Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
650b1baa
Commit
650b1baa
authored
Oct 23, 2021
by
Vishnu Banna
Browse files
index fix
parent
73c330fb
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
24 additions
and
15 deletions
+24
-15
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection/yolo_l_p7_1536_tpu.yaml
...experiments/scaled-yolo/detection/yolo_l_p7_1536_tpu.yaml
+1
-1
official/vision/beta/projects/yolo/dataloaders/yolo_input.py
official/vision/beta/projects/yolo/dataloaders/yolo_input.py
+1
-1
official/vision/beta/projects/yolo/dataloaders/yolo_input_test.py
.../vision/beta/projects/yolo/dataloaders/yolo_input_test.py
+22
-13
No files found.
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection/yolo_l_p7_1536_tpu.yaml
View file @
650b1baa
...
@@ -80,6 +80,6 @@ task:
...
@@ -80,6 +80,6 @@ task:
letter_box
:
true
letter_box
:
true
random_flip
:
true
random_flip
:
true
aug_rand_translate
:
0.5
aug_rand_translate
:
0.5
area_thresh
:
0.
0
area_thresh
:
0.
2
validation_data
:
validation_data
:
input_path
:
'
/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*'
input_path
:
'
/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*'
official/vision/beta/projects/yolo/dataloaders/yolo_input.py
View file @
650b1baa
...
@@ -345,7 +345,7 @@ class Parser(parser.Parser):
...
@@ -345,7 +345,7 @@ class Parser(parser.Parser):
if
not
is_training
:
if
not
is_training
:
output_size
=
tf
.
cast
([
height
,
width
],
tf
.
float32
)
output_size
=
tf
.
cast
([
height
,
width
],
tf
.
float32
)
boxes
=
bbox_ops
.
denormalize_boxes
(
gt_boxes
,
output_size
)
boxes
=
bbox_ops
.
denormalize_boxes
(
gt_boxes
,
output_size
)
gt_area
=
(
boxes
[
2
]
-
boxes
[
0
])
*
(
boxes
[
3
]
-
boxes
[
1
])
gt_area
=
(
boxes
[
...,
2
]
-
boxes
[
...,
0
])
*
(
boxes
[
...,
3
]
-
boxes
[
...,
1
])
# Sets up groundtruth data for evaluation.
# Sets up groundtruth data for evaluation.
groundtruths
=
{
groundtruths
=
{
...
...
official/vision/beta/projects/yolo/dataloaders/yolo_input_test.py
View file @
650b1baa
...
@@ -29,11 +29,13 @@ def test_yolo_input_task(scaled_pipeline = True, batch_size = 1):
...
@@ -29,11 +29,13 @@ def test_yolo_input_task(scaled_pipeline = True, batch_size = 1):
if
not
scaled_pipeline
:
if
not
scaled_pipeline
:
experiment
=
"yolo_darknet"
experiment
=
"yolo_darknet"
config_path
=
[
config_path
=
[
"official/vision/beta/projects/yolo/configs/experiments/yolov4/
tpu/512
.yaml"
]
"official/vision/beta/projects/yolo/configs/experiments/yolov4/
detection/yolov4_512_tpu
.yaml"
]
else
:
else
:
experiment
=
"large_yolo"
experiment
=
"large_yolo"
# config_path = [
# "official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection/yolo_l_p6_1280_tpu.yaml"]
config_path
=
[
config_path
=
[
"official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection/yolo_l_p
6
_1
280
_tpu.yaml"
]
"official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection/yolo_l_p
7
_1
536
_tpu.yaml"
]
config
=
train_utils
.
ParseConfigOptions
(
experiment
=
experiment
,
config
=
train_utils
.
ParseConfigOptions
(
experiment
=
experiment
,
config_file
=
config_path
)
config_file
=
config_path
)
...
@@ -64,7 +66,7 @@ def test_yolo_pipeline_visually(is_training=True, num=30):
...
@@ -64,7 +66,7 @@ def test_yolo_pipeline_visually(is_training=True, num=30):
data
=
data
.
take
(
num
)
data
=
data
.
take
(
num
)
for
l
,
(
image
,
label
)
in
enumerate
(
data
):
for
l
,
(
image
,
label
)
in
enumerate
(
data
):
image
=
tf
.
image
.
draw_bounding_boxes
(
image
=
tf
.
image
.
draw_bounding_boxes
(
image
,
label
[
'bbox'
],
[[
1.0
,
1
.0
,
1.0
]])
image
,
label
[
'bbox'
],
[[
1.0
,
0
.0
,
1.0
]])
gt
=
label
[
'true_conf'
]
gt
=
label
[
'true_conf'
]
...
@@ -72,17 +74,21 @@ def test_yolo_pipeline_visually(is_training=True, num=30):
...
@@ -72,17 +74,21 @@ def test_yolo_pipeline_visually(is_training=True, num=30):
obj4
=
tf
.
clip_by_value
(
gt
[
'4'
][...,
0
],
0.0
,
1.0
)
obj4
=
tf
.
clip_by_value
(
gt
[
'4'
][...,
0
],
0.0
,
1.0
)
obj5
=
tf
.
clip_by_value
(
gt
[
'5'
][...,
0
],
0.0
,
1.0
)
obj5
=
tf
.
clip_by_value
(
gt
[
'5'
][...,
0
],
0.0
,
1.0
)
obj6
=
tf
.
clip_by_value
(
gt
[
'6'
][...,
0
],
0.0
,
1.0
)
obj6
=
tf
.
clip_by_value
(
gt
[
'6'
][...,
0
],
0.0
,
1.0
)
obj7
=
tf
.
clip_by_value
(
gt
[
'7'
][...,
0
],
0.0
,
1.0
)
for
shind
in
range
(
1
):
for
shind
in
range
(
1
):
fig
,
axe
=
plt
.
subplots
(
1
,
5
)
fig
,
axe
=
plt
.
subplots
(
2
,
4
)
image
=
image
[
shind
]
image
=
image
[
shind
]
axe
[
0
].
imshow
(
image
)
axe
[
0
,
0
].
imshow
(
image
)
axe
[
1
].
imshow
(
obj3
[
shind
,
...,
:
3
].
numpy
())
axe
[
0
,
1
].
imshow
(
obj3
[
shind
,
...,
:
3
].
numpy
())
axe
[
2
].
imshow
(
obj4
[
shind
,
...,
:
3
].
numpy
())
axe
[
0
,
2
].
imshow
(
obj4
[
shind
,
...,
:
3
].
numpy
())
axe
[
3
].
imshow
(
obj5
[
shind
,
...,
:
3
].
numpy
())
axe
[
0
,
3
].
imshow
(
obj5
[
shind
,
...,
:
3
].
numpy
())
axe
[
4
].
imshow
(
obj6
[
shind
,
...,
:
3
].
numpy
())
axe
[
1
,
0
].
imshow
(
obj6
[
shind
,
...,
:
3
].
numpy
())
axe
[
1
,
2
].
imshow
(
obj7
[
shind
,
...,
:
3
].
numpy
())
axe
[
1
,
1
].
imshow
(
obj6
[
shind
,
...,
3
].
numpy
())
axe
[
1
,
3
].
imshow
(
obj7
[
shind
,
...,
3
].
numpy
())
fig
.
set_size_inches
(
18.5
,
6.5
,
forward
=
True
)
fig
.
set_size_inches
(
18.5
,
6.5
,
forward
=
True
)
plt
.
tight_layout
()
plt
.
tight_layout
()
...
@@ -93,11 +99,14 @@ class YoloDetectionInputTest(tf.test.TestCase, parameterized.TestCase):
...
@@ -93,11 +99,14 @@ class YoloDetectionInputTest(tf.test.TestCase, parameterized.TestCase):
@
parameterized
.
named_parameters
((
'scaled'
,
True
),
(
'darknet'
,
False
))
@
parameterized
.
named_parameters
((
'scaled'
,
True
),
(
'darknet'
,
False
))
def
test_yolo_input
(
self
,
scaled_pipeline
):
def
test_yolo_input
(
self
,
scaled_pipeline
):
# builds a pipline forom the config and tests the datapipline shapes
# builds a pipline forom the config and tests the datapipline shapes
dataset
,
_
,
params
=
test_yolo_input_task
(
# dataset, _, params = test_yolo_input_task(
# scaled_pipeline=scaled_pipeline,
# batch_size=1)
_
,
dataset
,
params
=
test_yolo_input_task
(
scaled_pipeline
=
scaled_pipeline
,
scaled_pipeline
=
scaled_pipeline
,
batch_size
=
1
)
batch_size
=
1
)
dataset
=
dataset
.
take
(
1
)
dataset
=
dataset
.
take
(
1
00
)
for
image
,
label
in
dataset
:
for
image
,
label
in
dataset
:
self
.
assertAllEqual
(
image
.
shape
,
([
1
]
+
params
.
model
.
input_size
))
self
.
assertAllEqual
(
image
.
shape
,
([
1
]
+
params
.
model
.
input_size
))
...
@@ -106,5 +115,5 @@ class YoloDetectionInputTest(tf.test.TestCase, parameterized.TestCase):
...
@@ -106,5 +115,5 @@ class YoloDetectionInputTest(tf.test.TestCase, parameterized.TestCase):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
# tf.test.main()
tf
.
test
.
main
()
test_yolo_pipeline_visually
(
is_training
=
True
,
num
=
20
)
test_yolo_pipeline_visually
(
is_training
=
False
,
num
=
20
)
\ No newline at end of file
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment