Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
4ea11215
Commit
4ea11215
authored
Sep 11, 2020
by
Zhenyu Tan
Committed by
A. Unique TensorFlower
Sep 11, 2020
Browse files
aliasing OnDeviceEmbedding inside tensorflow_models.
PiperOrigin-RevId: 331173006
parent
a298202e
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
25 additions
and
23 deletions
+25
-23
official/nlp/configs/encoders.py
official/nlp/configs/encoders.py
+6
-5
official/nlp/keras_nlp/layers/on_device_embedding.py
official/nlp/keras_nlp/layers/on_device_embedding.py
+8
-8
official/nlp/keras_nlp/layers/on_device_embedding_test.py
official/nlp/keras_nlp/layers/on_device_embedding_test.py
+2
-1
official/nlp/modeling/models/seq2seq_transformer.py
official/nlp/modeling/models/seq2seq_transformer.py
+3
-3
official/nlp/modeling/networks/encoder_scaffold.py
official/nlp/modeling/networks/encoder_scaffold.py
+3
-3
official/nlp/modeling/networks/mobile_bert_encoder.py
official/nlp/modeling/networks/mobile_bert_encoder.py
+3
-3
No files found.
official/nlp/configs/encoders.py
View file @
4ea11215
...
...
@@ -26,7 +26,7 @@ import tensorflow as tf
from
official.modeling
import
hyperparams
from
official.modeling
import
tf_utils
from
official.nlp
.modeling
import
layers
from
official.nlp
import
keras_nlp
from
official.nlp.modeling
import
networks
...
...
@@ -137,8 +137,9 @@ ENCODER_CLS = {
@
gin
.
configurable
def
build_encoder
(
config
:
EncoderConfig
,
embedding_layer
:
Optional
[
layers
.
OnDeviceEmbedding
]
=
None
,
def
build_encoder
(
config
:
EncoderConfig
,
embedding_layer
:
Optional
[
keras_nlp
.
layers
.
OnDeviceEmbedding
]
=
None
,
encoder_cls
=
None
,
bypass_config
:
bool
=
False
):
"""Instantiate a Transformer encoder network from EncoderConfig.
...
...
official/nlp/keras_nlp/layers/on_device_embedding.py
View file @
4ea11215
...
...
@@ -34,9 +34,9 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
lookup. Defaults to False (that is, using tf.gather). Setting this option
to True may improve performance, especially on small vocabulary sizes, but
will generally require more memory.
use_
scale: Whether to scale the output embeddings. Defaults to
Fals
e (that
is, not to scale). Setting this option to
True
will let values in
output
embeddings multiplied by s
elf._embedding_width ** 0.5
.
scale
_factor
: Whether to scale the output embeddings. Defaults to
Non
e (that
is, not to scale). Setting this option to
a float
will let values in
output
embeddings multiplied by s
cale_factor
.
"""
def
__init__
(
self
,
...
...
@@ -44,7 +44,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
embedding_width
,
initializer
=
"glorot_uniform"
,
use_one_hot
=
False
,
use_
scale
=
Fals
e
,
scale
_factor
=
Non
e
,
**
kwargs
):
super
(
OnDeviceEmbedding
,
self
).
__init__
(
**
kwargs
)
...
...
@@ -52,7 +52,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
self
.
_embedding_width
=
embedding_width
self
.
_initializer
=
initializer
self
.
_use_one_hot
=
use_one_hot
self
.
_
use_
scale
=
use_scale
self
.
_scale
_factor
=
scale_factor
def
get_config
(
self
):
config
=
{
...
...
@@ -60,7 +60,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
"embedding_width"
:
self
.
_embedding_width
,
"initializer"
:
self
.
_initializer
,
"use_one_hot"
:
self
.
_use_one_hot
,
"
use_
scale"
:
self
.
_
use_
scale
,
"scale
_factor
"
:
self
.
_scale
_factor
,
}
base_config
=
super
(
OnDeviceEmbedding
,
self
).
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
...
...
@@ -87,6 +87,6 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
# Work around b/142213824: prefer concat to shape over a Python list.
tf
.
concat
([
tf
.
shape
(
inputs
),
[
self
.
_embedding_width
]],
axis
=
0
))
embeddings
.
set_shape
(
inputs
.
shape
.
as_list
()
+
[
self
.
_embedding_width
])
if
self
.
_
use_
scale
:
embeddings
*=
self
.
_
embedding_width
**
0.5
if
self
.
_scale
_factor
:
embeddings
*=
self
.
_
scale_factor
return
embeddings
official/nlp/keras_nlp/layers/on_device_embedding_test.py
View file @
4ea11215
...
...
@@ -192,7 +192,8 @@ class OnDeviceEmbeddingTest(keras_parameterized.TestCase):
vocab_size
=
31
embedding_width
=
27
test_layer
=
on_device_embedding
.
OnDeviceEmbedding
(
vocab_size
=
vocab_size
,
embedding_width
=
embedding_width
,
use_scale
=
True
)
vocab_size
=
vocab_size
,
embedding_width
=
embedding_width
,
scale_factor
=
embedding_width
**
0.5
)
# Create a 2-dimensional input (the first dimension is implicit).
sequence_length
=
23
input_tensor
=
tf
.
keras
.
Input
(
shape
=
(
sequence_length
),
dtype
=
tf
.
int32
)
...
...
official/nlp/modeling/models/seq2seq_transformer.py
View file @
4ea11215
...
...
@@ -142,12 +142,12 @@ class Seq2SeqTransformer(tf.keras.Model):
self
.
_beam_size
=
beam_size
self
.
_alpha
=
alpha
self
.
_dtype
=
dtype
self
.
embedding_lookup
=
layers
.
OnDeviceEmbedding
(
self
.
embedding_lookup
=
keras_nlp
.
layers
.
OnDeviceEmbedding
(
vocab_size
=
self
.
_vocab_size
,
embedding_width
=
self
.
_embedding_width
,
initializer
=
tf
.
random_normal_initializer
(
mean
=
0.
,
stddev
=
self
.
_embedding_width
**-
0.5
),
use_
scale
=
True
)
scale
_factor
=
self
.
_embedding_width
**
0.5
)
self
.
encoder_layer
=
encoder_layer
self
.
decoder_layer
=
decoder_layer
self
.
position_embedding
=
layers
.
RelativePositionEmbedding
(
...
...
@@ -472,7 +472,7 @@ class TransformerEncoder(tf.keras.layers.Layer):
self
.
encoder_layers
=
[]
for
i
in
range
(
self
.
num_layers
):
self
.
encoder_layers
.
append
(
keras_nlp
.
TransformerEncoderBlock
(
keras_nlp
.
layers
.
TransformerEncoderBlock
(
num_attention_heads
=
self
.
num_attention_heads
,
inner_dim
=
self
.
_intermediate_size
,
inner_activation
=
self
.
_activation
,
...
...
official/nlp/modeling/networks/encoder_scaffold.py
View file @
4ea11215
...
...
@@ -141,7 +141,7 @@ class EncoderScaffold(tf.keras.Model):
shape
=
(
seq_length
,),
dtype
=
tf
.
int32
,
name
=
'input_type_ids'
)
inputs
=
[
word_ids
,
mask
,
type_ids
]
self
.
_embedding_layer
=
layers
.
OnDeviceEmbedding
(
self
.
_embedding_layer
=
keras_nlp
.
layers
.
OnDeviceEmbedding
(
vocab_size
=
embedding_cfg
[
'vocab_size'
],
embedding_width
=
embedding_cfg
[
'hidden_size'
],
initializer
=
embedding_cfg
[
'initializer'
],
...
...
@@ -150,13 +150,13 @@ class EncoderScaffold(tf.keras.Model):
word_embeddings
=
self
.
_embedding_layer
(
word_ids
)
# Always uses dynamic slicing for simplicity.
self
.
_position_embedding_layer
=
keras_nlp
.
PositionEmbedding
(
self
.
_position_embedding_layer
=
keras_nlp
.
layers
.
PositionEmbedding
(
initializer
=
embedding_cfg
[
'initializer'
],
max_length
=
embedding_cfg
[
'max_seq_length'
],
name
=
'position_embedding'
)
position_embeddings
=
self
.
_position_embedding_layer
(
word_embeddings
)
self
.
_type_embedding_layer
=
layers
.
OnDeviceEmbedding
(
self
.
_type_embedding_layer
=
keras_nlp
.
layers
.
OnDeviceEmbedding
(
vocab_size
=
embedding_cfg
[
'type_vocab_size'
],
embedding_width
=
embedding_cfg
[
'hidden_size'
],
initializer
=
embedding_cfg
[
'initializer'
],
...
...
official/nlp/modeling/networks/mobile_bert_encoder.py
View file @
4ea11215
...
...
@@ -101,18 +101,18 @@ class MobileBertEmbedding(tf.keras.layers.Layer):
self
.
max_sequence_length
=
max_sequence_length
self
.
dropout_rate
=
dropout_rate
self
.
word_embedding
=
layers
.
OnDeviceEmbedding
(
self
.
word_embedding
=
keras_nlp
.
layers
.
OnDeviceEmbedding
(
self
.
word_vocab_size
,
self
.
word_embed_size
,
initializer
=
initializer
,
name
=
'word_embedding'
)
self
.
type_embedding
=
layers
.
OnDeviceEmbedding
(
self
.
type_embedding
=
keras_nlp
.
layers
.
OnDeviceEmbedding
(
self
.
type_vocab_size
,
self
.
output_embed_size
,
use_one_hot
=
True
,
initializer
=
initializer
,
name
=
'type_embedding'
)
self
.
pos_embedding
=
keras_nlp
.
PositionEmbedding
(
self
.
pos_embedding
=
keras_nlp
.
layers
.
PositionEmbedding
(
max_length
=
max_sequence_length
,
initializer
=
initializer
,
name
=
'position_embedding'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment