([1, 2, 4], [1, 2, 3], 5))
self.assertEqual(
1 - 1 / (5 * 3.),
reward.absolute_distance_reward([1, 2, 2], [1, 2, 3], 5))
self.assertTrue(np.isclose(
1 - 5 / (5 * 3.),
reward.absolute_distance_reward([1, 2], [1, 2, 3], 5)))
self.assertTrue(np.isclose(
1 - 5 / (5 * 3.),
reward.absolute_distance_reward([1, 2, 3, 4], [1, 2, 3], 5)))
# Add log differences for each position.
self.assertEqual(
1 - (3 + 2 + 1) / (5 * 3.),
reward.absolute_distance_reward([4, 4, 4], [1, 2, 3], 5))
self.assertEqual(
1,
reward.absolute_distance_reward([], [], 5))
def testAbsoluteModDistanceReward(self):
self.assertEqual(
1,
reward.absolute_mod_distance_reward([1, 2, 3], [1, 2, 3], 5))
self.assertEqual(
1 - 1 / (5 * 3.), # 1 - distance / (base * target_len)
reward.absolute_mod_distance_reward([1, 2, 4], [1, 2, 3], 5))
self.assertEqual(
1 - 1 / (5 * 3.),
reward.absolute_mod_distance_reward([1, 2, 2], [1, 2, 3], 5))
self.assertTrue(np.isclose(
1 - 5 / (5 * 3.),
reward.absolute_mod_distance_reward([1, 2], [1, 2, 3], 5)))
self.assertTrue(np.isclose(
1 - 5 / (5 * 3.),
reward.absolute_mod_distance_reward([1, 2, 3, 4], [1, 2, 3], 5)))
# Add log differences for each position.
self.assertTrue(np.isclose(
1 - (2 + 2 + 1) / (5 * 3.),
reward.absolute_mod_distance_reward([4, 4, 4], [1, 2, 3], 5)))
self.assertTrue(np.isclose(
1 - (1 + 2 + 2) / (5 * 3.),
reward.absolute_mod_distance_reward([0, 1, 2], [4, 4, 4], 5)))
self.assertEqual(
1,
reward.absolute_mod_distance_reward([], [], 5))
def testAbsoluteLogDistanceReward(self):
def log_diff(diff, base):
return log(diff + 1) / log(base // 2 + 2)
self.assertEqual(
1,
reward.absolute_log_distance_reward([1, 2, 3], [1, 2, 3], 5))
self.assertEqual(
1 - log_diff(1, 5) / 3, # divided by target length.
reward.absolute_log_distance_reward([1, 2, 4], [1, 2, 3], 5))
self.assertEqual(
1 - log_diff(1, 5) / 3,
reward.absolute_log_distance_reward([1, 2, 2], [1, 2, 3], 5))
self.assertEqual(
1 - log_diff(3, 5) / 3, # max_dist
reward.absolute_log_distance_reward([1, 2], [1, 2, 3], 5))
self.assertEqual(
1 - log_diff(3, 5) / 3, # max_dist
reward.absolute_log_distance_reward([1, 2, 3, 4], [1, 2, 3], 5))
# Add log differences for each position.
self.assertEqual(
1 - (log_diff(2, 5) + log_diff(2, 5) + log_diff(1, 5)) / 3,
reward.absolute_log_distance_reward([4, 4, 4], [1, 2, 3], 5))
self.assertEqual(
1 - (log_diff(1, 5) + log_diff(2, 5) + log_diff(2, 5)) / 3,
reward.absolute_log_distance_reward([0, 1, 2], [4, 4, 4], 5))
self.assertEqual(
1,
reward.absolute_log_distance_reward([], [], 5))
def testDeltaRewardManager(self):
reward_manager = reward.DeltaRewardManager(
[1, 2, 3, 4], base=5, distance_fn=reward.absolute_distance)
self.assertEqual(-3, reward_manager([1]))
self.assertEqual(0, reward_manager([1]))
self.assertEqual(4 / 5., reward_manager([1, 3]))
self.assertEqual(-4 / 5, reward_manager([1]))
self.assertEqual(3, reward_manager([1, 2, 3, 4]))
self.assertEqual(-1, reward_manager([1, 2, 3]))
self.assertEqual(0, reward_manager([1, 2, 3, 4, 3]))
self.assertEqual(-1, reward_manager([1, 2, 3, 4, 3, 2]))
self.assertEqual(2, reward_manager([1, 2, 3, 4]))
self.assertEqual(0, reward_manager([1, 2, 3, 4]))
self.assertEqual(0, reward_manager([1, 2, 3, 4]))
def testFloorRewardMananger(self):
reward_manager = reward.FloorRewardManager(
[1, 2, 3, 4], base=5, distance_fn=reward.absolute_distance)
self.assertEqual(1, reward_manager([1]))
self.assertEqual(0, reward_manager([1]))
self.assertEqual(4 / 5., reward_manager([1, 3]))
self.assertEqual(0, reward_manager([1]))
self.assertEqual(1 / 5., reward_manager([1, 2]))
self.assertEqual(0, reward_manager([0, 1]))
self.assertEqual(0, reward_manager([]))
self.assertEqual(0, reward_manager([1, 2]))
self.assertEqual(2, reward_manager([1, 2, 3, 4]))
self.assertEqual(0, reward_manager([1, 2, 3]))
self.assertEqual(-1, reward_manager([1, 2, 3, 4, 3]))
self.assertEqual(0, reward_manager([1, 2, 3, 4, 3, 2]))
self.assertEqual(1, reward_manager([1, 2, 3, 4]))
self.assertEqual(0, reward_manager([1, 2, 3, 4]))
self.assertEqual(0, reward_manager([1, 2, 3, 4]))
reward_manager = reward.FloorRewardManager(
[1, 2, 3, 4], base=5, distance_fn=reward.absolute_distance)
self.assertEqual(1, reward_manager([1]))
self.assertEqual(-1, reward_manager([1, 0, 0, 0, 0, 0]))
self.assertEqual(0, reward_manager([1, 2, 3, 4, 0, 0]))
self.assertEqual(0, reward_manager([1, 2, 3, 4, 0]))
self.assertEqual(1, reward_manager([]))
self.assertEqual(0, reward_manager([]))
self.assertEqual(0, reward_manager([1]))
self.assertEqual(1, reward_manager([1, 2]))
self.assertEqual(-1, reward_manager([1, 2, 3, 4, 0, 0]))
self.assertEqual(0, reward_manager([1, 1, 1, 1, 1]))
self.assertEqual(1 + 2, reward_manager([1, 2, 3, 4]))
if __name__ == '__main__':
tf.test.main()
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Utilities related to computing training batches from episode rollouts.
Implementations here are based on code from Open AI:
https://github.com/openai/universe-starter-agent/blob/master/a3c.py.
"""
from collections import namedtuple
import numpy as np
import scipy.signal
from common import utils # brain coder
class Rollout(object):
"""Holds a rollout for an episode.
A rollout is a record of the states observed in some environment and actions
taken by the agent to arrive at those states. Other information includes
rewards received after each action, values estimated for each state, whether
the rollout concluded the episide, and total reward received. Everything
should be given in time order.
At each time t, the agent sees state s_t, takes action a_t, and then receives
reward r_t. The agent may optionally estimate a state value V(s_t) for each
state.
For an episode of length T:
states = [s_0, ..., s_(T-1)]
actions = [a_0, ..., a_(T-1)]
rewards = [r_0, ..., r_(T-1)]
values = [V(s_0), ..., V(s_(T-1))]
Note that there is an extra state s_T observed after taking action a_(T-1),
but this is not included in the rollout.
Rollouts have an `terminated` attribute which is True when the rollout is
"finalized", i.e. it holds a full episode. terminated will be False when
time steps are still being added to it.
"""
def __init__(self):
self.states = []
self.actions = []
self.rewards = []
self.values = []
self.total_reward = 0.0
self.terminated = False
def add(self, state, action, reward, value=0.0, terminated=False):
"""Add the next timestep to this rollout.
Args:
state: The state observed at the start of this timestep.
action: The action taken after observing the given state.
reward: The reward received for taking the given action.
value: The value estimated for the given state.
terminated: Whether this timestep ends the episode.
Raises:
ValueError: If this.terminated is already True, meaning that the episode
has already ended.
"""
if self.terminated:
raise ValueError(
'Trying to add timestep to an already terminal rollout.')
self.states += [state]
self.actions += [action]
self.rewards += [reward]
self.values += [value]
self.terminated = terminated
self.total_reward += reward
def add_many(self, states, actions, rewards, values=None, terminated=False):
"""Add many timesteps to this rollout.
Arguments are the same as `add`, but are lists of equal size.
Args:
states: The states observed.
actions: The actions taken.
rewards: The rewards received.
values: The values estimated for the given states.
terminated: Whether this sequence ends the episode.
Raises:
ValueError: If the lengths of all the input lists are not equal.
ValueError: If this.terminated is already True, meaning that the episode
has already ended.
"""
if len(states) != len(actions):
raise ValueError(
'Number of states and actions must be the same. Got %d states and '
'%d actions' % (len(states), len(actions)))
if len(states) != len(rewards):
raise ValueError(
'Number of states and rewards must be the same. Got %d states and '
'%d rewards' % (len(states), len(rewards)))
if values is not None and len(states) != len(values):
raise ValueError(
'Number of states and values must be the same. Got %d states and '
'%d values' % (len(states), len(values)))
if self.terminated:
raise ValueError(
'Trying to add timesteps to an already terminal rollout.')
self.states += states
self.actions += actions
self.rewards += rewards
self.values += values if values is not None else [0.0] * len(states)
self.terminated = terminated
self.total_reward += sum(rewards)
def extend(self, other):
"""Append another rollout to this rollout."""
assert not self.terminated
self.states.extend(other.states)
self.actions.extend(other.actions)
self.rewards.extend(other.rewards)
self.values.extend(other.values)
self.terminated = other.terminated
self.total_reward += other.total_reward
def discount(x, gamma):
"""Returns discounted sums for each value in x, with discount factor gamma.
This can be used to compute the return (discounted sum of rewards) at each
timestep given a sequence of rewards. See the definitions for return and
REINFORCE in section 3 of https://arxiv.org/pdf/1602.01783.pdf.
Let g^k mean gamma ** k.
For list [x_0, ..., x_N], the following list of discounted sums is computed:
[x_0 + g^1 * x_1 + g^2 * x_2 + ... g^N * x_N,
x_1 + g^1 * x_2 + g^2 * x_3 + ... g^(N-1) * x_N,
x_2 + g^1 * x_3 + g^2 * x_4 + ... g^(N-2) * x_N,
...,
x_(N-1) + g^1 * x_N,
x_N]
Args:
x: List of numbers [x_0, ..., x_N].
gamma: Float between 0 and 1 (inclusive). This is the discount factor.
Returns:
List of discounted sums.
"""
return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
def discounted_advantage_and_rewards(rewards, values, gamma, lambda_=1.0):
"""Compute advantages and returns (discounted sum of rewards).
For an episode of length T, rewards = [r_0, ..., r_(T-1)].
Each reward r_t is observed after taking action a_t at state s_t. A final
state s_T is observed but no reward is given at this state since no action
a_T is taken (otherwise there would be a new state s_(T+1)).
`rewards` and `values` are for a single episode. Return R_t is the discounted
sum of future rewards starting at time t, where `gamma` is the discount
factor.
R_t = r_t + gamma * r_(t+1) + gamma**2 * r_(t+2) + ...
+ gamma**(T-1-t) * r_(T-1)
Advantage A(a_t, s_t) is approximated by computing A(a_t, s_t) = R_t - V(s_t)
where V(s_t) is an approximation of the value at that state, given in the
`values` list. Returns R_t are needed for all REINFORCE algorithms. Advantage
is used for the advantage actor critic variant of REINFORCE.
See algorithm S3 in https://arxiv.org/pdf/1602.01783.pdf.
Additionally another parameter `lambda_` controls the bias-variance tradeoff.
See "Generalized Advantage Estimation": https://arxiv.org/abs/1506.02438.
lambda_ = 1 reduces to regular advantage.
0 <= lambda_ < 1 trades off variance for bias, with lambda_ = 0 being the
most biased.
Bootstrapping is also supported. If an episode does not end in a terminal
state (either because the episode was ended early, or the environment does not
have end states), the true return cannot be computed from the rewards alone.
However, it can be estimated by computing the value (an approximation of
return) of the last state s_T. Thus the `values` list will have an extra item:
values = [V(s_0), ..., V(s_(T-1)), V(s_T)].
Args:
rewards: List of observed rewards [r_0, ..., r_(T-1)].
values: List of estimated values [V(s_0), ..., V(s_(T-1))] with an optional
extra V(s_T) item.
gamma: Discount factor. Number between 0 and 1. 1 means no discount.
If not 1, gamma is typically near 1, like 0.99.
lambda_: Bias-variance tradeoff factor. Between 0 and 1.
Returns:
empirical_values: Returns at each timestep.
generalized_advantage: Avantages at each timestep.
Raises:
ValueError: If shapes of `rewards` and `values` are not rank 1.
ValueError: If len(values) not in (len(rewards), len(rewards) + 1).
"""
rewards = np.asarray(rewards, dtype=np.float32)
values = np.asarray(values, dtype=np.float32)
if rewards.ndim != 1:
raise ValueError('Single episode only. rewards must be rank 1.')
if values.ndim != 1:
raise ValueError('Single episode only. values must be rank 1.')
if len(values) == len(rewards):
# No bootstrapping.
values = np.append(values, 0)
empirical_values = discount(rewards, gamma)
elif len(values) == len(rewards) + 1:
# With bootstrapping.
# Last value is for the terminal state (final state after last action was
# taken).
empirical_values = discount(np.append(rewards, values[-1]), gamma)[:-1]
else:
raise ValueError('values should contain the same number of items or one '
'more item than rewards')
delta = rewards + gamma * values[1:] - values[:-1]
generalized_advantage = discount(delta, gamma * lambda_)
# empirical_values is the discounted sum of rewards into the future.
# generalized_advantage is the target for each policy update.
return empirical_values, generalized_advantage
"""Batch holds a minibatch of episodes.
Let bi = batch_index, i.e. the index of each episode in the minibatch.
Let t = time.
Attributes:
states: States for each timestep in each episode. Indexed by states[bi, t].
actions: Actions for each timestep in each episode. Indexed by actions[bi, t].
discounted_adv: Advantages (computed by discounted_advantage_and_rewards)
for each timestep in each episode. Indexed by discounted_adv[bi, t].
discounted_r: Returns (discounted sum of rewards computed by
discounted_advantage_and_rewards) for each timestep in each episode.
Indexed by discounted_r[bi, t].
total_rewards: Total reward for each episode, i.e. sum of rewards across all
timesteps (not discounted). Indexed by total_rewards[bi].
episode_lengths: Number of timesteps in each episode. If an episode has
N actions, N rewards, and N states, then its length is N. Indexed by
episode_lengths[bi].
batch_size: Number of episodes in this minibatch. An integer.
max_time: Maximum episode length in the batch. An integer.
""" # pylint: disable=pointless-string-statement
Batch = namedtuple(
'Batch',
['states', 'actions', 'discounted_adv', 'discounted_r', 'total_rewards',
'episode_lengths', 'batch_size', 'max_time'])
def process_rollouts(rollouts, gamma, lambda_=1.0):
"""Convert a batch of rollouts into tensors ready to be fed into a model.
Lists from each episode are stacked into 2D tensors and padded with 0s up to
the maximum timestep in the batch.
Args:
rollouts: A list of Rollout instances.
gamma: The discount factor. A number between 0 and 1 (inclusive). See gamma
argument in discounted_advantage_and_rewards.
lambda_: See lambda_ argument in discounted_advantage_and_rewards.
Returns:
Batch instance. states, actions, discounted_adv, and discounted_r are
numpy arrays with shape (batch_size, max_episode_length). episode_lengths
is a list of ints. total_rewards is a list of floats (total reward in each
episode). batch_size and max_time are ints.
Raises:
ValueError: If any of the rollouts are not terminal.
"""
for ro in rollouts:
if not ro.terminated:
raise ValueError('Can only process terminal rollouts.')
episode_lengths = [len(ro.states) for ro in rollouts]
batch_size = len(rollouts)
max_time = max(episode_lengths)
states = utils.stack_pad([ro.states for ro in rollouts], 0, max_time)
actions = utils.stack_pad([ro.actions for ro in rollouts], 0, max_time)
discounted_rewards = [None] * batch_size
discounted_adv = [None] * batch_size
for i, ro in enumerate(rollouts):
disc_r, disc_adv = discounted_advantage_and_rewards(
ro.rewards, ro.values, gamma, lambda_)
discounted_rewards[i] = disc_r
discounted_adv[i] = disc_adv
discounted_rewards = utils.stack_pad(discounted_rewards, 0, max_time)
discounted_adv = utils.stack_pad(discounted_adv, 0, max_time)
total_rewards = [sum(ro.rewards) for ro in rollouts]
return Batch(states=states,
actions=actions,
discounted_adv=discounted_adv,
discounted_r=discounted_rewards,
total_rewards=total_rewards,
episode_lengths=episode_lengths,
batch_size=batch_size,
max_time=max_time)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment