Commit 4e5e2497 authored by derekjchow's avatar derekjchow Committed by GitHub
Browse files

Merge pull request #1918 from korrawat/g3doc-dir

Update directories in preparing_inputs.md
parents 05efe3aa ea2486d0
...@@ -7,39 +7,52 @@ TFRecords. ...@@ -7,39 +7,52 @@ TFRecords.
## Generating the PASCAL VOC TFRecord files. ## Generating the PASCAL VOC TFRecord files.
The raw 2012 PASCAL VOC data set can be downloaded The raw 2012 PASCAL VOC data set is located
[here](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar). [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar).
Extract the tar file and run the `create_pascal_tf_record` script: To download, extract and convert it to TFRecords, run the following commands
below:
```bash ```bash
# From tensorflow/models/object_detection # From tensorflow/models
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_11-May-2012.tar tar -xvf VOCtrainval_11-May-2012.tar
python create_pascal_tf_record.py --data_dir=VOCdevkit \ python object_detection/create_pascal_tf_record.py \
--year=VOC2012 --set=train --output_path=pascal_train.record --label_map_path=object_detection/data/pascal_label_map.pbtxt \
python create_pascal_tf_record.py --data_dir=VOCdevkit \ --data_dir=VOCdevkit --year=VOC2012 --set=train \
--year=VOC2012 --set=val --output_path=pascal_val.record --output_path=pascal_train.record
python object_detection/create_pascal_tf_record.py \
--label_map_path=object_detection/data/pascal_label_map.pbtxt \
--data_dir=VOCdevkit --year=VOC2012 --set=val \
--output_path=pascal_val.record
``` ```
You should end up with two TFRecord files named `pascal_train.record` and You should end up with two TFRecord files named `pascal_train.record` and
`pascal_val.record` in the `tensorflow/models/object_detection` directory. `pascal_val.record` in the `tensorflow/models` directory.
The label map for the PASCAL VOC data set can be found at The label map for the PASCAL VOC data set can be found at
`data/pascal_label_map.pbtxt`. `object_detection/data/pascal_label_map.pbtxt`.
## Generating the Oxford-IIIT Pet TFRecord files. ## Generating the Oxford-IIIT Pet TFRecord files.
The Oxford-IIIT Pet data set can be downloaded from The Oxford-IIIT Pet data set is located on
[their website](http://www.robots.ox.ac.uk/~vgg/data/pets/). Extract the tar [their website](http://www.robots.ox.ac.uk/~vgg/data/pets/).
file and run the `create_pet_tf_record` script to generate TFRecords. To download, extract and convert it to TFRecrods, run the following commands
below:
```bash ```bash
# From tensorflow/models/object_detection # From tensorflow/models
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
tar -xvf annotations.tar.gz tar -xvf annotations.tar.gz
tar -xvf images.tar.gz tar -xvf images.tar.gz
python create_pet_tf_record.py --data_dir=`pwd` --output_dir=`pwd` python object_detection/create_pet_tf_record.py \
--label_map_path=object_detection/data/pet_label_map.pbtxt \
--data_dir=`pwd` \
--output_dir=`pwd`
``` ```
You should end up with two TFRecord files named `pet_train.record` and You should end up with two TFRecord files named `pet_train.record` and
`pet_val.record` in the `tensorflow/models/object_detection` directory. `pet_val.record` in the `tensorflow/models` directory.
The label map for the Pet dataset can be found at `data/pet_label_map.pbtxt`. The label map for the Pet dataset can be found at
`object_detection/data/pet_label_map.pbtxt`.
...@@ -77,5 +77,5 @@ tensorboard --logdir=${PATH_TO_MODEL_DIRECTORY} ...@@ -77,5 +77,5 @@ tensorboard --logdir=${PATH_TO_MODEL_DIRECTORY}
``` ```
where `${PATH_TO_MODEL_DIRECTORY}` points to the directory that contains the where `${PATH_TO_MODEL_DIRECTORY}` points to the directory that contains the
train and eval directories. Please note it make take Tensorboard a couple train and eval directories. Please note it may take Tensorboard a couple
minutes to populate with data. minutes to populate with data.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment