"vscode:/vscode.git/clone" did not exist on "cbaa1bc8f9810790974a058398a9fa90508b2096"
Commit 76f567df authored by K. Nathaniel Tucker's avatar K. Nathaniel Tucker Committed by Martin Wicke
Browse files

add the namignizer model (#147)

parent dc7791d0
# Remove the pyc files
*.pyc
# Ignore the model and the data
model/
data/
# Namignizer
Use a variation of the [PTB](https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html#recurrent-neural-networks) model to recognize and generate names using the [Kaggle Baby Name Database](https://www.kaggle.com/kaggle/us-baby-names).
### API
Namignizer is implemented in Tensorflow 0.8r and uses the python package `pandas` for some data processing.
#### How to use
Download the data from Kaggle and place it in your data directory (or use the small training data provided). The example data looks like so:
```
Id,Name,Year,Gender,Count
1,Mary,1880,F,7065
2,Anna,1880,F,2604
3,Emma,1880,F,2003
4,Elizabeth,1880,F,1939
5,Minnie,1880,F,1746
6,Margaret,1880,F,1578
7,Ida,1880,F,1472
8,Alice,1880,F,1414
9,Bertha,1880,F,1320
```
But any data with the two columns: `Name` and `Count` will work.
With the data, we can then train the model:
```python
train("data/SmallNames.txt", "model/namignizer", SmallConfig)
```
And you will get the output:
```
Reading Name data in data/SmallNames.txt
Epoch: 1 Learning rate: 1.000
0.090 perplexity: 18.539 speed: 282 lps
...
0.890 perplexity: 1.478 speed: 285 lps
0.990 perplexity: 1.477 speed: 284 lps
Epoch: 13 Train Perplexity: 1.477
```
This will as a side effect write model checkpoints to the `model` directory. With this you will be able to determine the perplexity your model will give you for any arbitrary set of names like so:
```python
namignize(["mary", "ida", "gazorpazorp", "houyhnhnms", "bob"],
tf.train.latest_checkpoint("model"), SmallConfig)
```
You will provide the same config and the same checkpoint directory. This will allow you to use a the model you just trained. You will then get a perplexity output for each name like so:
```
Name mary gives us a perplexity of 1.03105580807
Name ida gives us a perplexity of 1.07770049572
Name gazorpazorp gives us a perplexity of 175.940353394
Name houyhnhnms gives us a perplexity of 9.53870773315
Name bob gives us a perplexity of 6.03938627243
```
Finally, you will also be able generate names using the model like so:
```python
namignator(tf.train.latest_checkpoint("model"), SmallConfig)
```
Again, you will need to provide the same config and the same checkpoint directory. This will allow you to use a the model you just trained. You will then get a single generated name. Examples of output that I got when using the provided data are:
```
['b', 'e', 'r', 't', 'h', 'a', '`']
['m', 'a', 'r', 'y', '`']
['a', 'n', 'n', 'a', '`']
['m', 'a', 'r', 'y', '`']
['b', 'e', 'r', 't', 'h', 'a', '`']
['a', 'n', 'n', 'a', '`']
['e', 'l', 'i', 'z', 'a', 'b', 'e', 't', 'h', '`']
```
Notice that each name ends with a backtick. This marks the end of the name.
### Contact Info
Feel free to reach out to me at knt(at google) or k.nathaniel.tucker(at gmail)
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for parsing Kaggle baby names files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import numpy as np
import tensorflow as tf
import pandas as pd
# the default end of name rep will be zero
_EON = 0
def read_names(names_path):
"""read data from downloaded file. See SmallNames.txt for example format
or go to https://www.kaggle.com/kaggle/us-baby-names for full lists
Args:
names_path: path to the csv file similar to the example type
Returns:
Dataset: a namedtuple of two elements: deduped names and their associated
counts. The names contain only 26 chars and are all lower case
"""
names_data = pd.read_csv(names_path)
names_data.Name = names_data.Name.str.lower()
name_data = names_data.groupby(by=["Name"])["Count"].sum()
name_counts = np.array(name_data.tolist())
names_deduped = np.array(name_data.index.tolist())
Dataset = collections.namedtuple('Dataset', ['Name', 'Count'])
return Dataset(names_deduped, name_counts)
def _letter_to_number(letter):
"""converts letters to numbers between 1 and 27"""
# ord of lower case 'a' is 97
return ord(letter) - 96
def namignizer_iterator(names, counts, batch_size, num_steps, epoch_size):
"""Takes a list of names and counts like those output from read_names, and
makes an iterator yielding a batch_size by num_steps array of random names
separated by an end of name token. The names are choosen randomly according
to their counts. The batch may end mid-name
Args:
names: a set of lowercase names composed of 26 characters
counts: a list of the frequency of those names
batch_size: int
num_steps: int
epoch_size: number of batches to yield
Yields:
(x, y): a batch_size by num_steps array of ints representing letters, where
x will be the input and y will be the target
"""
name_distribution = counts / counts.sum()
for i in range(epoch_size):
data = np.zeros(batch_size * num_steps + 1)
samples = np.random.choice(names, size=batch_size * num_steps // 2,
replace=True, p=name_distribution)
data_index = 0
for sample in samples:
if data_index >= batch_size * num_steps:
break
for letter in map(_letter_to_number, sample) + [_EON]:
if data_index >= batch_size * num_steps:
break
data[data_index] = letter
data_index += 1
x = data[:batch_size * num_steps].reshape((batch_size, num_steps))
y = data[1:batch_size * num_steps + 1].reshape((batch_size, num_steps))
yield (x, y)
def name_to_batch(name, batch_size, num_steps):
""" Takes a single name and fills a batch with it
Args:
name: lowercase composed of 26 characters
batch_size: int
num_steps: int
Returns:
x, y: a batch_size by num_steps array of ints representing letters, where
x will be the input and y will be the target. The array is filled up
to the length of the string, the rest is filled with zeros
"""
data = np.zeros(batch_size * num_steps + 1)
data_index = 0
for letter in map(_letter_to_number, name) + [_EON]:
data[data_index] = letter
data_index += 1
x = data[:batch_size * num_steps].reshape((batch_size, num_steps))
y = data[1:batch_size * num_steps + 1].reshape((batch_size, num_steps))
return x, y
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RNN model with embeddings"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class NamignizerModel(object):
"""The Namignizer model ~ strongly based on PTB"""
def __init__(self, is_training, config):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
size = config.hidden_size
# will always be 27
vocab_size = config.vocab_size
# placeholders for inputs
self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps])
self._targets = tf.placeholder(tf.int32, [batch_size, num_steps])
# weights for the loss function
self._weights = tf.placeholder(tf.float32, [batch_size * num_steps])
# lstm for our RNN cell (GRU supported too)
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(size, forget_bias=0.0)
if is_training and config.keep_prob < 1:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob=config.keep_prob)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * config.num_layers)
self._initial_state = cell.zero_state(batch_size, tf.float32)
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [vocab_size, size])
inputs = tf.nn.embedding_lookup(embedding, self._input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0:
tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(1, outputs), [-1, size])
softmax_w = tf.get_variable("softmax_w", [size, vocab_size])
softmax_b = tf.get_variable("softmax_b", [vocab_size])
logits = tf.matmul(output, softmax_w) + softmax_b
loss = tf.nn.seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape(self._targets, [-1])],
[self._weights])
self._loss = loss
self._cost = cost = tf.reduce_sum(loss) / batch_size
self._final_state = state
# probabilities of each letter
self._activations = tf.nn.softmax(logits)
# ability to save the model
self.saver = tf.train.Saver(tf.all_variables())
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self.lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars))
def assign_lr(self, session, lr_value):
session.run(tf.assign(self.lr, lr_value))
@property
def input_data(self):
return self._input_data
@property
def targets(self):
return self._targets
@property
def activations(self):
return self._activations
@property
def weights(self):
return self._weights
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def loss(self):
return self._loss
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A library showing off sequence recognition and generation with the simple
example of names.
We use recurrent neural nets to learn complex functions able to recogize and
generate sequences of a given form. This can be used for natural language
syntax recognition, dynamically generating maps or puzzles and of course
baby name generation.
Before using this module, it is recommended to read the Tensorflow tutorial on
recurrent neural nets, as it explains the basic concepts of this model, and
will show off another module, the PTB module on which this model bases itself.
Here is an overview of the functions available in this module:
* RNN Module for sequence functions based on PTB
* Name recognition specifically for recognizing names, but can be adapted to
recognizing sequence patterns
* Name generations specifically for generating names, but can be adapted to
generating arbitrary sequence patterns
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import numpy as np
from model import NamignizerModel
import data_utils
class SmallConfig(object):
"""Small config."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 27
epoch_size = 100
class LargeConfig(object):
"""Medium config."""
init_scale = 0.05
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 35
hidden_size = 650
max_epoch = 6
max_max_epoch = 39
keep_prob = 0.5
lr_decay = 0.8
batch_size = 20
vocab_size = 27
epoch_size = 100
class TestConfig(object):
"""Tiny config, for testing."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 1
num_layers = 1
num_steps = 2
hidden_size = 2
max_epoch = 1
max_max_epoch = 1
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 27
epoch_size = 100
def run_epoch(session, m, names, counts, epoch_size, eval_op, verbose=False):
"""Runs the model on the given data for one epoch
Args:
session: the tf session holding the model graph
m: an instance of the NamignizerModel
names: a set of lowercase names of 26 characters
counts: a list of the frequency of the above names
epoch_size: the number of batches to run
eval_op: whether to change the params or not, and how to do it
Kwargs:
verbose: whether to print out state of training during the epoch
Returns:
cost: the average cost during the last stage of the epoch
"""
start_time = time.time()
costs = 0.0
iters = 0
for step, (x, y) in enumerate(data_utils.namignizer_iterator(names, counts,
m.batch_size, m.num_steps, epoch_size)):
cost, _ = session.run([m.cost, eval_op],
{m.input_data: x,
m.targets: y,
m.initial_state: m.initial_state.eval(),
m.weights: np.ones(m.batch_size * m.num_steps)})
costs += cost
iters += m.num_steps
if verbose and step % (epoch_size // 10) == 9:
print("%.3f perplexity: %.3f speed: %.0f lps" %
(step * 1.0 / epoch_size, np.exp(costs / iters),
iters * m.batch_size / (time.time() - start_time)))
if step >= epoch_size:
break
return np.exp(costs / iters)
def train(data_dir, checkpoint_path, config):
"""Trains the model with the given data
Args:
data_dir: path to the data for the model (see data_utils for data
format)
checkpoint_path: the path to save the trained model checkpoints
config: one of the above configs that specify the model and how it
should be run and trained
Returns:
None
"""
# Prepare Name data.
print("Reading Name data in %s" % data_dir)
names, counts = data_utils.read_names(data_dir)
with tf.Graph().as_default(), tf.Session() as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = NamignizerModel(is_training=True, config=config)
tf.initialize_all_variables().run()
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, names, counts, config.epoch_size, m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" %
(i + 1, train_perplexity))
m.saver.save(session, checkpoint_path, global_step=i)
def namignize(names, checkpoint_path, config):
"""Recognizes names and prints the Perplexity of the model for each names
in the list
Args:
names: a list of names in the model format
checkpoint_path: the path to restore the trained model from, should not
include the model name, just the path to
config: one of the above configs that specify the model and how it
should be run and trained
Returns:
None
"""
with tf.Graph().as_default(), tf.Session() as session:
with tf.variable_scope("model"):
m = NamignizerModel(is_training=False, config=config)
m.saver.restore(session, checkpoint_path)
for name in names:
x, y = data_utils.name_to_batch(name, m.batch_size, m.num_steps)
cost, loss, _ = session.run([m.cost, m.loss, tf.no_op()],
{m.input_data: x,
m.targets: y,
m.initial_state: m.initial_state.eval(),
m.weights: np.concatenate((
np.ones(len(name)), np.zeros(m.batch_size * m.num_steps - len(name))))})
print("Name {} gives us a perplexity of {}".format(
name, np.exp(cost)))
def namignator(checkpoint_path, config):
"""Generates names randomly according to a given model
Args:
checkpoint_path: the path to restore the trained model from, should not
include the model name, just the path to
config: one of the above configs that specify the model and how it
should be run and trained
Returns:
None
"""
# mutate the config to become a name generator config
config.num_steps = 1
config.batch_size = 1
with tf.Graph().as_default(), tf.Session() as session:
with tf.variable_scope("model"):
m = NamignizerModel(is_training=False, config=config)
m.saver.restore(session, checkpoint_path)
activations, final_state, _ = session.run([m.activations, m.final_state, tf.no_op()],
{m.input_data: np.zeros((1, 1)),
m.targets: np.zeros((1, 1)),
m.initial_state: m.initial_state.eval(),
m.weights: np.ones(1)})
# sample from our softmax activations
next_letter = np.random.choice(27, p=activations[0])
name = [next_letter]
while next_letter != 0:
activations, final_state, _ = session.run([m.activations, m.final_state, tf.no_op()],
{m.input_data: [[next_letter]],
m.targets: np.zeros((1, 1)),
m.initial_state: final_state,
m.weights: np.ones(1)})
next_letter = np.random.choice(27, p=activations[0])
name += [next_letter]
print(map(lambda x: chr(x + 96), name))
if __name__ == "__main__":
# train("data/SmallNames.txt", "model/namignizer", SmallConfig)
# namignize(["mary", "ida", "gazorbazorb", "mmmhmm", "bob"],
# tf.train.latest_checkpoint("model"), SmallConfig)
# namignator(tf.train.latest_checkpoint("model"), SmallConfig)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment