Commit 751bfb3f authored by derekjchow's avatar derekjchow Committed by GitHub
Browse files

Merge pull request #2065 from derekjchow/limits

Set training step limits on pets configs.
parents 04235f9b 7525c4d0
...@@ -111,6 +111,11 @@ train_config: { ...@@ -111,6 +111,11 @@ train_config: {
gradient_clipping_by_norm: 10.0 gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -126,6 +131,9 @@ train_input_reader: { ...@@ -126,6 +131,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
...@@ -109,6 +109,11 @@ train_config: { ...@@ -109,6 +109,11 @@ train_config: {
gradient_clipping_by_norm: 10.0 gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -124,6 +129,9 @@ train_input_reader: { ...@@ -124,6 +129,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
...@@ -109,6 +109,11 @@ train_config: { ...@@ -109,6 +109,11 @@ train_config: {
gradient_clipping_by_norm: 10.0 gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -124,6 +129,9 @@ train_input_reader: { ...@@ -124,6 +129,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
...@@ -109,6 +109,11 @@ train_config: { ...@@ -109,6 +109,11 @@ train_config: {
gradient_clipping_by_norm: 10.0 gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -124,6 +129,9 @@ train_input_reader: { ...@@ -124,6 +129,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
...@@ -106,6 +106,11 @@ train_config: { ...@@ -106,6 +106,11 @@ train_config: {
gradient_clipping_by_norm: 10.0 gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -121,6 +126,9 @@ train_input_reader: { ...@@ -121,6 +126,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
...@@ -151,6 +151,11 @@ train_config: { ...@@ -151,6 +151,11 @@ train_config: {
} }
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -170,6 +175,9 @@ train_input_reader: { ...@@ -170,6 +175,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
...@@ -157,6 +157,11 @@ train_config: { ...@@ -157,6 +157,11 @@ train_config: {
} }
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options { data_augmentation_options {
random_horizontal_flip { random_horizontal_flip {
} }
...@@ -176,6 +181,9 @@ train_input_reader: { ...@@ -176,6 +181,9 @@ train_input_reader: {
eval_config: { eval_config: {
num_examples: 2000 num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} }
eval_input_reader: { eval_input_reader: {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment