Unverified Commit 6b9d5fba authored by Toby Boyd's avatar Toby Boyd Committed by GitHub
Browse files

Merge branch 'master' into patch-1

parents 5fd687c5 5fa2a4e6
......@@ -51,6 +51,7 @@ from __future__ import print_function
import os
import os.path
import sys
from six.moves import xrange
if __name__ == '__main__':
......
......@@ -85,6 +85,7 @@ import glob
import os.path
import sys
import xml.etree.ElementTree as ET
from six.moves import xrange
class BoundingBox(object):
......
......@@ -18,7 +18,7 @@ from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange
import tensorflow as tf
layers = tf.contrib.layers
......
......@@ -19,6 +19,7 @@ from __future__ import print_function
from math import log
from six.moves import xrange
import tensorflow as tf
slim = tf.contrib.slim
......
......@@ -18,6 +18,7 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
import tensorflow as tf
from nets import dcgan
......
......@@ -25,6 +25,7 @@ import collections
import re
import errorcounter as ec
from six.moves import xrange
import tensorflow as tf
# Named tuple Part describes a part of a multi (1 or more) part code that
......
......@@ -24,6 +24,7 @@ tensor_dim: gets a shape dimension as a constant integer if known otherwise a
runtime usable tensor value.
tensor_shape: returns the full shape of a tensor as the tensor_dim.
"""
from six.moves import xrange
import tensorflow as tf
......
......@@ -14,6 +14,8 @@
# ==============================================================================
"""String network description language to define network layouts."""
from __future__ import print_function
import re
import time
......@@ -170,7 +172,7 @@ def Eval(train_dir,
_AddRateToSummary('Sequence error rate', rates.sequence_error, step,
sw)
sw.flush()
print 'Error rates=', rates
print('Error rates=', rates)
else:
raise ValueError('Non-softmax decoder evaluation not implemented!')
if eval_interval_secs:
......
......@@ -23,6 +23,7 @@ from string import maketrans
import nn_ops
import shapes
from six.moves import xrange
import tensorflow as tf
import tensorflow.contrib.slim as slim
......
......@@ -61,6 +61,7 @@ import os
import struct
import sys
from six.moves import xrange
import tensorflow as tf
flags = tf.app.flags
......@@ -118,7 +119,7 @@ def create_vocabulary(lines):
if not num_words:
raise Exception('empty vocabulary')
print 'vocabulary contains %d tokens' % num_words
print('vocabulary contains %d tokens' % num_words)
vocab = vocab[:num_words]
return [tok for tok, n in vocab]
......@@ -309,7 +310,7 @@ def main(_):
write_vocab_and_sums(vocab, sums, 'row_vocab.txt', 'row_sums.txt')
write_vocab_and_sums(vocab, sums, 'col_vocab.txt', 'col_sums.txt')
print 'done!'
print('done!')
if __name__ == '__main__':
......
......@@ -49,7 +49,7 @@ import sys
try:
opts, args = getopt(
sys.argv[1:], 'o:v:', ['output=', 'vocab='])
except GetoptError, e:
except GetoptError as e:
print >> sys.stderr, e
sys.exit(2)
......
......@@ -45,7 +45,7 @@ class DragnnModelSaverLibTest(test_util.TensorFlowTestCase):
master_spec = spec_pb2.MasterSpec()
root_dir = os.path.join(FLAGS.test_srcdir,
'dragnn/python')
with file(os.path.join(root_dir, 'testdata', spec_path), 'r') as fin:
with open(os.path.join(root_dir, 'testdata', spec_path), 'r') as fin:
text_format.Parse(fin.read().replace('TOPDIR', root_dir), master_spec)
return master_spec
......
......@@ -28,7 +28,7 @@ from syntaxnet.util import check
try:
tf.NotDifferentiable('ExtractFixedFeatures')
except KeyError, e:
except KeyError as e:
logging.info(str(e))
......
......@@ -20,6 +20,7 @@ import os.path
import numpy as np
from six.moves import xrange
import tensorflow as tf
from google.protobuf import text_format
......@@ -245,7 +246,7 @@ class GraphBuilderTest(test_util.TensorFlowTestCase):
master_spec = spec_pb2.MasterSpec()
testdata = os.path.join(FLAGS.test_srcdir,
'dragnn/core/testdata')
with file(os.path.join(testdata, spec_path), 'r') as fin:
with open(os.path.join(testdata, spec_path), 'r') as fin:
text_format.Parse(fin.read().replace('TESTDATA', testdata), master_spec)
return master_spec
......
......@@ -22,6 +22,7 @@ import abc
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.ops import nn
from tensorflow.python.ops import tensor_array_ops as ta
......
......@@ -15,6 +15,7 @@
"""Utils for building DRAGNN specs."""
from six.moves import xrange
import tensorflow as tf
from dragnn.protos import spec_pb2
......
......@@ -23,6 +23,7 @@ import random
import tensorflow as tf
from six.moves import xrange
from tensorflow.core.framework.summary_pb2 import Summary
from tensorflow.python.framework import errors
from tensorflow.python.platform import gfile
......
......@@ -88,12 +88,12 @@ def main(unused_argv):
sentence.ParseFromString(d)
tr = asciitree.LeftAligned()
d = to_dict(sentence)
print 'Input: %s' % sentence.text
print 'Parse:'
print('Input: %s' % sentence.text)
print('Parse:')
tr_str = tr(d)
pat = re.compile(r'\s*@\d+$')
for tr_ln in tr_str.splitlines():
print pat.sub('', tr_ln)
print(pat.sub('', tr_ln))
if finished:
break
......
......@@ -140,7 +140,7 @@ class LexiconBuilderTest(test_util.TensorFlowTestCase):
self.assertTrue(last)
def ValidateTagToCategoryMap(self):
with file(os.path.join(FLAGS.test_tmpdir, 'tag-to-category'), 'r') as f:
with open(os.path.join(FLAGS.test_tmpdir, 'tag-to-category'), 'r') as f:
entries = [line.strip().split('\t') for line in f.readlines()]
for tag, category in entries:
self.assertIn(tag, TAGS)
......@@ -148,7 +148,7 @@ class LexiconBuilderTest(test_util.TensorFlowTestCase):
def LoadMap(self, map_name):
loaded_map = {}
with file(os.path.join(FLAGS.test_tmpdir, map_name), 'r') as f:
with open(os.path.join(FLAGS.test_tmpdir, map_name), 'r') as f:
for line in f:
entries = line.strip().split(' ')
if len(entries) >= 2:
......
......@@ -76,9 +76,9 @@ def compute_average_alignment(
alignment = np.mean(
np.abs(np.array(times_i)-np.array(times_j))/float(seq_len))
all_alignments.append(alignment)
print 'alignment so far %f' % alignment
print('alignment so far %f' % alignment)
average_alignment = np.mean(all_alignments)
print 'Average alignment %f' % average_alignment
print('Average alignment %f' % average_alignment)
summ = tf.Summary(value=[tf.Summary.Value(
tag='validation/alignment', simple_value=average_alignment)])
summary_writer.add_summary(summ, int(training_step))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment