Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
5b0ef1fc
Commit
5b0ef1fc
authored
Aug 23, 2019
by
Nimit Nigania
Browse files
Merge branch 'master' into ncf_f16
parents
1cba90f3
bf748370
Changes
92
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
545 additions
and
136 deletions
+545
-136
official/vision/image_classification/resnet_imagenet_main.py
official/vision/image_classification/resnet_imagenet_main.py
+22
-16
official/vision/image_classification/resnet_imagenet_test.py
official/vision/image_classification/resnet_imagenet_test.py
+18
-18
official/vision/image_classification/resnet_model.py
official/vision/image_classification/resnet_model.py
+389
-0
research/lstm_object_detection/export_tflite_lstd_graph.py
research/lstm_object_detection/export_tflite_lstd_graph.py
+10
-6
research/lstm_object_detection/export_tflite_lstd_graph_lib.py
...rch/lstm_object_detection/export_tflite_lstd_graph_lib.py
+22
-24
research/lstm_object_detection/export_tflite_lstd_model.py
research/lstm_object_detection/export_tflite_lstd_model.py
+31
-28
research/lstm_object_detection/g3doc/exporting_models.md
research/lstm_object_detection/g3doc/exporting_models.md
+13
-13
research/lstm_object_detection/test_tflite_model.py
research/lstm_object_detection/test_tflite_model.py
+21
-18
research/lstm_object_detection/tflite/BUILD
research/lstm_object_detection/tflite/BUILD
+9
-2
research/lstm_object_detection/tflite/WORKSPACE
research/lstm_object_detection/tflite/WORKSPACE
+0
-6
research/lstm_object_detection/tflite/mobile_lstd_tflite_client.cc
...lstm_object_detection/tflite/mobile_lstd_tflite_client.cc
+5
-0
research/lstm_object_detection/tflite/mobile_ssd_tflite_client.h
...h/lstm_object_detection/tflite/mobile_ssd_tflite_client.h
+5
-5
No files found.
official/
resnet/keras/keras
_imagenet_main.py
→
official/
vision/image_classification/resnet
_imagenet_main.py
View file @
5b0ef1fc
...
...
@@ -21,17 +21,17 @@ from __future__ import print_function
from
absl
import
app
as
absl_app
from
absl
import
flags
from
absl
import
logging
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
import
tensorflow
as
tf
from
official.resnet.keras
import
imagenet_preprocessing
from
official.resnet.keras
import
keras_common
from
official.resnet.keras
import
resnet_model
from
official.resnet.keras
import
trivial_model
from
official.utils.flags
import
core
as
flags_core
from
official.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
model_helpers
from
official.vision.image_classification
import
common
from
official.vision.image_classification
import
imagenet_preprocessing
from
official.vision.image_classification
import
resnet_model
from
official.benchmark.models
import
trivial_model
LR_SCHEDULE
=
[
# (multiplier, epoch to start) tuples
...
...
@@ -57,7 +57,7 @@ def learning_rate_schedule(current_epoch,
Returns:
Adjusted learning rate.
"""
initial_lr
=
keras_
common
.
BASE_LEARNING_RATE
*
batch_size
/
256
initial_lr
=
common
.
BASE_LEARNING_RATE
*
batch_size
/
256
epoch
=
current_epoch
+
float
(
current_batch
)
/
batches_per_epoch
warmup_lr_multiplier
,
warmup_end_epoch
=
LR_SCHEDULE
[
0
]
if
epoch
<
warmup_end_epoch
:
...
...
@@ -89,10 +89,10 @@ def run(flags_obj):
# Execute flag override logic for better model performance
if
flags_obj
.
tf_gpu_thread_mode
:
keras_
common
.
set_gpu_thread_mode_and_count
(
flags_obj
)
common
.
set_gpu_thread_mode_and_count
(
flags_obj
)
if
flags_obj
.
data_delay_prefetch
:
keras_
common
.
data_delay_prefetch
()
keras_
common
.
set_cudnn_batchnorm_mode
()
common
.
data_delay_prefetch
()
common
.
set_cudnn_batchnorm_mode
()
dtype
=
flags_core
.
get_tf_dtype
(
flags_obj
)
if
dtype
==
'float16'
:
...
...
@@ -105,10 +105,14 @@ def run(flags_obj):
if
tf
.
test
.
is_built_with_cuda
()
else
'channels_last'
)
tf
.
keras
.
backend
.
set_image_data_format
(
data_format
)
# Configures cluster spec for distribution strategy.
num_workers
=
distribution_utils
.
configure_cluster
(
flags_obj
.
worker_hosts
,
flags_obj
.
task_index
)
strategy
=
distribution_utils
.
get_distribution_strategy
(
distribution_strategy
=
flags_obj
.
distribution_strategy
,
num_gpus
=
flags_obj
.
num_gpus
,
num_workers
=
distribution_utils
.
configure_cluster
()
,
num_workers
=
num_workers
,
all_reduce_alg
=
flags_obj
.
all_reduce_alg
,
num_packs
=
flags_obj
.
num_packs
)
...
...
@@ -125,7 +129,7 @@ def run(flags_obj):
# pylint: disable=protected-access
if
flags_obj
.
use_synthetic_data
:
distribution_utils
.
set_up_synthetic_data
()
input_fn
=
keras_
common
.
get_synth_input_fn
(
input_fn
=
common
.
get_synth_input_fn
(
height
=
imagenet_preprocessing
.
DEFAULT_IMAGE_SIZE
,
width
=
imagenet_preprocessing
.
DEFAULT_IMAGE_SIZE
,
num_channels
=
imagenet_preprocessing
.
NUM_CHANNELS
,
...
...
@@ -165,7 +169,7 @@ def run(flags_obj):
lr_schedule
=
0.1
if
flags_obj
.
use_tensor_lr
:
lr_schedule
=
keras_
common
.
PiecewiseConstantDecayWithWarmup
(
lr_schedule
=
common
.
PiecewiseConstantDecayWithWarmup
(
batch_size
=
flags_obj
.
batch_size
,
epoch_size
=
imagenet_preprocessing
.
NUM_IMAGES
[
'train'
],
warmup_epochs
=
LR_SCHEDULE
[
0
][
1
],
...
...
@@ -174,7 +178,7 @@ def run(flags_obj):
compute_lr_on_cpu
=
True
)
with
strategy_scope
:
optimizer
=
keras_
common
.
get_optimizer
(
lr_schedule
)
optimizer
=
common
.
get_optimizer
(
lr_schedule
)
if
dtype
==
'float16'
:
# TODO(reedwm): Remove manually wrapping optimizer once mixed precision
# can be enabled with a single line of code.
...
...
@@ -182,6 +186,7 @@ def run(flags_obj):
optimizer
,
loss_scale
=
flags_core
.
get_loss_scale
(
flags_obj
,
default_for_fp16
=
128
))
# TODO(hongkuny): Remove trivial model usage and move it to benchmark.
if
flags_obj
.
use_trivial_model
:
model
=
trivial_model
.
trivial_model
(
imagenet_preprocessing
.
NUM_CLASSES
,
dtype
)
...
...
@@ -207,7 +212,7 @@ def run(flags_obj):
if
flags_obj
.
report_accuracy_metrics
else
None
),
run_eagerly
=
flags_obj
.
run_eagerly
)
callbacks
=
keras_
common
.
get_callbacks
(
callbacks
=
common
.
get_callbacks
(
learning_rate_schedule
,
imagenet_preprocessing
.
NUM_IMAGES
[
'train'
])
train_steps
=
(
...
...
@@ -257,13 +262,14 @@ def run(flags_obj):
if
not
strategy
and
flags_obj
.
explicit_gpu_placement
:
no_dist_strat_device
.
__exit__
()
stats
=
keras_
common
.
build_stats
(
history
,
eval_output
,
callbacks
)
stats
=
common
.
build_stats
(
history
,
eval_output
,
callbacks
)
return
stats
def
define_imagenet_keras_flags
():
keras_
common
.
define_keras_flags
()
common
.
define_keras_flags
()
flags_core
.
set_defaults
(
train_epochs
=
90
)
flags
.
adopt_module_key_flags
(
common
)
def
main
(
_
):
...
...
official/
resnet/keras/keras
_imagenet_test.py
→
official/
vision/image_classification/resnet
_imagenet_test.py
View file @
5b0ef1fc
...
...
@@ -18,16 +18,16 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
tempfile
import
mkdtemp
import
tempfile
import
tensorflow
as
tf
from
official.resnet.keras
import
imagenet_preprocessing
from
official.resnet.keras
import
keras_imagenet_main
from
official.utils.misc
import
keras_utils
from
official.utils.testing
import
integration
# pylint: disable=ungrouped-imports
from
tensorflow.python.eager
import
context
from
tensorflow.python.platform
import
googletest
from
official.utils.misc
import
keras_utils
from
official.utils.testing
import
integration
from
official.vision.image_classification
import
imagenet_preprocessing
from
official.vision.image_classification
import
resnet_imagenet_main
class
KerasImagenetTest
(
googletest
.
TestCase
):
...
...
@@ -42,13 +42,13 @@ class KerasImagenetTest(googletest.TestCase):
def
get_temp_dir
(
self
):
if
not
self
.
_tempdir
:
self
.
_tempdir
=
mkdtemp
(
dir
=
googletest
.
GetTempDir
())
self
.
_tempdir
=
tempfile
.
mkdtemp
(
dir
=
googletest
.
GetTempDir
())
return
self
.
_tempdir
@
classmethod
def
setUpClass
(
cls
):
# pylint: disable=invalid-name
super
(
KerasImagenetTest
,
cls
).
setUpClass
()
keras
_imagenet_main
.
define_imagenet_keras_flags
()
resnet
_imagenet_main
.
define_imagenet_keras_flags
()
def
setUp
(
self
):
super
(
KerasImagenetTest
,
self
).
setUp
()
...
...
@@ -71,7 +71,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -87,7 +87,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -111,7 +111,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -133,7 +133,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -156,7 +156,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -180,7 +180,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -204,7 +204,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -229,7 +229,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -250,7 +250,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
@@ -272,7 +272,7 @@ class KerasImagenetTest(googletest.TestCase):
extra_flags
=
extra_flags
+
self
.
_extra_flags
integration
.
run_synthetic
(
main
=
keras
_imagenet_main
.
run
,
main
=
resnet
_imagenet_main
.
run
,
tmp_root
=
self
.
get_temp_dir
(),
extra_flags
=
extra_flags
)
...
...
official/
resnet/keras
/resnet_model.py
→
official/
vision/image_classification
/resnet_model.py
View file @
5b0ef1fc
...
...
@@ -28,7 +28,7 @@ from __future__ import division
from
__future__
import
print_function
from
tensorflow.python.keras
import
backend
from
tensorflow.python.keras
import
initializers
from
tensorflow.python.keras
import
initializers
from
tensorflow.python.keras
import
layers
from
tensorflow.python.keras
import
models
from
tensorflow.python.keras
import
regularizers
...
...
@@ -39,7 +39,16 @@ BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON
=
1e-5
def
identity_block
(
input_tensor
,
kernel_size
,
filters
,
stage
,
block
):
def
_gen_l2_regularizer
(
use_l2_regularizer
=
True
):
return
regularizers
.
l2
(
L2_WEIGHT_DECAY
)
if
use_l2_regularizer
else
None
def
identity_block
(
input_tensor
,
kernel_size
,
filters
,
stage
,
block
,
use_l2_regularizer
=
True
):
"""The identity block is the block that has no conv layer at shortcut.
Args:
...
...
@@ -48,6 +57,7 @@ def identity_block(input_tensor, kernel_size, filters, stage, block):
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
Returns:
Output tensor for the block.
...
...
@@ -60,35 +70,51 @@ def identity_block(input_tensor, kernel_size, filters, stage, block):
conv_name_base
=
'res'
+
str
(
stage
)
+
block
+
'_branch'
bn_name_base
=
'bn'
+
str
(
stage
)
+
block
+
'_branch'
x
=
layers
.
Conv2D
(
filters1
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'2a'
)(
input_tensor
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2a'
)(
x
)
x
=
layers
.
Conv2D
(
filters1
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'2a'
)(
input_tensor
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2a'
)(
x
)
x
=
layers
.
Activation
(
'relu'
)(
x
)
x
=
layers
.
Conv2D
(
filters2
,
kernel_size
,
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'2b'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2b'
)(
x
)
x
=
layers
.
Conv2D
(
filters2
,
kernel_size
,
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'2b'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2b'
)(
x
)
x
=
layers
.
Activation
(
'relu'
)(
x
)
x
=
layers
.
Conv2D
(
filters3
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'2c'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2c'
)(
x
)
x
=
layers
.
Conv2D
(
filters3
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'2c'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2c'
)(
x
)
x
=
layers
.
add
([
x
,
input_tensor
])
x
=
layers
.
Activation
(
'relu'
)(
x
)
...
...
@@ -100,7 +126,8 @@ def conv_block(input_tensor,
filters
,
stage
,
block
,
strides
=
(
2
,
2
)):
strides
=
(
2
,
2
),
use_l2_regularizer
=
True
):
"""A block that has a conv layer at shortcut.
Note that from stage 3,
...
...
@@ -114,6 +141,7 @@ def conv_block(input_tensor,
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
strides: Strides for the second conv layer in the block.
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
Returns:
Output tensor for the block.
...
...
@@ -126,114 +154,231 @@ def conv_block(input_tensor,
conv_name_base
=
'res'
+
str
(
stage
)
+
block
+
'_branch'
bn_name_base
=
'bn'
+
str
(
stage
)
+
block
+
'_branch'
x
=
layers
.
Conv2D
(
filters1
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'2a'
)(
input_tensor
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2a'
)(
x
)
x
=
layers
.
Conv2D
(
filters1
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'2a'
)(
input_tensor
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2a'
)(
x
)
x
=
layers
.
Activation
(
'relu'
)(
x
)
x
=
layers
.
Conv2D
(
filters2
,
kernel_size
,
strides
=
strides
,
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'2b'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2b'
)(
x
)
x
=
layers
.
Conv2D
(
filters2
,
kernel_size
,
strides
=
strides
,
padding
=
'same'
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'2b'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2b'
)(
x
)
x
=
layers
.
Activation
(
'relu'
)(
x
)
x
=
layers
.
Conv2D
(
filters3
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'2c'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2c'
)(
x
)
shortcut
=
layers
.
Conv2D
(
filters3
,
(
1
,
1
),
strides
=
strides
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
conv_name_base
+
'1'
)(
input_tensor
)
shortcut
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'1'
)(
shortcut
)
x
=
layers
.
Conv2D
(
filters3
,
(
1
,
1
),
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'2c'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'2c'
)(
x
)
shortcut
=
layers
.
Conv2D
(
filters3
,
(
1
,
1
),
strides
=
strides
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
conv_name_base
+
'1'
)(
input_tensor
)
shortcut
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
bn_name_base
+
'1'
)(
shortcut
)
x
=
layers
.
add
([
x
,
shortcut
])
x
=
layers
.
Activation
(
'relu'
)(
x
)
return
x
def
resnet50
(
num_classes
,
dtype
=
'float32'
,
batch_size
=
None
):
def
resnet50
(
num_classes
,
dtype
=
'float32'
,
batch_size
=
None
,
use_l2_regularizer
=
True
):
"""Instantiates the ResNet50 architecture.
Args:
num_classes: `int` number of classes for image classification.
dtype: dtype to use float32 or float16 are most common.
batch_size: Size of the batches for each step.
use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer.
Returns:
A Keras model instance.
"""
input_shape
=
(
224
,
224
,
3
)
img_input
=
layers
.
Input
(
shape
=
input_shape
,
dtype
=
dtype
,
batch_size
=
batch_size
)
img_input
=
layers
.
Input
(
shape
=
input_shape
,
dtype
=
dtype
,
batch_size
=
batch_size
)
if
backend
.
image_data_format
()
==
'channels_first'
:
x
=
layers
.
Lambda
(
lambda
x
:
backend
.
permute_dimensions
(
x
,
(
0
,
3
,
1
,
2
)),
name
=
'transpose'
)(
img_input
)
x
=
layers
.
Lambda
(
lambda
x
:
backend
.
permute_dimensions
(
x
,
(
0
,
3
,
1
,
2
)),
name
=
'transpose'
)(
img_input
)
bn_axis
=
1
else
:
# channels_last
x
=
img_input
bn_axis
=
3
x
=
layers
.
ZeroPadding2D
(
padding
=
(
3
,
3
),
name
=
'conv1_pad'
)(
x
)
x
=
layers
.
Conv2D
(
64
,
(
7
,
7
),
strides
=
(
2
,
2
),
padding
=
'valid'
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
'conv1'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
'bn_conv1'
)(
x
)
x
=
layers
.
Conv2D
(
64
,
(
7
,
7
),
strides
=
(
2
,
2
),
padding
=
'valid'
,
use_bias
=
False
,
kernel_initializer
=
'he_normal'
,
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
'conv1'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
momentum
=
BATCH_NORM_DECAY
,
epsilon
=
BATCH_NORM_EPSILON
,
name
=
'bn_conv1'
)(
x
)
x
=
layers
.
Activation
(
'relu'
)(
x
)
x
=
layers
.
MaxPooling2D
((
3
,
3
),
strides
=
(
2
,
2
),
padding
=
'same'
)(
x
)
x
=
conv_block
(
x
,
3
,
[
64
,
64
,
256
],
stage
=
2
,
block
=
'a'
,
strides
=
(
1
,
1
))
x
=
identity_block
(
x
,
3
,
[
64
,
64
,
256
],
stage
=
2
,
block
=
'b'
)
x
=
identity_block
(
x
,
3
,
[
64
,
64
,
256
],
stage
=
2
,
block
=
'c'
)
x
=
conv_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'a'
)
x
=
identity_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'b'
)
x
=
identity_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'c'
)
x
=
identity_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'd'
)
x
=
conv_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'a'
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'b'
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'c'
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'd'
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'e'
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'f'
)
x
=
conv_block
(
x
,
3
,
[
512
,
512
,
2048
],
stage
=
5
,
block
=
'a'
)
x
=
identity_block
(
x
,
3
,
[
512
,
512
,
2048
],
stage
=
5
,
block
=
'b'
)
x
=
identity_block
(
x
,
3
,
[
512
,
512
,
2048
],
stage
=
5
,
block
=
'c'
)
x
=
conv_block
(
x
,
3
,
[
64
,
64
,
256
],
stage
=
2
,
block
=
'a'
,
strides
=
(
1
,
1
),
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
64
,
64
,
256
],
stage
=
2
,
block
=
'b'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
64
,
64
,
256
],
stage
=
2
,
block
=
'c'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
conv_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'a'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'b'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'c'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
128
,
128
,
512
],
stage
=
3
,
block
=
'd'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
conv_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'a'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'b'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'c'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'd'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'e'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
256
,
256
,
1024
],
stage
=
4
,
block
=
'f'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
conv_block
(
x
,
3
,
[
512
,
512
,
2048
],
stage
=
5
,
block
=
'a'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
512
,
512
,
2048
],
stage
=
5
,
block
=
'b'
,
use_l2_regularizer
=
use_l2_regularizer
)
x
=
identity_block
(
x
,
3
,
[
512
,
512
,
2048
],
stage
=
5
,
block
=
'c'
,
use_l2_regularizer
=
use_l2_regularizer
)
rm_axes
=
[
1
,
2
]
if
backend
.
image_data_format
()
==
'channels_last'
else
[
2
,
3
]
x
=
layers
.
Lambda
(
lambda
x
:
backend
.
mean
(
x
,
rm_axes
),
name
=
'reduce_mean'
)(
x
)
x
=
layers
.
Dense
(
num_classes
,
kernel_initializer
=
initializers
.
RandomNormal
(
stddev
=
0.01
),
kernel_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
bias_regularizer
=
regularizers
.
l2
(
L2_WEIGHT_DECAY
),
name
=
'fc1000'
)(
x
)
kernel_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
bias_regularizer
=
_gen_l2_regularizer
(
use_l2_regularizer
),
name
=
'fc1000'
)(
x
)
# TODO(reedwm): Remove manual casts once mixed precision can be enabled with a
# single line of code.
...
...
research/lstm_object_detection/export_tflite_lstd_graph.py
View file @
5b0ef1fc
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r
"""Exports an LSTM detection model to use with tf-lite.
Outputs file:
...
...
@@ -86,8 +85,9 @@ python lstm_object_detection/export_tflite_lstd_graph.py \
"""
import
tensorflow
as
tf
from
lstm_object_detection.utils
import
config_util
from
lstm_object_detection
import
export_tflite_lstd_graph_lib
from
lstm_object_detection.utils
import
config_util
flags
=
tf
.
app
.
flags
flags
.
DEFINE_string
(
'output_directory'
,
None
,
'Path to write outputs.'
)
...
...
@@ -122,12 +122,16 @@ def main(argv):
flags
.
mark_flag_as_required
(
'trained_checkpoint_prefix'
)
pipeline_config
=
config_util
.
get_configs_from_pipeline_file
(
FLAGS
.
pipeline_config_path
)
FLAGS
.
pipeline_config_path
)
export_tflite_lstd_graph_lib
.
export_tflite_graph
(
pipeline_config
,
FLAGS
.
trained_checkpoint_prefix
,
FLAGS
.
output_directory
,
FLAGS
.
add_postprocessing_op
,
FLAGS
.
max_detections
,
FLAGS
.
max_classes_per_detection
,
use_regular_nms
=
FLAGS
.
use_regular_nms
)
pipeline_config
,
FLAGS
.
trained_checkpoint_prefix
,
FLAGS
.
output_directory
,
FLAGS
.
add_postprocessing_op
,
FLAGS
.
max_detections
,
FLAGS
.
max_classes_per_detection
,
use_regular_nms
=
FLAGS
.
use_regular_nms
)
if
__name__
==
'__main__'
:
...
...
research/lstm_object_detection/export_tflite_lstd_graph_lib.py
View file @
5b0ef1fc
...
...
@@ -12,26 +12,26 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r
"""Exports detection models to use with tf-lite.
See export_tflite_lstd_graph.py for usage.
"""
import
os
import
tempfile
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.core.framework
import
attr_value_pb2
from
tensorflow.core.framework
import
types_pb2
from
tensorflow.core.protobuf
import
saver_pb2
from
tensorflow.tools.graph_transforms
import
TransformGraph
from
lstm_object_detection
import
model_builder
from
object_detection
import
exporter
from
object_detection.builders
import
graph_rewriter_builder
from
object_detection.builders
import
post_processing_builder
from
object_detection.core
import
box_list
from
lstm_object_detection
import
model_builder
_DEFAULT_NUM_CHANNELS
=
3
_DEFAULT_NUM_COORD_BOX
=
4
...
...
@@ -84,11 +84,11 @@ def append_postprocessing_op(frozen_graph_def,
num_classes: number of classes in SSD detector
scale_values: scale values is a dict with following key-value pairs
{y_scale: 10, x_scale: 10, h_scale: 5, w_scale: 5} that are used in decode
centersize boxes
centersize boxes
detections_per_class: In regular NonMaxSuppression, number of anchors used
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
Returns:
transformed_graph_def: Frozen GraphDef with postprocessing custom op
...
...
@@ -165,9 +165,9 @@ def export_tflite_graph(pipeline_config,
is written to output_dir/tflite_graph.pb.
Args:
pipeline_config: Dictionary of configuration objects. Keys are `model`,
`train_config`,
`train_input_config`, `eval_config`, `eval_input_config`,
`lstm_model`.
Value are the corresponding config objects.
pipeline_config: Dictionary of configuration objects. Keys are `model`,
`train_config`,
`train_input_config`, `eval_config`, `eval_input_config`,
`lstm_model`.
Value are the corresponding config objects.
trained_checkpoint_prefix: a file prefix for the checkpoint containing the
trained parameters of the SSD model.
output_dir: A directory to write the tflite graph and anchor file to.
...
...
@@ -176,9 +176,9 @@ def export_tflite_graph(pipeline_config,
max_detections: Maximum number of detections (boxes) to show
max_classes_per_detection: Number of classes to display per detection
detections_per_class: In regular NonMaxSuppression, number of anchors used
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
binary_graph_name: Name of the exported graph file in binary format.
txt_graph_name: Name of the exported graph file in text format.
...
...
@@ -197,12 +197,10 @@ def export_tflite_graph(pipeline_config,
num_classes
=
model_config
.
ssd
.
num_classes
nms_score_threshold
=
{
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
score_threshold
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
score_threshold
}
nms_iou_threshold
=
{
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
iou_threshold
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
iou_threshold
}
scale_values
=
{}
scale_values
[
'y_scale'
]
=
{
...
...
@@ -226,7 +224,7 @@ def export_tflite_graph(pipeline_config,
width
=
image_resizer_config
.
fixed_shape_resizer
.
width
if
image_resizer_config
.
fixed_shape_resizer
.
convert_to_grayscale
:
num_channels
=
1
#TODO(richardbrks) figure out how to make with a None defined batch size
shape
=
[
lstm_config
.
eval_unroll_length
,
height
,
width
,
num_channels
]
else
:
raise
ValueError
(
...
...
@@ -235,14 +233,14 @@ def export_tflite_graph(pipeline_config,
image_resizer_config
.
WhichOneof
(
'image_resizer_oneof'
)))
video_tensor
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
shape
,
name
=
'input_video_tensor'
)
tf
.
float32
,
shape
=
shape
,
name
=
'input_video_tensor'
)
detection_model
=
model_builder
.
build
(
model_config
,
lstm_config
,
is_training
=
False
)
detection_model
=
model_builder
.
build
(
model_config
,
lstm_config
,
is_training
=
False
)
preprocessed_video
,
true_image_shapes
=
detection_model
.
preprocess
(
tf
.
to_float
(
video_tensor
))
tf
.
to_float
(
video_tensor
))
predicted_tensors
=
detection_model
.
predict
(
preprocessed_video
,
true_image_shapes
)
true_image_shapes
)
# predicted_tensors = detection_model.postprocess(predicted_tensors,
# true_image_shapes)
# The score conversion occurs before the post-processing custom op
...
...
@@ -311,7 +309,7 @@ def export_tflite_graph(pipeline_config,
initializer_nodes
=
''
)
# Add new operation to do post processing in a custom op (TF Lite only)
#(richardbrks) Do use this or detection_model.postprocess?
if
add_postprocessing_op
:
transformed_graph_def
=
append_postprocessing_op
(
frozen_graph_def
,
max_detections
,
max_classes_per_detection
,
...
...
research/lstm_object_detection/export_tflite_lstd_model.py
View file @
5b0ef1fc
...
...
@@ -13,6 +13,8 @@
# limitations under the License.
# ==============================================================================
"""Export a LSTD model in tflite format."""
import
os
from
absl
import
flags
import
tensorflow
as
tf
...
...
@@ -29,34 +31,35 @@ FLAGS = flags.FLAGS
def
main
(
_
):
flags
.
mark_flag_as_required
(
'export_path'
)
flags
.
mark_flag_as_required
(
'frozen_graph_path'
)
flags
.
mark_flag_as_required
(
'pipeline_config_path'
)
configs
=
config_util
.
get_configs_from_pipeline_file
(
FLAGS
.
pipeline_config_path
)
lstm_config
=
configs
[
'lstm_model'
]
input_arrays
=
[
'input_video_tensor'
]
output_arrays
=
[
'TFLite_Detection_PostProcess'
,
'TFLite_Detection_PostProcess:1'
,
'TFLite_Detection_PostProcess:2'
,
'TFLite_Detection_PostProcess:3'
,
]
input_shapes
=
{
'input_video_tensor'
:
[
lstm_config
.
eval_unroll_length
,
320
,
320
,
3
],
}
converter
=
tf
.
lite
.
TFLiteConverter
.
from_frozen_graph
(
FLAGS
.
frozen_graph_path
,
input_arrays
,
output_arrays
,
input_shapes
=
input_shapes
)
converter
.
allow_custom_ops
=
True
tflite_model
=
converter
.
convert
()
ofilename
=
os
.
path
.
join
(
FLAGS
.
export_path
)
open
(
ofilename
,
"wb"
).
write
(
tflite_model
)
flags
.
mark_flag_as_required
(
'export_path'
)
flags
.
mark_flag_as_required
(
'frozen_graph_path'
)
flags
.
mark_flag_as_required
(
'pipeline_config_path'
)
configs
=
config_util
.
get_configs_from_pipeline_file
(
FLAGS
.
pipeline_config_path
)
lstm_config
=
configs
[
'lstm_model'
]
input_arrays
=
[
'input_video_tensor'
]
output_arrays
=
[
'TFLite_Detection_PostProcess'
,
'TFLite_Detection_PostProcess:1'
,
'TFLite_Detection_PostProcess:2'
,
'TFLite_Detection_PostProcess:3'
,
]
input_shapes
=
{
'input_video_tensor'
:
[
lstm_config
.
eval_unroll_length
,
320
,
320
,
3
],
}
converter
=
tf
.
lite
.
TFLiteConverter
.
from_frozen_graph
(
FLAGS
.
frozen_graph_path
,
input_arrays
,
output_arrays
,
input_shapes
=
input_shapes
)
converter
.
allow_custom_ops
=
True
tflite_model
=
converter
.
convert
()
ofilename
=
os
.
path
.
join
(
FLAGS
.
export_path
)
open
(
ofilename
,
'wb'
).
write
(
tflite_model
)
if
__name__
==
'__main__'
:
tf
.
app
.
run
()
tf
.
app
.
run
()
research/lstm_object_detection/g3doc/exporting_models.md
View file @
5b0ef1fc
This diff is collapsed.
Click to expand it.
research/lstm_object_detection/test_tflite_model.py
View file @
5b0ef1fc
This diff is collapsed.
Click to expand it.
research/lstm_object_detection/tflite/BUILD
View file @
5b0ef1fc
...
...
@@ -59,12 +59,19 @@ cc_library(
name
=
"mobile_lstd_tflite_client"
,
srcs
=
[
"mobile_lstd_tflite_client.cc"
],
hdrs
=
[
"mobile_lstd_tflite_client.h"
],
defines
=
select
({
"//conditions:default"
:
[],
"enable_edgetpu"
:
[
"ENABLE_EDGETPU"
],
}),
deps
=
[
":mobile_ssd_client"
,
":mobile_ssd_tflite_client"
,
"@com_google_absl//absl/base:core_headers"
,
"@com_google_glog//:glog"
,
"@com_google_absl//absl/base:core_headers"
,
"@org_tensorflow//tensorflow/lite/kernels:builtin_ops"
,
],
]
+
select
({
"//conditions:default"
:
[],
"enable_edgetpu"
:
[
"@libedgetpu//libedgetpu:header"
],
}),
alwayslink
=
1
,
)
research/lstm_object_detection/tflite/WORKSPACE
View file @
5b0ef1fc
This diff is collapsed.
Click to expand it.
research/lstm_object_detection/tflite/mobile_lstd_tflite_client.cc
View file @
5b0ef1fc
This diff is collapsed.
Click to expand it.
research/lstm_object_detection/tflite/mobile_ssd_tflite_client.h
View file @
5b0ef1fc
This diff is collapsed.
Click to expand it.
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment