"docs/source/ko/index.mdx" did not exist on "b9e921feea53524038cf40a836d9b48b80846934"
Commit 748eceae authored by Marianne Linhares Monteiro's avatar Marianne Linhares Monteiro Committed by GitHub
Browse files

Merge branch 'master' into cifar10_experiment

parents 40e906d2 ed65b632
......@@ -1255,6 +1255,82 @@ def random_resize_method(image, target_size):
return resized_image
def _compute_new_static_size(image,
min_dimension,
max_dimension):
"""Compute new static shape for resize_to_range method."""
image_shape = image.get_shape().as_list()
orig_height = image_shape[0]
orig_width = image_shape[1]
orig_min_dim = min(orig_height, orig_width)
# Calculates the larger of the possible sizes
large_scale_factor = min_dimension / float(orig_min_dim)
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height = int(round(orig_height * large_scale_factor))
large_width = int(round(orig_width * large_scale_factor))
large_size = [large_height, large_width]
if max_dimension:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim = max(orig_height, orig_width)
small_scale_factor = max_dimension / float(orig_max_dim)
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height = int(round(orig_height * small_scale_factor))
small_width = int(round(orig_width * small_scale_factor))
small_size = [small_height, small_width]
new_size = large_size
if max(large_size) > max_dimension:
new_size = small_size
else:
new_size = large_size
return tf.constant(new_size)
def _compute_new_dynamic_size(image,
min_dimension,
max_dimension):
"""Compute new dynamic shape for resize_to_range method."""
image_shape = tf.shape(image)
orig_height = tf.to_float(image_shape[0])
orig_width = tf.to_float(image_shape[1])
orig_min_dim = tf.minimum(orig_height, orig_width)
# Calculates the larger of the possible sizes
min_dimension = tf.constant(min_dimension, dtype=tf.float32)
large_scale_factor = min_dimension / orig_min_dim
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height = tf.to_int32(tf.round(orig_height * large_scale_factor))
large_width = tf.to_int32(tf.round(orig_width * large_scale_factor))
large_size = tf.stack([large_height, large_width])
if max_dimension:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim = tf.maximum(orig_height, orig_width)
max_dimension = tf.constant(max_dimension, dtype=tf.float32)
small_scale_factor = max_dimension / orig_max_dim
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height = tf.to_int32(tf.round(orig_height * small_scale_factor))
small_width = tf.to_int32(tf.round(orig_width * small_scale_factor))
small_size = tf.stack([small_height, small_width])
new_size = tf.cond(
tf.to_float(tf.reduce_max(large_size)) > max_dimension,
lambda: small_size, lambda: large_size)
else:
new_size = large_size
return new_size
def resize_to_range(image,
masks=None,
min_dimension=None,
......@@ -1295,64 +1371,22 @@ def resize_to_range(image,
raise ValueError('Image should be 3D tensor')
with tf.name_scope('ResizeToRange', values=[image, min_dimension]):
image_shape = tf.shape(image)
orig_height = tf.to_float(image_shape[0])
orig_width = tf.to_float(image_shape[1])
orig_min_dim = tf.minimum(orig_height, orig_width)
# Calculates the larger of the possible sizes
min_dimension = tf.constant(min_dimension, dtype=tf.float32)
large_scale_factor = min_dimension / orig_min_dim
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height = tf.to_int32(tf.round(orig_height * large_scale_factor))
large_width = tf.to_int32(tf.round(orig_width * large_scale_factor))
large_size = tf.stack([large_height, large_width])
if max_dimension:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim = tf.maximum(orig_height, orig_width)
max_dimension = tf.constant(max_dimension, dtype=tf.float32)
small_scale_factor = max_dimension / orig_max_dim
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height = tf.to_int32(tf.round(orig_height * small_scale_factor))
small_width = tf.to_int32(tf.round(orig_width * small_scale_factor))
small_size = tf.stack([small_height, small_width])
new_size = tf.cond(
tf.to_float(tf.reduce_max(large_size)) > max_dimension,
lambda: small_size, lambda: large_size)
if image.get_shape().is_fully_defined():
new_size = _compute_new_static_size(image, min_dimension,
max_dimension)
else:
new_size = large_size
new_size = _compute_new_dynamic_size(image, min_dimension,
max_dimension)
new_image = tf.image.resize_images(image, new_size,
align_corners=align_corners)
result = new_image
if masks is not None:
num_instances = tf.shape(masks)[0]
def resize_masks_branch():
new_masks = tf.expand_dims(masks, 3)
new_masks = tf.image.resize_nearest_neighbor(
new_masks, new_size, align_corners=align_corners)
new_masks = tf.squeeze(new_masks, axis=3)
return new_masks
def reshape_masks_branch():
new_masks = tf.reshape(masks, [0, new_size[0], new_size[1]])
return new_masks
masks = tf.cond(num_instances > 0,
resize_masks_branch,
reshape_masks_branch)
result = [new_image, masks]
new_masks = tf.image.resize_nearest_neighbor(new_masks, new_size,
align_corners=align_corners)
new_masks = tf.squeeze(new_masks, 3)
result = [new_image, new_masks]
return result
......
This diff is collapsed.
item {
id: 0
name: 'none_of_the_above'
}
item {
id: 1
name: 'aeroplane'
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment