Unverified Commit 55bf4b80 authored by Hongkun Yu's avatar Hongkun Yu Committed by GitHub
Browse files

Merge branch 'master' into absl

parents 15e0057f 2416dd9c
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-threaded word2vec mini-batched skip-gram model.
Trains the model described in:
(Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space
ICLR 2013.
http://arxiv.org/abs/1301.3781
This model does traditional minibatching.
The key ops used are:
* placeholder for feeding in tensors for each example.
* embedding_lookup for fetching rows from the embedding matrix.
* sigmoid_cross_entropy_with_logits to calculate the loss.
* GradientDescentOptimizer for optimizing the loss.
* skipgram custom op that does input processing.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import threading
import time
from six.moves import xrange # pylint: disable=redefined-builtin
import numpy as np
import tensorflow as tf
word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
flags = tf.app.flags
flags.DEFINE_string("save_path", None, "Directory to write the model and "
"training summaries.")
flags.DEFINE_string("train_data", None, "Training text file. "
"E.g., unzipped file http://mattmahoney.net/dc/text8.zip.")
flags.DEFINE_string(
"eval_data", None, "File consisting of analogies of four tokens."
"embedding 2 - embedding 1 + embedding 3 should be close "
"to embedding 4."
"See README.md for how to get 'questions-words.txt'.")
flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.")
flags.DEFINE_integer(
"epochs_to_train", 15,
"Number of epochs to train. Each epoch processes the training data once "
"completely.")
flags.DEFINE_float("learning_rate", 0.2, "Initial learning rate.")
flags.DEFINE_integer("num_neg_samples", 100,
"Negative samples per training example.")
flags.DEFINE_integer("batch_size", 16,
"Number of training examples processed per step "
"(size of a minibatch).")
flags.DEFINE_integer("concurrent_steps", 12,
"The number of concurrent training steps.")
flags.DEFINE_integer("window_size", 5,
"The number of words to predict to the left and right "
"of the target word.")
flags.DEFINE_integer("min_count", 5,
"The minimum number of word occurrences for it to be "
"included in the vocabulary.")
flags.DEFINE_float("subsample", 1e-3,
"Subsample threshold for word occurrence. Words that appear "
"with higher frequency will be randomly down-sampled. Set "
"to 0 to disable.")
flags.DEFINE_boolean(
"interactive", False,
"If true, enters an IPython interactive session to play with the trained "
"model. E.g., try model.analogy(b'france', b'paris', b'russia') and "
"model.nearby([b'proton', b'elephant', b'maxwell'])")
flags.DEFINE_integer("statistics_interval", 5,
"Print statistics every n seconds.")
flags.DEFINE_integer("summary_interval", 5,
"Save training summary to file every n seconds (rounded "
"up to statistics interval).")
flags.DEFINE_integer("checkpoint_interval", 600,
"Checkpoint the model (i.e. save the parameters) every n "
"seconds (rounded up to statistics interval).")
FLAGS = flags.FLAGS
class Options(object):
"""Options used by our word2vec model."""
def __init__(self):
# Model options.
# Embedding dimension.
self.emb_dim = FLAGS.embedding_size
# Training options.
# The training text file.
self.train_data = FLAGS.train_data
# Number of negative samples per example.
self.num_samples = FLAGS.num_neg_samples
# The initial learning rate.
self.learning_rate = FLAGS.learning_rate
# Number of epochs to train. After these many epochs, the learning
# rate decays linearly to zero and the training stops.
self.epochs_to_train = FLAGS.epochs_to_train
# Concurrent training steps.
self.concurrent_steps = FLAGS.concurrent_steps
# Number of examples for one training step.
self.batch_size = FLAGS.batch_size
# The number of words to predict to the left and right of the target word.
self.window_size = FLAGS.window_size
# The minimum number of word occurrences for it to be included in the
# vocabulary.
self.min_count = FLAGS.min_count
# Subsampling threshold for word occurrence.
self.subsample = FLAGS.subsample
# How often to print statistics.
self.statistics_interval = FLAGS.statistics_interval
# How often to write to the summary file (rounds up to the nearest
# statistics_interval).
self.summary_interval = FLAGS.summary_interval
# How often to write checkpoints (rounds up to the nearest statistics
# interval).
self.checkpoint_interval = FLAGS.checkpoint_interval
# Where to write out summaries.
self.save_path = FLAGS.save_path
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
# Eval options.
# The text file for eval.
self.eval_data = FLAGS.eval_data
class Word2Vec(object):
"""Word2Vec model (Skipgram)."""
def __init__(self, options, session):
self._options = options
self._session = session
self._word2id = {}
self._id2word = []
self.build_graph()
self.build_eval_graph()
self.save_vocab()
def read_analogies(self):
"""Reads through the analogy question file.
Returns:
questions: a [n, 4] numpy array containing the analogy question's
word ids.
questions_skipped: questions skipped due to unknown words.
"""
questions = []
questions_skipped = 0
with open(self._options.eval_data, "rb") as analogy_f:
for line in analogy_f:
if line.startswith(b":"): # Skip comments.
continue
words = line.strip().lower().split(b" ")
ids = [self._word2id.get(w.strip()) for w in words]
if None in ids or len(ids) != 4:
questions_skipped += 1
else:
questions.append(np.array(ids))
print("Eval analogy file: ", self._options.eval_data)
print("Questions: ", len(questions))
print("Skipped: ", questions_skipped)
self._analogy_questions = np.array(questions, dtype=np.int32)
def forward(self, examples, labels):
"""Build the graph for the forward pass."""
opts = self._options
# Declare all variables we need.
# Embedding: [vocab_size, emb_dim]
init_width = 0.5 / opts.emb_dim
emb = tf.Variable(
tf.random_uniform(
[opts.vocab_size, opts.emb_dim], -init_width, init_width),
name="emb")
self._emb = emb
# Softmax weight: [vocab_size, emb_dim]. Transposed.
sm_w_t = tf.Variable(
tf.zeros([opts.vocab_size, opts.emb_dim]),
name="sm_w_t")
# Softmax bias: [vocab_size].
sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name="sm_b")
# Global step: scalar, i.e., shape [].
self.global_step = tf.Variable(0, name="global_step")
# Nodes to compute the nce loss w/ candidate sampling.
labels_matrix = tf.reshape(
tf.cast(labels,
dtype=tf.int64),
[opts.batch_size, 1])
# Negative sampling.
sampled_ids, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
true_classes=labels_matrix,
num_true=1,
num_sampled=opts.num_samples,
unique=True,
range_max=opts.vocab_size,
distortion=0.75,
unigrams=opts.vocab_counts.tolist()))
# Embeddings for examples: [batch_size, emb_dim]
example_emb = tf.nn.embedding_lookup(emb, examples)
# Weights for labels: [batch_size, emb_dim]
true_w = tf.nn.embedding_lookup(sm_w_t, labels)
# Biases for labels: [batch_size, 1]
true_b = tf.nn.embedding_lookup(sm_b, labels)
# Weights for sampled ids: [num_sampled, emb_dim]
sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids)
# Biases for sampled ids: [num_sampled, 1]
sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids)
# True logits: [batch_size, 1]
true_logits = tf.reduce_sum(tf.multiply(example_emb, true_w), 1) + true_b
# Sampled logits: [batch_size, num_sampled]
# We replicate sampled noise labels for all examples in the batch
# using the matmul.
sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples])
sampled_logits = tf.matmul(example_emb,
sampled_w,
transpose_b=True) + sampled_b_vec
return true_logits, sampled_logits
def nce_loss(self, true_logits, sampled_logits):
"""Build the graph for the NCE loss."""
# cross-entropy(logits, labels)
opts = self._options
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(true_logits), logits=true_logits)
sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.zeros_like(sampled_logits), logits=sampled_logits)
# NCE-loss is the sum of the true and noise (sampled words)
# contributions, averaged over the batch.
nce_loss_tensor = (tf.reduce_sum(true_xent) +
tf.reduce_sum(sampled_xent)) / opts.batch_size
return nce_loss_tensor
def optimize(self, loss):
"""Build the graph to optimize the loss function."""
# Optimizer nodes.
# Linear learning rate decay.
opts = self._options
words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
lr = opts.learning_rate * tf.maximum(
0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train)
self._lr = lr
optimizer = tf.train.GradientDescentOptimizer(lr)
train = optimizer.minimize(loss,
global_step=self.global_step,
gate_gradients=optimizer.GATE_NONE)
self._train = train
def build_eval_graph(self):
"""Build the eval graph."""
# Eval graph
# Each analogy task is to predict the 4th word (d) given three
# words: a, b, c. E.g., a=italy, b=rome, c=france, we should
# predict d=paris.
# The eval feeds three vectors of word ids for a, b, c, each of
# which is of size N, where N is the number of analogies we want to
# evaluate in one batch.
analogy_a = tf.placeholder(dtype=tf.int32) # [N]
analogy_b = tf.placeholder(dtype=tf.int32) # [N]
analogy_c = tf.placeholder(dtype=tf.int32) # [N]
# Normalized word embeddings of shape [vocab_size, emb_dim].
nemb = tf.nn.l2_normalize(self._emb, 1)
# Each row of a_emb, b_emb, c_emb is a word's embedding vector.
# They all have the shape [N, emb_dim]
a_emb = tf.gather(nemb, analogy_a) # a's embs
b_emb = tf.gather(nemb, analogy_b) # b's embs
c_emb = tf.gather(nemb, analogy_c) # c's embs
# We expect that d's embedding vectors on the unit hyper-sphere is
# near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].
target = c_emb + (b_emb - a_emb)
# Compute cosine distance between each pair of target and vocab.
# dist has shape [N, vocab_size].
dist = tf.matmul(target, nemb, transpose_b=True)
# For each question (row in dist), find the top 4 words.
_, pred_idx = tf.nn.top_k(dist, 4)
# Nodes for computing neighbors for a given word according to
# their cosine distance.
nearby_word = tf.placeholder(dtype=tf.int32) # word id
nearby_emb = tf.gather(nemb, nearby_word)
nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
nearby_val, nearby_idx = tf.nn.top_k(nearby_dist,
min(1000, self._options.vocab_size))
# Nodes in the construct graph which are used by training and
# evaluation to run/feed/fetch.
self._analogy_a = analogy_a
self._analogy_b = analogy_b
self._analogy_c = analogy_c
self._analogy_pred_idx = pred_idx
self._nearby_word = nearby_word
self._nearby_val = nearby_val
self._nearby_idx = nearby_idx
def build_graph(self):
"""Build the graph for the full model."""
opts = self._options
# The training data. A text file.
(words, counts, words_per_epoch, self._epoch, self._words, examples,
labels) = word2vec.skipgram_word2vec(filename=opts.train_data,
batch_size=opts.batch_size,
window_size=opts.window_size,
min_count=opts.min_count,
subsample=opts.subsample)
(opts.vocab_words, opts.vocab_counts,
opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
opts.vocab_size = len(opts.vocab_words)
print("Data file: ", opts.train_data)
print("Vocab size: ", opts.vocab_size - 1, " + UNK")
print("Words per epoch: ", opts.words_per_epoch)
self._examples = examples
self._labels = labels
self._id2word = opts.vocab_words
for i, w in enumerate(self._id2word):
self._word2id[w] = i
true_logits, sampled_logits = self.forward(examples, labels)
loss = self.nce_loss(true_logits, sampled_logits)
tf.summary.scalar("NCE loss", loss)
self._loss = loss
self.optimize(loss)
# Properly initialize all variables.
tf.global_variables_initializer().run()
self.saver = tf.train.Saver()
def save_vocab(self):
"""Save the vocabulary to a file so the model can be reloaded."""
opts = self._options
with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f:
for i in xrange(opts.vocab_size):
vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8")
f.write("%s %d\n" % (vocab_word,
opts.vocab_counts[i]))
def _train_thread_body(self):
initial_epoch, = self._session.run([self._epoch])
while True:
_, epoch = self._session.run([self._train, self._epoch])
if epoch != initial_epoch:
break
def train(self):
"""Train the model."""
opts = self._options
initial_epoch, initial_words = self._session.run([self._epoch, self._words])
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(opts.save_path, self._session.graph)
workers = []
for _ in xrange(opts.concurrent_steps):
t = threading.Thread(target=self._train_thread_body)
t.start()
workers.append(t)
last_words, last_time, last_summary_time = initial_words, time.time(), 0
last_checkpoint_time = 0
while True:
time.sleep(opts.statistics_interval) # Reports our progress once a while.
(epoch, step, loss, words, lr) = self._session.run(
[self._epoch, self.global_step, self._loss, self._words, self._lr])
now = time.time()
last_words, last_time, rate = words, now, (words - last_words) / (
now - last_time)
print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" %
(epoch, step, lr, loss, rate), end="")
sys.stdout.flush()
if now - last_summary_time > opts.summary_interval:
summary_str = self._session.run(summary_op)
summary_writer.add_summary(summary_str, step)
last_summary_time = now
if now - last_checkpoint_time > opts.checkpoint_interval:
self.saver.save(self._session,
os.path.join(opts.save_path, "model.ckpt"),
global_step=step.astype(int))
last_checkpoint_time = now
if epoch != initial_epoch:
break
for t in workers:
t.join()
return epoch
def _predict(self, analogy):
"""Predict the top 4 answers for analogy questions."""
idx, = self._session.run([self._analogy_pred_idx], {
self._analogy_a: analogy[:, 0],
self._analogy_b: analogy[:, 1],
self._analogy_c: analogy[:, 2]
})
return idx
def eval(self):
"""Evaluate analogy questions and reports accuracy."""
# How many questions we get right at precision@1.
correct = 0
try:
total = self._analogy_questions.shape[0]
except AttributeError as e:
raise AttributeError("Need to read analogy questions.")
start = 0
while start < total:
limit = start + 2500
sub = self._analogy_questions[start:limit, :]
idx = self._predict(sub)
start = limit
for question in xrange(sub.shape[0]):
for j in xrange(4):
if idx[question, j] == sub[question, 3]:
# Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
correct += 1
break
elif idx[question, j] in sub[question, :3]:
# We need to skip words already in the question.
continue
else:
# The correct label is not the precision@1
break
print()
print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
correct * 100.0 / total))
def analogy(self, w0, w1, w2):
"""Predict word w3 as in w0:w1 vs w2:w3."""
wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]])
idx = self._predict(wid)
for c in [self._id2word[i] for i in idx[0, :]]:
if c not in [w0, w1, w2]:
print(c)
return
print("unknown")
def nearby(self, words, num=20):
"""Prints out nearby words given a list of words."""
ids = np.array([self._word2id.get(x, 0) for x in words])
vals, idx = self._session.run(
[self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
for i in xrange(len(words)):
print("\n%s\n=====================================" % (words[i]))
for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
print("%-20s %6.4f" % (self._id2word[neighbor], distance))
def _start_shell(local_ns=None):
# An interactive shell is useful for debugging/development.
import IPython
user_ns = {}
if local_ns:
user_ns.update(local_ns)
user_ns.update(globals())
IPython.start_ipython(argv=[], user_ns=user_ns)
def main(_):
"""Train a word2vec model."""
if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
print("--train_data --eval_data and --save_path must be specified.")
sys.exit(1)
opts = Options()
with tf.Graph().as_default(), tf.Session() as session:
with tf.device("/cpu:0"):
model = Word2Vec(opts, session)
model.read_analogies() # Read analogy questions
for _ in xrange(opts.epochs_to_train):
model.train() # Process one epoch
model.eval() # Eval analogies.
# Perform a final save.
model.saver.save(session,
os.path.join(opts.save_path, "model.ckpt"),
global_step=model.global_step)
if FLAGS.interactive:
# E.g.,
# [0]: model.analogy(b'france', b'paris', b'russia')
# [1]: model.nearby([b'proton', b'elephant', b'maxwell'])
_start_shell(locals())
if __name__ == "__main__":
tf.app.run()
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/lib/random/distribution_sampler.h"
#include "tensorflow/core/lib/random/philox_random.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/util/guarded_philox_random.h"
namespace tensorflow {
// Number of examples to precalculate.
const int kPrecalc = 3000;
// Number of words to read into a sentence before processing.
const int kSentenceSize = 1000;
namespace {
bool ScanWord(StringPiece* input, string* word) {
str_util::RemoveLeadingWhitespace(input);
StringPiece tmp;
if (str_util::ConsumeNonWhitespace(input, &tmp)) {
word->assign(tmp.data(), tmp.size());
return true;
} else {
return false;
}
}
} // end namespace
class SkipgramWord2vecOp : public OpKernel {
public:
explicit SkipgramWord2vecOp(OpKernelConstruction* ctx)
: OpKernel(ctx), rng_(&philox_) {
string filename;
OP_REQUIRES_OK(ctx, ctx->GetAttr("filename", &filename));
OP_REQUIRES_OK(ctx, ctx->GetAttr("batch_size", &batch_size_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("window_size", &window_size_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("min_count", &min_count_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("subsample", &subsample_));
OP_REQUIRES_OK(ctx, Init(ctx->env(), filename));
mutex_lock l(mu_);
example_pos_ = corpus_size_;
label_pos_ = corpus_size_;
label_limit_ = corpus_size_;
sentence_index_ = kSentenceSize;
for (int i = 0; i < kPrecalc; ++i) {
NextExample(&precalc_examples_[i].input, &precalc_examples_[i].label);
}
}
void Compute(OpKernelContext* ctx) override {
Tensor words_per_epoch(DT_INT64, TensorShape({}));
Tensor current_epoch(DT_INT32, TensorShape({}));
Tensor total_words_processed(DT_INT64, TensorShape({}));
Tensor examples(DT_INT32, TensorShape({batch_size_}));
auto Texamples = examples.flat<int32>();
Tensor labels(DT_INT32, TensorShape({batch_size_}));
auto Tlabels = labels.flat<int32>();
{
mutex_lock l(mu_);
for (int i = 0; i < batch_size_; ++i) {
Texamples(i) = precalc_examples_[precalc_index_].input;
Tlabels(i) = precalc_examples_[precalc_index_].label;
precalc_index_++;
if (precalc_index_ >= kPrecalc) {
precalc_index_ = 0;
for (int j = 0; j < kPrecalc; ++j) {
NextExample(&precalc_examples_[j].input,
&precalc_examples_[j].label);
}
}
}
words_per_epoch.scalar<int64>()() = corpus_size_;
current_epoch.scalar<int32>()() = current_epoch_;
total_words_processed.scalar<int64>()() = total_words_processed_;
}
ctx->set_output(0, word_);
ctx->set_output(1, freq_);
ctx->set_output(2, words_per_epoch);
ctx->set_output(3, current_epoch);
ctx->set_output(4, total_words_processed);
ctx->set_output(5, examples);
ctx->set_output(6, labels);
}
private:
struct Example {
int32 input;
int32 label;
};
int32 batch_size_ = 0;
int32 window_size_ = 5;
float subsample_ = 1e-3;
int min_count_ = 5;
int32 vocab_size_ = 0;
Tensor word_;
Tensor freq_;
int64 corpus_size_ = 0;
std::vector<int32> corpus_;
std::vector<Example> precalc_examples_;
int precalc_index_ = 0;
std::vector<int32> sentence_;
int sentence_index_ = 0;
mutex mu_;
random::PhiloxRandom philox_ GUARDED_BY(mu_);
random::SimplePhilox rng_ GUARDED_BY(mu_);
int32 current_epoch_ GUARDED_BY(mu_) = -1;
int64 total_words_processed_ GUARDED_BY(mu_) = 0;
int64 example_pos_ GUARDED_BY(mu_);
int32 label_pos_ GUARDED_BY(mu_);
int32 label_limit_ GUARDED_BY(mu_);
// {example_pos_, label_pos_} is the cursor for the next example.
// example_pos_ wraps around at the end of corpus_. For each
// example, we randomly generate [label_pos_, label_limit) for
// labels.
void NextExample(int32* example, int32* label) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
while (true) {
if (label_pos_ >= label_limit_) {
++total_words_processed_;
++sentence_index_;
if (sentence_index_ >= kSentenceSize) {
sentence_index_ = 0;
for (int i = 0; i < kSentenceSize; ++i, ++example_pos_) {
if (example_pos_ >= corpus_size_) {
++current_epoch_;
example_pos_ = 0;
}
if (subsample_ > 0) {
int32 word_freq = freq_.flat<int32>()(corpus_[example_pos_]);
// See Eq. 5 in http://arxiv.org/abs/1310.4546
float keep_prob =
(std::sqrt(word_freq / (subsample_ * corpus_size_)) + 1) *
(subsample_ * corpus_size_) / word_freq;
if (rng_.RandFloat() > keep_prob) {
i--;
continue;
}
}
sentence_[i] = corpus_[example_pos_];
}
}
const int32 skip = 1 + rng_.Uniform(window_size_);
label_pos_ = std::max<int32>(0, sentence_index_ - skip);
label_limit_ =
std::min<int32>(kSentenceSize, sentence_index_ + skip + 1);
}
if (sentence_index_ != label_pos_) {
break;
}
++label_pos_;
}
*example = sentence_[sentence_index_];
*label = sentence_[label_pos_++];
}
Status Init(Env* env, const string& filename) {
string data;
TF_RETURN_IF_ERROR(ReadFileToString(env, filename, &data));
StringPiece input = data;
string w;
corpus_size_ = 0;
std::unordered_map<string, int32> word_freq;
while (ScanWord(&input, &w)) {
++(word_freq[w]);
++corpus_size_;
}
if (corpus_size_ < window_size_ * 10) {
return errors::InvalidArgument("The text file ", filename,
" contains too little data: ",
corpus_size_, " words");
}
typedef std::pair<string, int32> WordFreq;
std::vector<WordFreq> ordered;
for (const auto& p : word_freq) {
if (p.second >= min_count_) ordered.push_back(p);
}
LOG(INFO) << "Data file: " << filename << " contains " << data.size()
<< " bytes, " << corpus_size_ << " words, " << word_freq.size()
<< " unique words, " << ordered.size()
<< " unique frequent words.";
word_freq.clear();
std::sort(ordered.begin(), ordered.end(),
[](const WordFreq& x, const WordFreq& y) {
return x.second > y.second;
});
vocab_size_ = static_cast<int32>(1 + ordered.size());
Tensor word(DT_STRING, TensorShape({vocab_size_}));
Tensor freq(DT_INT32, TensorShape({vocab_size_}));
word.flat<tstring>()(0) = "UNK";
static const int32 kUnkId = 0;
std::unordered_map<string, int32> word_id;
int64 total_counted = 0;
for (std::size_t i = 0; i < ordered.size(); ++i) {
const auto& w = ordered[i].first;
auto id = i + 1;
word.flat<tstring>()(id) = w;
auto word_count = ordered[i].second;
freq.flat<int32>()(id) = word_count;
total_counted += word_count;
word_id[w] = id;
}
freq.flat<int32>()(kUnkId) = corpus_size_ - total_counted;
word_ = word;
freq_ = freq;
corpus_.reserve(corpus_size_);
input = data;
while (ScanWord(&input, &w)) {
corpus_.push_back(gtl::FindWithDefault(word_id, w, kUnkId));
}
precalc_examples_.resize(kPrecalc);
sentence_.resize(kSentenceSize);
return Status::OK();
}
};
REGISTER_KERNEL_BUILDER(Name("SkipgramWord2vec").Device(DEVICE_CPU), SkipgramWord2vecOp);
class NegTrainWord2vecOp : public OpKernel {
public:
explicit NegTrainWord2vecOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
base_.Init(0, 0);
OP_REQUIRES_OK(ctx, ctx->GetAttr("num_negative_samples", &num_samples_));
std::vector<int32> vocab_count;
OP_REQUIRES_OK(ctx, ctx->GetAttr("vocab_count", &vocab_count));
std::vector<float> vocab_weights;
vocab_weights.reserve(vocab_count.size());
for (const auto& f : vocab_count) {
float r = std::pow(static_cast<float>(f), 0.75f);
vocab_weights.push_back(r);
}
sampler_ = new random::DistributionSampler(vocab_weights);
}
~NegTrainWord2vecOp() { delete sampler_; }
void Compute(OpKernelContext* ctx) override {
Tensor w_in = ctx->mutable_input(0, false);
OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(w_in.shape()),
errors::InvalidArgument("Must be a matrix"));
Tensor w_out = ctx->mutable_input(1, false);
OP_REQUIRES(ctx, w_in.shape() == w_out.shape(),
errors::InvalidArgument("w_in.shape == w_out.shape"));
const Tensor& examples = ctx->input(2);
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(examples.shape()),
errors::InvalidArgument("Must be a vector"));
const Tensor& labels = ctx->input(3);
OP_REQUIRES(ctx, examples.shape() == labels.shape(),
errors::InvalidArgument("examples.shape == labels.shape"));
const Tensor& learning_rate = ctx->input(4);
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(learning_rate.shape()),
errors::InvalidArgument("Must be a scalar"));
auto Tw_in = w_in.matrix<float>();
auto Tw_out = w_out.matrix<float>();
auto Texamples = examples.flat<int32>();
auto Tlabels = labels.flat<int32>();
auto lr = learning_rate.scalar<float>()();
const int64 vocab_size = w_in.dim_size(0);
const int64 dims = w_in.dim_size(1);
const int64 batch_size = examples.dim_size(0);
OP_REQUIRES(ctx, vocab_size == sampler_->num(),
errors::InvalidArgument("vocab_size mismatches: ", vocab_size,
" vs. ", sampler_->num()));
// Gradient accumulator for v_in.
Tensor buf(DT_FLOAT, TensorShape({dims}));
auto Tbuf = buf.flat<float>();
// Scalar buffer to hold sigmoid(+/- dot).
Tensor g_buf(DT_FLOAT, TensorShape({}));
auto g = g_buf.scalar<float>();
// The following loop needs 2 random 32-bit values per negative
// sample. We reserve 8 values per sample just in case the
// underlying implementation changes.
auto rnd = base_.ReserveSamples32(batch_size * num_samples_ * 8);
random::SimplePhilox srnd(&rnd);
for (int64 i = 0; i < batch_size; ++i) {
const int32 example = Texamples(i);
DCHECK(0 <= example && example < vocab_size) << example;
const int32 label = Tlabels(i);
DCHECK(0 <= label && label < vocab_size) << label;
auto v_in = Tw_in.chip<0>(example);
// Positive: example predicts label.
// forward: x = v_in' * v_out
// l = log(sigmoid(x))
// backward: dl/dx = g = sigmoid(-x)
// dl/d(v_in) = g * v_out'
// dl/d(v_out) = v_in' * g
{
auto v_out = Tw_out.chip<0>(label);
auto dot = (v_in * v_out).sum();
g = (dot.exp() + 1.f).inverse();
Tbuf = v_out * (g() * lr);
v_out += v_in * (g() * lr);
}
// Negative samples:
// forward: x = v_in' * v_sample
// l = log(sigmoid(-x))
// backward: dl/dx = g = -sigmoid(x)
// dl/d(v_in) = g * v_out'
// dl/d(v_out) = v_in' * g
for (int j = 0; j < num_samples_; ++j) {
const int sample = sampler_->Sample(&srnd);
if (sample == label) continue; // Skip.
auto v_sample = Tw_out.chip<0>(sample);
auto dot = (v_in * v_sample).sum();
g = -((-dot).exp() + 1.f).inverse();
Tbuf += v_sample * (g() * lr);
v_sample += v_in * (g() * lr);
}
// Applies the gradient on v_in.
v_in += Tbuf;
}
}
private:
int32 num_samples_ = 0;
random::DistributionSampler* sampler_ = nullptr;
GuardedPhiloxRandom base_;
};
REGISTER_KERNEL_BUILDER(Name("NegTrainWord2vec").Device(DEVICE_CPU), NegTrainWord2vecOp);
} // end namespace tensorflow
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/framework/op.h"
namespace tensorflow {
REGISTER_OP("SkipgramWord2vec")
.Output("vocab_word: string")
.Output("vocab_freq: int32")
.Output("words_per_epoch: int64")
.Output("current_epoch: int32")
.Output("total_words_processed: int64")
.Output("examples: int32")
.Output("labels: int32")
.SetIsStateful()
.Attr("filename: string")
.Attr("batch_size: int")
.Attr("window_size: int = 5")
.Attr("min_count: int = 5")
.Attr("subsample: float = 1e-3")
.Doc(R"doc(
Parses a text file and creates a batch of examples.
vocab_word: A vector of words in the corpus.
vocab_freq: Frequencies of words. Sorted in the non-ascending order.
words_per_epoch: Number of words per epoch in the data file.
current_epoch: The current epoch number.
total_words_processed: The total number of words processed so far.
examples: A vector of word ids.
labels: A vector of word ids.
filename: The corpus's text file name.
batch_size: The size of produced batch.
window_size: The number of words to predict to the left and right of the target.
min_count: The minimum number of word occurrences for it to be included in the
vocabulary.
subsample: Threshold for word occurrence. Words that appear with higher
frequency will be randomly down-sampled. Set to 0 to disable.
)doc");
REGISTER_OP("NegTrainWord2vec")
.Input("w_in: Ref(float)")
.Input("w_out: Ref(float)")
.Input("examples: int32")
.Input("labels: int32")
.Input("lr: float")
.SetIsStateful()
.Attr("vocab_count: list(int)")
.Attr("num_negative_samples: int")
.Doc(R"doc(
Training via negative sampling.
w_in: input word embedding.
w_out: output word embedding.
examples: A vector of word ids.
labels: A vector of word ids.
vocab_count: Count of words in the vocabulary.
num_negative_samples: Number of negative samples per example.
)doc");
} // end namespace tensorflow
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-threaded word2vec unbatched skip-gram model.
Trains the model described in:
(Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space
ICLR 2013.
http://arxiv.org/abs/1301.3781
This model does true SGD (i.e. no minibatching). To do this efficiently, custom
ops are used to sequentially process data within a 'batch'.
The key ops used are:
* skipgram custom op that does input processing.
* neg_train custom op that efficiently calculates and applies the gradient using
true SGD.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import threading
import time
from six.moves import xrange # pylint: disable=redefined-builtin
import numpy as np
import tensorflow as tf
word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
flags = tf.app.flags
flags.DEFINE_string("save_path", None, "Directory to write the model.")
flags.DEFINE_string(
"train_data", None,
"Training data. E.g., unzipped file http://mattmahoney.net/dc/text8.zip.")
flags.DEFINE_string(
"eval_data", None, "Analogy questions. "
"See README.md for how to get 'questions-words.txt'.")
flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.")
flags.DEFINE_integer(
"epochs_to_train", 15,
"Number of epochs to train. Each epoch processes the training data once "
"completely.")
flags.DEFINE_float("learning_rate", 0.025, "Initial learning rate.")
flags.DEFINE_integer("num_neg_samples", 25,
"Negative samples per training example.")
flags.DEFINE_integer("batch_size", 500,
"Numbers of training examples each step processes "
"(no minibatching).")
flags.DEFINE_integer("concurrent_steps", 12,
"The number of concurrent training steps.")
flags.DEFINE_integer("window_size", 5,
"The number of words to predict to the left and right "
"of the target word.")
flags.DEFINE_integer("min_count", 5,
"The minimum number of word occurrences for it to be "
"included in the vocabulary.")
flags.DEFINE_float("subsample", 1e-3,
"Subsample threshold for word occurrence. Words that appear "
"with higher frequency will be randomly down-sampled. Set "
"to 0 to disable.")
flags.DEFINE_boolean(
"interactive", False,
"If true, enters an IPython interactive session to play with the trained "
"model. E.g., try model.analogy(b'france', b'paris', b'russia') and "
"model.nearby([b'proton', b'elephant', b'maxwell'])")
FLAGS = flags.FLAGS
class Options(object):
"""Options used by our word2vec model."""
def __init__(self):
# Model options.
# Embedding dimension.
self.emb_dim = FLAGS.embedding_size
# Training options.
# The training text file.
self.train_data = FLAGS.train_data
# Number of negative samples per example.
self.num_samples = FLAGS.num_neg_samples
# The initial learning rate.
self.learning_rate = FLAGS.learning_rate
# Number of epochs to train. After these many epochs, the learning
# rate decays linearly to zero and the training stops.
self.epochs_to_train = FLAGS.epochs_to_train
# Concurrent training steps.
self.concurrent_steps = FLAGS.concurrent_steps
# Number of examples for one training step.
self.batch_size = FLAGS.batch_size
# The number of words to predict to the left and right of the target word.
self.window_size = FLAGS.window_size
# The minimum number of word occurrences for it to be included in the
# vocabulary.
self.min_count = FLAGS.min_count
# Subsampling threshold for word occurrence.
self.subsample = FLAGS.subsample
# Where to write out summaries.
self.save_path = FLAGS.save_path
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
# Eval options.
# The text file for eval.
self.eval_data = FLAGS.eval_data
class Word2Vec(object):
"""Word2Vec model (Skipgram)."""
def __init__(self, options, session):
self._options = options
self._session = session
self._word2id = {}
self._id2word = []
self.build_graph()
self.build_eval_graph()
self.save_vocab()
def read_analogies(self):
"""Reads through the analogy question file.
Returns:
questions: a [n, 4] numpy array containing the analogy question's
word ids.
questions_skipped: questions skipped due to unknown words.
"""
questions = []
questions_skipped = 0
with open(self._options.eval_data, "rb") as analogy_f:
for line in analogy_f:
if line.startswith(b":"): # Skip comments.
continue
words = line.strip().lower().split(b" ")
ids = [self._word2id.get(w.strip()) for w in words]
if None in ids or len(ids) != 4:
questions_skipped += 1
else:
questions.append(np.array(ids))
print("Eval analogy file: ", self._options.eval_data)
print("Questions: ", len(questions))
print("Skipped: ", questions_skipped)
self._analogy_questions = np.array(questions, dtype=np.int32)
def build_graph(self):
"""Build the model graph."""
opts = self._options
# The training data. A text file.
(words, counts, words_per_epoch, current_epoch, total_words_processed,
examples, labels) = word2vec.skipgram_word2vec(filename=opts.train_data,
batch_size=opts.batch_size,
window_size=opts.window_size,
min_count=opts.min_count,
subsample=opts.subsample)
(opts.vocab_words, opts.vocab_counts,
opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
opts.vocab_size = len(opts.vocab_words)
print("Data file: ", opts.train_data)
print("Vocab size: ", opts.vocab_size - 1, " + UNK")
print("Words per epoch: ", opts.words_per_epoch)
self._id2word = opts.vocab_words
for i, w in enumerate(self._id2word):
self._word2id[w] = i
# Declare all variables we need.
# Input words embedding: [vocab_size, emb_dim]
w_in = tf.Variable(
tf.random_uniform(
[opts.vocab_size,
opts.emb_dim], -0.5 / opts.emb_dim, 0.5 / opts.emb_dim),
name="w_in")
# Global step: scalar, i.e., shape [].
w_out = tf.Variable(tf.zeros([opts.vocab_size, opts.emb_dim]), name="w_out")
# Global step: []
global_step = tf.Variable(0, name="global_step")
# Linear learning rate decay.
words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
lr = opts.learning_rate * tf.maximum(
0.0001,
1.0 - tf.cast(total_words_processed, tf.float32) / words_to_train)
# Training nodes.
inc = global_step.assign_add(1)
with tf.control_dependencies([inc]):
train = word2vec.neg_train_word2vec(w_in,
w_out,
examples,
labels,
lr,
vocab_count=opts.vocab_counts.tolist(),
num_negative_samples=opts.num_samples)
self._w_in = w_in
self._examples = examples
self._labels = labels
self._lr = lr
self._train = train
self.global_step = global_step
self._epoch = current_epoch
self._words = total_words_processed
def save_vocab(self):
"""Save the vocabulary to a file so the model can be reloaded."""
opts = self._options
with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f:
for i in xrange(opts.vocab_size):
vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8")
f.write("%s %d\n" % (vocab_word,
opts.vocab_counts[i]))
def build_eval_graph(self):
"""Build the evaluation graph."""
# Eval graph
opts = self._options
# Each analogy task is to predict the 4th word (d) given three
# words: a, b, c. E.g., a=italy, b=rome, c=france, we should
# predict d=paris.
# The eval feeds three vectors of word ids for a, b, c, each of
# which is of size N, where N is the number of analogies we want to
# evaluate in one batch.
analogy_a = tf.placeholder(dtype=tf.int32) # [N]
analogy_b = tf.placeholder(dtype=tf.int32) # [N]
analogy_c = tf.placeholder(dtype=tf.int32) # [N]
# Normalized word embeddings of shape [vocab_size, emb_dim].
nemb = tf.nn.l2_normalize(self._w_in, 1)
# Each row of a_emb, b_emb, c_emb is a word's embedding vector.
# They all have the shape [N, emb_dim]
a_emb = tf.gather(nemb, analogy_a) # a's embs
b_emb = tf.gather(nemb, analogy_b) # b's embs
c_emb = tf.gather(nemb, analogy_c) # c's embs
# We expect that d's embedding vectors on the unit hyper-sphere is
# near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].
target = c_emb + (b_emb - a_emb)
# Compute cosine distance between each pair of target and vocab.
# dist has shape [N, vocab_size].
dist = tf.matmul(target, nemb, transpose_b=True)
# For each question (row in dist), find the top 4 words.
_, pred_idx = tf.nn.top_k(dist, 4)
# Nodes for computing neighbors for a given word according to
# their cosine distance.
nearby_word = tf.placeholder(dtype=tf.int32) # word id
nearby_emb = tf.gather(nemb, nearby_word)
nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
nearby_val, nearby_idx = tf.nn.top_k(nearby_dist,
min(1000, opts.vocab_size))
# Nodes in the construct graph which are used by training and
# evaluation to run/feed/fetch.
self._analogy_a = analogy_a
self._analogy_b = analogy_b
self._analogy_c = analogy_c
self._analogy_pred_idx = pred_idx
self._nearby_word = nearby_word
self._nearby_val = nearby_val
self._nearby_idx = nearby_idx
# Properly initialize all variables.
tf.global_variables_initializer().run()
self.saver = tf.train.Saver()
def _train_thread_body(self):
initial_epoch, = self._session.run([self._epoch])
while True:
_, epoch = self._session.run([self._train, self._epoch])
if epoch != initial_epoch:
break
def train(self):
"""Train the model."""
opts = self._options
initial_epoch, initial_words = self._session.run([self._epoch, self._words])
workers = []
for _ in xrange(opts.concurrent_steps):
t = threading.Thread(target=self._train_thread_body)
t.start()
workers.append(t)
last_words, last_time = initial_words, time.time()
while True:
time.sleep(5) # Reports our progress once a while.
(epoch, step, words, lr) = self._session.run(
[self._epoch, self.global_step, self._words, self._lr])
now = time.time()
last_words, last_time, rate = words, now, (words - last_words) / (
now - last_time)
print("Epoch %4d Step %8d: lr = %5.3f words/sec = %8.0f\r" % (epoch, step,
lr, rate),
end="")
sys.stdout.flush()
if epoch != initial_epoch:
break
for t in workers:
t.join()
def _predict(self, analogy):
"""Predict the top 4 answers for analogy questions."""
idx, = self._session.run([self._analogy_pred_idx], {
self._analogy_a: analogy[:, 0],
self._analogy_b: analogy[:, 1],
self._analogy_c: analogy[:, 2]
})
return idx
def eval(self):
"""Evaluate analogy questions and reports accuracy."""
# How many questions we get right at precision@1.
correct = 0
try:
total = self._analogy_questions.shape[0]
except AttributeError as e:
raise AttributeError("Need to read analogy questions.")
start = 0
while start < total:
limit = start + 2500
sub = self._analogy_questions[start:limit, :]
idx = self._predict(sub)
start = limit
for question in xrange(sub.shape[0]):
for j in xrange(4):
if idx[question, j] == sub[question, 3]:
# Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
correct += 1
break
elif idx[question, j] in sub[question, :3]:
# We need to skip words already in the question.
continue
else:
# The correct label is not the precision@1
break
print()
print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
correct * 100.0 / total))
def analogy(self, w0, w1, w2):
"""Predict word w3 as in w0:w1 vs w2:w3."""
wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]])
idx = self._predict(wid)
for c in [self._id2word[i] for i in idx[0, :]]:
if c not in [w0, w1, w2]:
print(c)
break
print("unknown")
def nearby(self, words, num=20):
"""Prints out nearby words given a list of words."""
ids = np.array([self._word2id.get(x, 0) for x in words])
vals, idx = self._session.run(
[self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
for i in xrange(len(words)):
print("\n%s\n=====================================" % (words[i]))
for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
print("%-20s %6.4f" % (self._id2word[neighbor], distance))
def _start_shell(local_ns=None):
# An interactive shell is useful for debugging/development.
import IPython
user_ns = {}
if local_ns:
user_ns.update(local_ns)
user_ns.update(globals())
IPython.start_ipython(argv=[], user_ns=user_ns)
def main(_):
"""Train a word2vec model."""
if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
print("--train_data --eval_data and --save_path must be specified.")
sys.exit(1)
opts = Options()
with tf.Graph().as_default(), tf.Session() as session:
with tf.device("/cpu:0"):
model = Word2Vec(opts, session)
model.read_analogies() # Read analogy questions
for _ in xrange(opts.epochs_to_train):
model.train() # Process one epoch
model.eval() # Eval analogies.
# Perform a final save.
model.saver.save(session, os.path.join(opts.save_path, "model.ckpt"),
global_step=model.global_step)
if FLAGS.interactive:
# E.g.,
# [0]: model.analogy(b'france', b'paris', b'russia')
# [1]: model.nearby([b'proton', b'elephant', b'maxwell'])
_start_shell(locals())
if __name__ == "__main__":
tf.app.run()
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for word2vec_optimized module."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
import word2vec_optimized
flags = tf.app.flags
FLAGS = flags.FLAGS
class Word2VecTest(tf.test.TestCase):
def setUp(self):
FLAGS.train_data = os.path.join(self.get_temp_dir() + "test-text.txt")
FLAGS.eval_data = os.path.join(self.get_temp_dir() + "eval-text.txt")
FLAGS.save_path = self.get_temp_dir()
with open(FLAGS.train_data, "w") as f:
f.write(
"""alice was beginning to get very tired of sitting by her sister on
the bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, 'and what is the use of a book,' thought alice
'without pictures or conversations?' So she was considering in her own
mind (as well as she could, for the hot day made her feel very sleepy
and stupid), whether the pleasure of making a daisy-chain would be
worth the trouble of getting up and picking the daisies, when suddenly
a White rabbit with pink eyes ran close by her.\n""")
with open(FLAGS.eval_data, "w") as f:
f.write("alice she rabbit once\n")
def testWord2VecOptimized(self):
FLAGS.batch_size = 5
FLAGS.num_neg_samples = 10
FLAGS.epochs_to_train = 1
FLAGS.min_count = 0
word2vec_optimized.main([])
if __name__ == "__main__":
tf.test.main()
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for word2vec module."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
import word2vec
flags = tf.app.flags
FLAGS = flags.FLAGS
class Word2VecTest(tf.test.TestCase):
def setUp(self):
FLAGS.train_data = os.path.join(self.get_temp_dir(), "test-text.txt")
FLAGS.eval_data = os.path.join(self.get_temp_dir(), "eval-text.txt")
FLAGS.save_path = self.get_temp_dir()
with open(FLAGS.train_data, "w") as f:
f.write(
"""alice was beginning to get very tired of sitting by her sister on
the bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, 'and what is the use of a book,' thought alice
'without pictures or conversations?' So she was considering in her own
mind (as well as she could, for the hot day made her feel very sleepy
and stupid), whether the pleasure of making a daisy-chain would be
worth the trouble of getting up and picking the daisies, when suddenly
a White rabbit with pink eyes ran close by her.\n""")
with open(FLAGS.eval_data, "w") as f:
f.write("alice she rabbit once\n")
def testWord2Vec(self):
FLAGS.batch_size = 5
FLAGS.num_neg_samples = 10
FLAGS.epochs_to_train = 1
FLAGS.min_count = 0
word2vec.main([])
if __name__ == "__main__":
tf.test.main()
# Description:
# Benchmark for AlexNet.
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
py_binary(
name = "alexnet_benchmark",
srcs = [
"alexnet_benchmark.py",
],
srcs_version = "PY2AND3",
deps = [
"//tensorflow:tensorflow_py",
],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)
This diff is collapsed.
This diff is collapsed.
**NOTE: For users interested in multi-GPU, we recommend looking at the newer [cifar10_estimator](https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10_estimator) example instead.**
---
CIFAR-10 is a common benchmark in machine learning for image recognition.
http://www.cs.toronto.edu/~kriz/cifar.html
Code in this directory demonstrates how to use TensorFlow to train and evaluate a convolutional neural network (CNN) on both CPU and GPU. We also demonstrate how to train a CNN over multiple GPUs.
Detailed instructions on how to get started available at:
https://www.tensorflow.org/tutorials/images/deep_cnn
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment