Commit 6d1d918f authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

base_config.py in modeling/

PiperOrigin-RevId: 294560916
parent 984be23d
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base configurations to standardize experiments."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import copy
from typing import Any, List, Mapping, Optional
import dataclasses
import tensorflow as tf
import yaml
from official.modeling.hyperparams import params_dict
@dataclasses.dataclass
class Config(params_dict.ParamsDict):
"""The base configuration class that supports YAML/JSON based overrides."""
default_params: dataclasses.InitVar[Mapping[str, Any]] = None
restrictions: dataclasses.InitVar[List[str]] = None
def __post_init__(self, default_params, restrictions, *args, **kwargs):
super().__init__(default_params=default_params,
restrictions=restrictions,
*args,
**kwargs)
def _set(self, k, v):
if isinstance(v, dict):
if k not in self.__dict__:
self.__dict__[k] = params_dict.ParamsDict(v, [])
else:
self.__dict__[k].override(v)
else:
self.__dict__[k] = copy.deepcopy(v)
def __setattr__(self, k, v):
if k in params_dict.ParamsDict.RESERVED_ATTR:
# Set the essential private ParamsDict attributes.
self.__dict__[k] = copy.deepcopy(v)
else:
self._set(k, v)
def replace(self, **kwargs):
"""Like `override`, but returns a copy with the current config unchanged."""
params = self.__class__(self)
params.override(kwargs, is_strict=True)
return params
@classmethod
def from_yaml(cls, file_path: str):
# Note: This only works if the Config has all default values.
with tf.io.gfile.GFile(file_path, 'r') as f:
loaded = yaml.load(f)
config = cls()
config.override(loaded)
return config
@classmethod
def from_json(cls, file_path: str):
"""Wrapper for `from_yaml`."""
return cls.from_yaml(file_path)
@classmethod
def from_args(cls, *args, **kwargs):
"""Builds a config from the given list of arguments."""
attributes = list(cls.__annotations__.keys())
default_params = {a: p for a, p in zip(attributes, args)}
default_params.update(kwargs)
return cls(default_params)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment