Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
5474ad71
Commit
5474ad71
authored
Jul 31, 2022
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Jul 31, 2022
Browse files
Update to super() for py3 style.
PiperOrigin-RevId: 464429203
parent
9ba82dc4
Changes
15
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
42 additions
and
42 deletions
+42
-42
official/nlp/modeling/layers/block_diag_feedforward.py
official/nlp/modeling/layers/block_diag_feedforward.py
+2
-2
official/nlp/modeling/layers/gaussian_process.py
official/nlp/modeling/layers/gaussian_process.py
+1
-1
official/nlp/modeling/layers/masked_lm.py
official/nlp/modeling/layers/masked_lm.py
+2
-2
official/nlp/modeling/layers/masked_softmax.py
official/nlp/modeling/layers/masked_softmax.py
+2
-2
official/nlp/modeling/layers/mat_mul_with_margin.py
official/nlp/modeling/layers/mat_mul_with_margin.py
+2
-2
official/nlp/modeling/layers/mobile_bert_layers.py
official/nlp/modeling/layers/mobile_bert_layers.py
+4
-4
official/nlp/modeling/layers/multi_channel_attention.py
official/nlp/modeling/layers/multi_channel_attention.py
+3
-3
official/nlp/modeling/layers/on_device_embedding.py
official/nlp/modeling/layers/on_device_embedding.py
+3
-3
official/nlp/modeling/layers/position_embedding.py
official/nlp/modeling/layers/position_embedding.py
+2
-2
official/nlp/modeling/layers/reuse_attention.py
official/nlp/modeling/layers/reuse_attention.py
+2
-2
official/nlp/modeling/layers/routing.py
official/nlp/modeling/layers/routing.py
+4
-4
official/nlp/modeling/layers/spectral_normalization.py
official/nlp/modeling/layers/spectral_normalization.py
+4
-4
official/nlp/modeling/layers/tn_expand_condense.py
official/nlp/modeling/layers/tn_expand_condense.py
+3
-3
official/nlp/modeling/layers/tn_transformer_expand_condense.py
...ial/nlp/modeling/layers/tn_transformer_expand_condense.py
+3
-3
official/nlp/modeling/layers/transformer_xl.py
official/nlp/modeling/layers/transformer_xl.py
+5
-5
No files found.
official/nlp/modeling/layers/block_diag_feedforward.py
View file @
5474ad71
...
...
@@ -59,7 +59,7 @@ class BlockDiagFeedforward(tf.keras.layers.Layer):
kernel_constraint
:
Optional
[
tf
.
keras
.
constraints
.
Constraint
]
=
None
,
bias_constraint
:
Optional
[
tf
.
keras
.
constraints
.
Constraint
]
=
None
,
**
kwargs
):
# pylint: disable=g-doc-args
super
(
BlockDiagFeedforward
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_intermediate_size
=
intermediate_size
self
.
_intermediate_activation
=
intermediate_activation
self
.
_dropout
=
dropout
...
...
@@ -156,7 +156,7 @@ class BlockDiagFeedforward(tf.keras.layers.Layer):
"bias_constraint"
:
tf
.
keras
.
constraints
.
serialize
(
self
.
_bias_constraint
)
}
base_config
=
super
(
BlockDiagFeedforward
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
call
(
self
,
inputs
):
...
...
official/nlp/modeling/layers/gaussian_process.py
View file @
5474ad71
...
...
@@ -116,7 +116,7 @@ class RandomFeatureGaussianProcess(tf.keras.layers.Layer):
name: (string) Layer name.
**gp_output_kwargs: Additional keyword arguments to dense output layer.
"""
super
(
RandomFeatureGaussianProcess
,
self
).
__init__
(
name
=
name
,
dtype
=
dtype
)
super
().
__init__
(
name
=
name
,
dtype
=
dtype
)
self
.
units
=
units
self
.
num_inducing
=
num_inducing
...
...
official/nlp/modeling/layers/masked_lm.py
View file @
5474ad71
...
...
@@ -47,7 +47,7 @@ class MaskedLM(tf.keras.layers.Layer):
output
=
'logits'
,
name
=
None
,
**
kwargs
):
super
(
MaskedLM
,
self
).
__init__
(
name
=
name
,
**
kwargs
)
super
().
__init__
(
name
=
name
,
**
kwargs
)
self
.
embedding_table
=
embedding_table
self
.
activation
=
activation
self
.
initializer
=
tf
.
keras
.
initializers
.
get
(
initializer
)
...
...
@@ -73,7 +73,7 @@ class MaskedLM(tf.keras.layers.Layer):
initializer
=
'zeros'
,
trainable
=
True
)
super
(
MaskedLM
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
def
call
(
self
,
sequence_data
,
masked_positions
):
masked_lm_input
=
self
.
_gather_indexes
(
sequence_data
,
masked_positions
)
...
...
official/nlp/modeling/layers/masked_softmax.py
View file @
5474ad71
...
...
@@ -53,7 +53,7 @@ class MaskedSoftmax(tf.keras.layers.Layer):
self
.
_normalization_axes
=
(
-
1
,)
else
:
self
.
_normalization_axes
=
normalization_axes
super
(
MaskedSoftmax
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
def
call
(
self
,
scores
,
mask
=
None
):
...
...
@@ -81,5 +81,5 @@ class MaskedSoftmax(tf.keras.layers.Layer):
'mask_expansion_axes'
:
self
.
_mask_expansion_axes
,
'normalization_axes'
:
self
.
_normalization_axes
}
base_config
=
super
(
MaskedSoftmax
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
official/nlp/modeling/layers/mat_mul_with_margin.py
View file @
5474ad71
...
...
@@ -36,7 +36,7 @@ class MatMulWithMargin(tf.keras.layers.Layer):
logit_scale
=
1.0
,
logit_margin
=
0.0
,
**
kwargs
):
super
(
MatMulWithMargin
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
logit_scale
=
logit_scale
self
.
logit_margin
=
logit_margin
...
...
@@ -61,7 +61,7 @@ class MatMulWithMargin(tf.keras.layers.Layer):
config
=
{
'logit_scale'
:
self
.
logit_scale
,
'logit_margin'
:
self
.
logit_margin
}
config
.
update
(
super
(
MatMulWithMargin
,
self
).
get_config
())
config
.
update
(
super
().
get_config
())
return
config
@
classmethod
...
...
official/nlp/modeling/layers/mobile_bert_layers.py
View file @
5474ad71
...
...
@@ -26,7 +26,7 @@ class NoNorm(tf.keras.layers.Layer):
"""Apply element-wise linear transformation to the last dimension."""
def
__init__
(
self
,
name
=
None
):
super
(
NoNorm
,
self
).
__init__
(
name
=
name
)
super
().
__init__
(
name
=
name
)
def
build
(
self
,
shape
):
kernal_size
=
shape
[
-
1
]
...
...
@@ -98,7 +98,7 @@ class MobileBertEmbedding(tf.keras.layers.Layer):
dropout_rate: Dropout rate.
**kwargs: keyword arguments.
"""
super
(
MobileBertEmbedding
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
word_vocab_size
=
word_vocab_size
self
.
word_embed_size
=
word_embed_size
self
.
type_vocab_size
=
type_vocab_size
...
...
@@ -222,7 +222,7 @@ class MobileBertTransformer(tf.keras.layers.Layer):
Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
super
(
MobileBertTransformer
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
hidden_size
=
hidden_size
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
...
...
@@ -459,7 +459,7 @@ class MobileBertMaskedLM(tf.keras.layers.Layer):
`predictions`.
**kwargs: keyword arguments.
"""
super
(
MobileBertMaskedLM
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
embedding_table
=
embedding_table
self
.
activation
=
activation
self
.
initializer
=
tf
.
keras
.
initializers
.
get
(
initializer
)
...
...
official/nlp/modeling/layers/multi_channel_attention.py
View file @
5474ad71
...
...
@@ -49,7 +49,7 @@ class VotingAttention(tf.keras.layers.Layer):
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
VotingAttention
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_num_heads
=
num_heads
self
.
_head_size
=
head_size
self
.
_kernel_initializer
=
tf
.
keras
.
initializers
.
get
(
kernel_initializer
)
...
...
@@ -82,7 +82,7 @@ class VotingAttention(tf.keras.layers.Layer):
kernel_initializer
=
tf_utils
.
clone_initializer
(
self
.
_kernel_initializer
),
bias_initializer
=
tf_utils
.
clone_initializer
(
self
.
_bias_initializer
),
**
common_kwargs
)
super
(
VotingAttention
,
self
).
build
(
unused_input_shapes
)
super
().
build
(
unused_input_shapes
)
def
call
(
self
,
encoder_outputs
,
doc_attention_mask
):
num_docs
=
tf_utils
.
get_shape_list
(
encoder_outputs
,
expected_rank
=
[
4
])[
1
]
...
...
@@ -123,7 +123,7 @@ class MultiChannelAttention(tf.keras.layers.MultiHeadAttention):
"""
def
_build_attention
(
self
,
rank
):
super
(
MultiChannelAttention
,
self
).
_build_attention
(
rank
)
# pytype: disable=attribute-error # typed-keras
super
().
_build_attention
(
rank
)
# pytype: disable=attribute-error # typed-keras
self
.
_masked_softmax
=
masked_softmax
.
MaskedSoftmax
(
mask_expansion_axes
=
[
2
])
def
call
(
self
,
...
...
official/nlp/modeling/layers/on_device_embedding.py
View file @
5474ad71
...
...
@@ -47,7 +47,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
scale_factor
=
None
,
**
kwargs
):
super
(
OnDeviceEmbedding
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_vocab_size
=
vocab_size
self
.
_embedding_width
=
embedding_width
self
.
_initializer
=
initializer
...
...
@@ -62,7 +62,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
"use_one_hot"
:
self
.
_use_one_hot
,
"scale_factor"
:
self
.
_scale_factor
,
}
base_config
=
super
(
OnDeviceEmbedding
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
build
(
self
,
input_shape
):
...
...
@@ -72,7 +72,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
initializer
=
self
.
_initializer
,
dtype
=
tf
.
float32
)
super
(
OnDeviceEmbedding
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
def
call
(
self
,
inputs
):
flat_inputs
=
tf
.
reshape
(
inputs
,
[
-
1
])
...
...
official/nlp/modeling/layers/position_embedding.py
View file @
5474ad71
...
...
@@ -53,7 +53,7 @@ class PositionEmbedding(tf.keras.layers.Layer):
seq_axis
=
1
,
**
kwargs
):
super
(
PositionEmbedding
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
if
max_length
is
None
:
raise
ValueError
(
"`max_length` must be an Integer, not `None`."
...
...
@@ -81,7 +81,7 @@ class PositionEmbedding(tf.keras.layers.Layer):
shape
=
[
weight_sequence_length
,
width
],
initializer
=
self
.
_initializer
)
super
(
PositionEmbedding
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
def
call
(
self
,
inputs
):
input_shape
=
tf
.
shape
(
inputs
)
...
...
official/nlp/modeling/layers/reuse_attention.py
View file @
5474ad71
...
...
@@ -223,7 +223,7 @@ class ReuseMultiHeadAttention(tf.keras.layers.Layer):
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
ReuseMultiHeadAttention
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_num_heads
=
num_heads
self
.
_key_dim
=
key_dim
self
.
_value_dim
=
value_dim
if
value_dim
else
key_dim
...
...
@@ -301,7 +301,7 @@ class ReuseMultiHeadAttention(tf.keras.layers.Layer):
"key_shape"
:
self
.
_key_shape
,
"value_shape"
:
self
.
_value_shape
,
}
base_config
=
super
(
ReuseMultiHeadAttention
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
@
classmethod
...
...
official/nlp/modeling/layers/routing.py
View file @
5474ad71
...
...
@@ -33,7 +33,7 @@ class TokenImportanceWithMovingAvg(tf.keras.layers.Layer):
self
.
_vocab_size
=
vocab_size
self
.
_init_importance
=
init_importance
self
.
_moving_average_beta
=
moving_average_beta
super
(
TokenImportanceWithMovingAvg
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
def
build
(
self
,
input_shape
):
self
.
_importance_embedding
=
self
.
add_weight
(
...
...
@@ -51,7 +51,7 @@ class TokenImportanceWithMovingAvg(tf.keras.layers.Layer):
"moving_average_beta"
:
self
.
_moving_average_beta
,
}
base_config
=
super
(
TokenImportanceWithMovingAvg
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
update_token_importance
(
self
,
token_ids
,
importance
):
...
...
@@ -80,7 +80,7 @@ class SelectTopK(tf.keras.layers.Layer):
**
kwargs
):
self
.
_top_k
=
top_k
self
.
_random_k
=
random_k
super
(
SelectTopK
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
def
get_config
(
self
):
config
=
{
...
...
@@ -89,7 +89,7 @@ class SelectTopK(tf.keras.layers.Layer):
"random_k"
:
self
.
_random_k
,
}
base_config
=
super
(
SelectTopK
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
call
(
self
,
inputs
):
...
...
official/nlp/modeling/layers/spectral_normalization.py
View file @
5474ad71
...
...
@@ -74,11 +74,11 @@ class SpectralNormalization(tf.keras.layers.Wrapper):
if
not
isinstance
(
layer
,
tf
.
keras
.
layers
.
Layer
):
raise
ValueError
(
'`layer` must be a `tf.keras.layer.Layer`. '
'Observed `{}`'
.
format
(
layer
))
super
(
SpectralNormalization
,
self
).
__init__
(
super
().
__init__
(
layer
,
name
=
wrapper_name
,
**
kwargs
)
def
build
(
self
,
input_shape
):
super
(
SpectralNormalization
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
self
.
layer
.
kernel
.
_aggregation
=
self
.
aggregation
# pylint: disable=protected-access
self
.
_dtype
=
self
.
layer
.
kernel
.
dtype
...
...
@@ -193,7 +193,7 @@ class SpectralNormalizationConv2D(tf.keras.layers.Wrapper):
raise
ValueError
(
'layer must be a `tf.keras.layer.Conv2D` instance. You passed: {input}'
.
format
(
input
=
layer
))
super
(
SpectralNormalizationConv2D
,
self
).
__init__
(
layer
,
**
kwargs
)
super
().
__init__
(
layer
,
**
kwargs
)
def
build
(
self
,
input_shape
):
if
not
self
.
layer
.
built
:
...
...
@@ -238,7 +238,7 @@ class SpectralNormalizationConv2D(tf.keras.layers.Wrapper):
dtype
=
self
.
dtype
,
aggregation
=
self
.
aggregation
)
super
(
SpectralNormalizationConv2D
,
self
).
build
()
super
().
build
()
def
call
(
self
,
inputs
):
u_update_op
,
v_update_op
,
w_update_op
=
self
.
update_weights
()
...
...
official/nlp/modeling/layers/tn_expand_condense.py
View file @
5474ad71
...
...
@@ -66,7 +66,7 @@ class TNExpandCondense(Layer):
if
'input_shape'
not
in
kwargs
and
'input_dim'
in
kwargs
:
kwargs
[
'input_shape'
]
=
(
kwargs
.
pop
(
'input_dim'
),)
super
(
TNExpandCondense
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
assert
proj_multiplier
in
[
2
,
4
,
6
,
8
,
10
,
12
...
...
@@ -86,7 +86,7 @@ class TNExpandCondense(Layer):
'The last dimension of the inputs to `TNExpandCondense` '
'should be defined. Found `None`.'
)
super
(
TNExpandCondense
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
self
.
proj_size
=
self
.
proj_multiplier
*
input_shape
[
-
1
]
...
...
@@ -178,5 +178,5 @@ class TNExpandCondense(Layer):
getattr
(
self
,
initializer_arg
))
# Get base config
base_config
=
super
(
TNExpandCondense
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
official/nlp/modeling/layers/tn_transformer_expand_condense.py
View file @
5474ad71
...
...
@@ -78,7 +78,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer):
intermediate_dropout
=
0.0
,
attention_initializer
=
None
,
**
kwargs
):
super
(
TNTransformerExpandCondense
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_num_heads
=
num_attention_heads
self
.
_intermediate_size
=
intermediate_size
...
...
@@ -170,7 +170,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer):
epsilon
=
self
.
_norm_epsilon
,
dtype
=
tf
.
float32
)
super
(
TNTransformerExpandCondense
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
def
get_config
(
self
):
config
=
{
...
...
@@ -211,7 +211,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer):
"attention_initializer"
:
tf
.
keras
.
initializers
.
serialize
(
self
.
_attention_initializer
)
}
base_config
=
super
(
TNTransformerExpandCondense
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
call
(
self
,
inputs
):
...
...
official/nlp/modeling/layers/transformer_xl.py
View file @
5474ad71
...
...
@@ -103,7 +103,7 @@ class TransformerXLBlock(tf.keras.layers.Layer):
**
kwargs
):
"""Initializes TransformerXLBlock layer."""
super
(
TransformerXLBlock
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_vocab_size
=
vocab_size
self
.
_num_heads
=
num_attention_heads
self
.
_head_size
=
head_size
...
...
@@ -181,7 +181,7 @@ class TransformerXLBlock(tf.keras.layers.Layer):
axis
=-
1
,
epsilon
=
self
.
_norm_epsilon
)
super
(
TransformerXLBlock
,
self
).
build
(
input_shape
)
super
().
build
(
input_shape
)
def
get_config
(
self
):
config
=
{
...
...
@@ -210,7 +210,7 @@ class TransformerXLBlock(tf.keras.layers.Layer):
"inner_dropout"
:
self
.
_inner_dropout
,
}
base_config
=
super
(
TransformerXLBlock
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
call
(
self
,
...
...
@@ -371,7 +371,7 @@ class TransformerXL(tf.keras.layers.Layer):
inner_activation
=
"relu"
,
**
kwargs
):
"""Initializes TransformerXL."""
super
(
TransformerXL
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
_vocab_size
=
vocab_size
self
.
_initializer
=
initializer
...
...
@@ -461,7 +461,7 @@ class TransformerXL(tf.keras.layers.Layer):
"inner_activation"
:
self
.
_inner_activation
,
}
base_config
=
super
(
TransformerXL
,
self
).
get_config
()
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
call
(
self
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment