Commit 5e6dfd24 authored by Sai Ganesh Bandiatmakuri's avatar Sai Ganesh Bandiatmakuri Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 341690374
parent 8173df8b
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Resnet50 Keras core benchmark."""
import tempfile
import time
import tensorflow as tf
import tensorflow_datasets as tfds
from official.benchmark import perfzero_benchmark
def _decode_and_center_crop(image_bytes):
"""Crops to center of image with padding then scales image_size."""
shape = tf.image.extract_jpeg_shape(image_bytes)
image_height, image_width, image_size = shape[0], shape[1], 224
padded_center_crop_size = tf.cast(
((image_size / (image_size + 32)) *
tf.cast(tf.minimum(image_height, image_width), tf.float32)),
tf.int32,
)
offset_height = ((image_height - padded_center_crop_size) + 1) // 2
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
crop_window = tf.stack([
offset_height, offset_width, padded_center_crop_size,
padded_center_crop_size
])
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
return tf.image.resize(image, [image_size, image_size], method="bicubic")
def _preprocessing(data):
return (
tf.cast(_decode_and_center_crop(data["image"]), tf.float32),
data["label"],
)
def _run_benchmark():
"""Runs a resnet50 compile/fit() call and returns the wall time."""
tmp_dir = tempfile.mkdtemp()
start_time = time.time()
batch_size = 64
dataset = tfds.load(
"imagenette",
decoders={"image": tfds.decode.SkipDecoding()},
split="train",
)
dataset = (
dataset.cache().repeat(
2
) # Artificially increase time per epoch to make it easier to measure
.map(_preprocessing,
num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(
batch_size).prefetch(1))
with tf.distribute.MirroredStrategy().scope():
model = tf.keras.applications.ResNet50(weights=None)
model.compile(
optimizer=tf.train.experimental.enable_mixed_precision_graph_rewrite(
tf.keras.optimizers.Adam(), loss_scale="dynamic"),
loss="sparse_categorical_crossentropy",
)
tb_cbk = tf.keras.callbacks.TensorBoard(
f"{tmp_dir}/{tf.__version__}", profile_batch=300)
model.fit(dataset, verbose=2, epochs=3, callbacks=[tb_cbk])
end_time = time.time()
return end_time - start_time
class Resnet50KerasCoreBenchmark(perfzero_benchmark.PerfZeroBenchmark):
def benchmark_1_gpu(self):
wall_time = _run_benchmark()
self.report_benchmark(iters=-1, wall_time=wall_time)
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment