Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
4cc1fa0f
Commit
4cc1fa0f
authored
May 01, 2017
by
Martin Wicke
Committed by
GitHub
May 01, 2017
Browse files
Merge pull request #1432 from alexgorban/master
Open source release of Attention OCR
parents
3a3c5b9d
9beaea41
Changes
24
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
823 additions
and
0 deletions
+823
-0
attention_ocr/python/sequence_layers.py
attention_ocr/python/sequence_layers.py
+422
-0
attention_ocr/python/sequence_layers_test.py
attention_ocr/python/sequence_layers_test.py
+112
-0
attention_ocr/python/train.py
attention_ocr/python/train.py
+209
-0
attention_ocr/python/utils.py
attention_ocr/python/utils.py
+80
-0
No files found.
attention_ocr/python/sequence_layers.py
0 → 100644
View file @
4cc1fa0f
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various implementations of sequence layers for character prediction.
A 'sequence layer' is a part of a computation graph which is responsible of
producing a sequence of characters using extracted image features. There are
many reasonable ways to implement such layers. All of them are using RNNs.
This module provides implementations which uses 'attention' mechanism to
spatially 'pool' image features and also can use a previously predicted
character to predict the next (aka auto regression).
Usage:
Select one of available classes, e.g. Attention or use a wrapper function to
pick one based on your requirements:
layer_class = sequence_layers.get_layer_class(use_attention=True,
use_autoregression=True)
layer = layer_class(net, labels_one_hot, model_params, method_params)
char_logits = layer.create_logits()
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
collections
import
abc
import
logging
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.contrib
import
slim
def
orthogonal_initializer
(
shape
,
dtype
=
tf
.
float32
,
*
args
,
**
kwargs
):
"""Generates orthonormal matrices with random values.
Orthonormal initialization is important for RNNs:
http://arxiv.org/abs/1312.6120
http://smerity.com/articles/2016/orthogonal_init.html
For non-square shapes the returned matrix will be semi-orthonormal: if the
number of columns exceeds the number of rows, then the rows are orthonormal
vectors; but if the number of rows exceeds the number of columns, then the
columns are orthonormal vectors.
We use SVD decomposition to generate an orthonormal matrix with random
values. The same way as it is done in the Lasagne library for Theano. Note
that both u and v returned by the svd are orthogonal and random. We just need
to pick one with the right shape.
Args:
shape: a shape of the tensor matrix to initialize.
dtype: a dtype of the initialized tensor.
*args: not used.
**kwargs: not used.
Returns:
An initialized tensor.
"""
del
args
del
kwargs
flat_shape
=
(
shape
[
0
],
np
.
prod
(
shape
[
1
:]))
w
=
np
.
random
.
randn
(
*
flat_shape
)
u
,
_
,
v
=
np
.
linalg
.
svd
(
w
,
full_matrices
=
False
)
w
=
u
if
u
.
shape
==
flat_shape
else
v
return
tf
.
constant
(
w
.
reshape
(
shape
),
dtype
=
dtype
)
SequenceLayerParams
=
collections
.
namedtuple
(
'SequenceLogitsParams'
,
[
'num_lstm_units'
,
'weight_decay'
,
'lstm_state_clip_value'
])
class
SequenceLayerBase
(
object
):
"""A base abstruct class for all sequence layers.
A child class has to define following methods:
get_train_input
get_eval_input
unroll_cell
"""
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
net
,
labels_one_hot
,
model_params
,
method_params
):
"""Stores argument in member variable for further use.
Args:
net: A tensor with shape [batch_size, num_features, feature_size] which
contains some extracted image features.
labels_one_hot: An optional (can be None) ground truth labels for the
input features. Is a tensor with shape
[batch_size, seq_length, num_char_classes]
model_params: A namedtuple with model parameters (model.ModelParams).
method_params: A SequenceLayerParams instance.
"""
self
.
_params
=
model_params
self
.
_mparams
=
method_params
self
.
_net
=
net
self
.
_labels_one_hot
=
labels_one_hot
self
.
_batch_size
=
net
.
get_shape
().
dims
[
0
].
value
# Initialize parameters for char logits which will be computed on the fly
# inside an LSTM decoder.
self
.
_char_logits
=
{}
regularizer
=
slim
.
l2_regularizer
(
self
.
_mparams
.
weight_decay
)
self
.
_softmax_w
=
slim
.
model_variable
(
'softmax_w'
,
[
self
.
_mparams
.
num_lstm_units
,
self
.
_params
.
num_char_classes
],
initializer
=
orthogonal_initializer
,
regularizer
=
regularizer
)
self
.
_softmax_b
=
slim
.
model_variable
(
'softmax_b'
,
[
self
.
_params
.
num_char_classes
],
initializer
=
tf
.
zeros_initializer
(),
regularizer
=
regularizer
)
@
abc
.
abstractmethod
def
get_train_input
(
self
,
prev
,
i
):
"""Returns a sample to be used to predict a character during training.
This function is used as a loop_function for an RNN decoder.
Args:
prev: output tensor from previous step of the RNN. A tensor with shape:
[batch_size, num_char_classes].
i: index of a character in the output sequence.
Returns:
A tensor with shape [batch_size, ?] - depth depends on implementation
details.
"""
pass
@
abc
.
abstractmethod
def
get_eval_input
(
self
,
prev
,
i
):
"""Returns a sample to be used to predict a character during inference.
This function is used as a loop_function for an RNN decoder.
Args:
prev: output tensor from previous step of the RNN. A tensor with shape:
[batch_size, num_char_classes].
i: index of a character in the output sequence.
Returns:
A tensor with shape [batch_size, ?] - depth depends on implementation
details.
"""
raise
AssertionError
(
'Not implemented'
)
@
abc
.
abstractmethod
def
unroll_cell
(
self
,
decoder_inputs
,
initial_state
,
loop_function
,
cell
):
"""Unrolls an RNN cell for all inputs.
This is a placeholder to call some RNN decoder. It has a similar to
tf.seq2seq.rnn_decode interface.
Args:
decoder_inputs: A list of 2D Tensors* [batch_size x input_size]. In fact,
most of existing decoders in presence of a loop_function use only the
first element to determine batch_size and length of the list to
determine number of steps.
initial_state: 2D Tensor with shape [batch_size x cell.state_size].
loop_function: function will be applied to the i-th output in order to
generate the i+1-st input (see self.get_input).
cell: rnn_cell.RNNCell defining the cell function and size.
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of character logits of the same length as
decoder_inputs of 2D Tensors with shape [batch_size x num_characters].
state: The state of each cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
pass
def
is_training
(
self
):
"""Returns True if the layer is created for training stage."""
return
self
.
_labels_one_hot
is
not
None
def
char_logit
(
self
,
inputs
,
char_index
):
"""Creates logits for a character if required.
Args:
inputs: A tensor with shape [batch_size, ?] (depth is implementation
dependent).
char_index: A integer index of a character in the output sequence.
Returns:
A tensor with shape [batch_size, num_char_classes]
"""
if
char_index
not
in
self
.
_char_logits
:
self
.
_char_logits
[
char_index
]
=
tf
.
nn
.
xw_plus_b
(
inputs
,
self
.
_softmax_w
,
self
.
_softmax_b
)
return
self
.
_char_logits
[
char_index
]
def
char_one_hot
(
self
,
logit
):
"""Creates one hot encoding for a logit of a character.
Args:
logit: A tensor with shape [batch_size, num_char_classes].
Returns:
A tensor with shape [batch_size, num_char_classes]
"""
prediction
=
tf
.
argmax
(
logit
,
dimension
=
1
)
return
slim
.
one_hot_encoding
(
prediction
,
self
.
_params
.
num_char_classes
)
def
get_input
(
self
,
prev
,
i
):
"""A wrapper for get_train_input and get_eval_input.
Args:
prev: output tensor from previous step of the RNN. A tensor with shape:
[batch_size, num_char_classes].
i: index of a character in the output sequence.
Returns:
A tensor with shape [batch_size, ?] - depth depends on implementation
details.
"""
if
self
.
is_training
():
return
self
.
get_train_input
(
prev
,
i
)
else
:
return
self
.
get_eval_input
(
prev
,
i
)
def
create_logits
(
self
):
"""Creates character sequence logits for a net specified in the constructor.
A "main" method for the sequence layer which glues together all pieces.
Returns:
A tensor with shape [batch_size, seq_length, num_char_classes].
"""
with
tf
.
variable_scope
(
'LSTM'
):
first_label
=
self
.
get_input
(
prev
=
None
,
i
=
0
)
decoder_inputs
=
[
first_label
]
+
[
None
]
*
(
self
.
_params
.
seq_length
-
1
)
lstm_cell
=
tf
.
contrib
.
rnn
.
LSTMCell
(
self
.
_mparams
.
num_lstm_units
,
use_peepholes
=
False
,
cell_clip
=
self
.
_mparams
.
lstm_state_clip_value
,
state_is_tuple
=
True
,
initializer
=
orthogonal_initializer
)
lstm_outputs
,
_
=
self
.
unroll_cell
(
decoder_inputs
=
decoder_inputs
,
initial_state
=
lstm_cell
.
zero_state
(
self
.
_batch_size
,
tf
.
float32
),
loop_function
=
self
.
get_input
,
cell
=
lstm_cell
)
with
tf
.
variable_scope
(
'logits'
):
logits_list
=
[
tf
.
expand_dims
(
self
.
char_logit
(
logit
,
i
),
dim
=
1
)
for
i
,
logit
in
enumerate
(
lstm_outputs
)
]
return
tf
.
concat
(
logits_list
,
1
)
class
NetSlice
(
SequenceLayerBase
):
"""A layer which uses a subset of image features to predict each character.
"""
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
NetSlice
,
self
).
__init__
(
*
args
,
**
kwargs
)
self
.
_zero_label
=
tf
.
zeros
(
[
self
.
_batch_size
,
self
.
_params
.
num_char_classes
])
def
get_image_feature
(
self
,
char_index
):
"""Returns a subset of image features for a character.
Args:
char_index: an index of a character.
Returns:
A tensor with shape [batch_size, ?]. The output depth depends on the
depth of input net.
"""
batch_size
,
features_num
,
_
=
[
d
.
value
for
d
in
self
.
_net
.
get_shape
()]
slice_len
=
int
(
features_num
/
self
.
_params
.
seq_length
)
# In case when features_num != seq_length, we just pick a subset of image
# features, this choice is arbitrary and there is no intuitive geometrical
# interpretation. If features_num is not dividable by seq_length there will
# be unused image features.
net_slice
=
self
.
_net
[:,
char_index
:
char_index
+
slice_len
,
:]
feature
=
tf
.
reshape
(
net_slice
,
[
batch_size
,
-
1
])
logging
.
debug
(
'Image feature: %s'
,
feature
)
return
feature
def
get_eval_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_eval_input for details."""
del
prev
return
self
.
get_image_feature
(
i
)
def
get_train_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_train_input for details."""
return
self
.
get_eval_input
(
prev
,
i
)
def
unroll_cell
(
self
,
decoder_inputs
,
initial_state
,
loop_function
,
cell
):
"""See SequenceLayerBase.unroll_cell for details."""
return
tf
.
contrib
.
legacy_seq2seq
.
rnn_decoder
(
decoder_inputs
=
decoder_inputs
,
initial_state
=
initial_state
,
cell
=
cell
,
loop_function
=
self
.
get_input
)
class
NetSliceWithAutoregression
(
NetSlice
):
"""A layer similar to NetSlice, but it also uses auto regression.
The "auto regression" means that we use network output for previous character
as a part of input for the current character.
"""
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
NetSliceWithAutoregression
,
self
).
__init__
(
*
args
,
**
kwargs
)
def
get_eval_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_eval_input for details."""
if
i
==
0
:
prev
=
self
.
_zero_label
else
:
logit
=
self
.
char_logit
(
prev
,
char_index
=
i
-
1
)
prev
=
self
.
char_one_hot
(
logit
)
image_feature
=
self
.
get_image_feature
(
char_index
=
i
)
return
tf
.
concat
([
image_feature
,
prev
],
1
)
def
get_train_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_train_input for details."""
if
i
==
0
:
prev
=
self
.
_zero_label
else
:
prev
=
self
.
_labels_one_hot
[:,
i
-
1
,
:]
image_feature
=
self
.
get_image_feature
(
i
)
return
tf
.
concat
([
image_feature
,
prev
],
1
)
class
Attention
(
SequenceLayerBase
):
"""A layer which uses attention mechanism to select image features."""
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
Attention
,
self
).
__init__
(
*
args
,
**
kwargs
)
self
.
_zero_label
=
tf
.
zeros
(
[
self
.
_batch_size
,
self
.
_params
.
num_char_classes
])
def
get_eval_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_eval_input for details."""
del
prev
,
i
# The attention_decoder will fetch image features from the net, no need for
# extra inputs.
return
self
.
_zero_label
def
get_train_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_train_input for details."""
return
self
.
get_eval_input
(
prev
,
i
)
def
unroll_cell
(
self
,
decoder_inputs
,
initial_state
,
loop_function
,
cell
):
return
tf
.
contrib
.
legacy_seq2seq
.
attention_decoder
(
decoder_inputs
=
decoder_inputs
,
initial_state
=
initial_state
,
attention_states
=
self
.
_net
,
cell
=
cell
,
loop_function
=
self
.
get_input
)
class
AttentionWithAutoregression
(
Attention
):
"""A layer which uses both attention and auto regression."""
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
AttentionWithAutoregression
,
self
).
__init__
(
*
args
,
**
kwargs
)
def
get_train_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_train_input for details."""
if
i
==
0
:
return
self
.
_zero_label
else
:
# TODO(gorban): update to gradually introduce gt labels.
return
self
.
_labels_one_hot
[:,
i
-
1
,
:]
def
get_eval_input
(
self
,
prev
,
i
):
"""See SequenceLayerBase.get_eval_input for details."""
if
i
==
0
:
return
self
.
_zero_label
else
:
logit
=
self
.
char_logit
(
prev
,
char_index
=
i
-
1
)
return
self
.
char_one_hot
(
logit
)
def
get_layer_class
(
use_attention
,
use_autoregression
):
"""A convenience function to get a layer class based on requirements.
Args:
use_attention: if True a returned class will use attention.
use_autoregression: if True a returned class will use auto regression.
Returns:
One of available sequence layers (child classes for SequenceLayerBase).
"""
if
use_attention
and
use_autoregression
:
layer_class
=
AttentionWithAutoregression
elif
use_attention
and
not
use_autoregression
:
layer_class
=
Attention
elif
not
use_attention
and
not
use_autoregression
:
layer_class
=
NetSlice
elif
not
use_attention
and
use_autoregression
:
layer_class
=
NetSliceWithAutoregression
else
:
raise
AssertionError
(
'Unsupported sequence layer class'
)
logging
.
debug
(
'Use %s as a layer class'
,
layer_class
.
__name__
)
return
layer_class
attention_ocr/python/sequence_layers_test.py
0 → 100644
View file @
4cc1fa0f
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for sequence_layers."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.contrib
import
slim
import
model
import
sequence_layers
def
fake_net
(
batch_size
,
num_features
,
feature_size
):
return
tf
.
convert_to_tensor
(
np
.
random
.
uniform
(
size
=
(
batch_size
,
num_features
,
feature_size
)),
dtype
=
tf
.
float32
)
def
fake_labels
(
batch_size
,
seq_length
,
num_char_classes
):
labels_np
=
tf
.
convert_to_tensor
(
np
.
random
.
randint
(
low
=
0
,
high
=
num_char_classes
,
size
=
(
batch_size
,
seq_length
)))
return
slim
.
one_hot_encoding
(
labels_np
,
num_classes
=
num_char_classes
)
def
create_layer
(
layer_class
,
batch_size
,
seq_length
,
num_char_classes
):
model_params
=
model
.
ModelParams
(
num_char_classes
=
num_char_classes
,
seq_length
=
seq_length
,
num_views
=
1
,
null_code
=
num_char_classes
)
net
=
fake_net
(
batch_size
=
batch_size
,
num_features
=
seq_length
*
5
,
feature_size
=
6
)
labels_one_hot
=
fake_labels
(
batch_size
,
seq_length
,
num_char_classes
)
layer_params
=
sequence_layers
.
SequenceLayerParams
(
num_lstm_units
=
10
,
weight_decay
=
0.00004
,
lstm_state_clip_value
=
10.0
)
return
layer_class
(
net
,
labels_one_hot
,
model_params
,
layer_params
)
class
SequenceLayersTest
(
tf
.
test
.
TestCase
):
def
test_net_slice_char_logits_with_correct_shape
(
self
):
batch_size
=
2
seq_length
=
4
num_char_classes
=
3
layer
=
create_layer
(
sequence_layers
.
NetSlice
,
batch_size
,
seq_length
,
num_char_classes
)
char_logits
=
layer
.
create_logits
()
self
.
assertEqual
(
tf
.
TensorShape
([
batch_size
,
seq_length
,
num_char_classes
]),
char_logits
.
get_shape
())
def
test_net_slice_with_autoregression_char_logits_with_correct_shape
(
self
):
batch_size
=
2
seq_length
=
4
num_char_classes
=
3
layer
=
create_layer
(
sequence_layers
.
NetSliceWithAutoregression
,
batch_size
,
seq_length
,
num_char_classes
)
char_logits
=
layer
.
create_logits
()
self
.
assertEqual
(
tf
.
TensorShape
([
batch_size
,
seq_length
,
num_char_classes
]),
char_logits
.
get_shape
())
def
test_attention_char_logits_with_correct_shape
(
self
):
batch_size
=
2
seq_length
=
4
num_char_classes
=
3
layer
=
create_layer
(
sequence_layers
.
Attention
,
batch_size
,
seq_length
,
num_char_classes
)
char_logits
=
layer
.
create_logits
()
self
.
assertEqual
(
tf
.
TensorShape
([
batch_size
,
seq_length
,
num_char_classes
]),
char_logits
.
get_shape
())
def
test_attention_with_autoregression_char_logits_with_correct_shape
(
self
):
batch_size
=
2
seq_length
=
4
num_char_classes
=
3
layer
=
create_layer
(
sequence_layers
.
AttentionWithAutoregression
,
batch_size
,
seq_length
,
num_char_classes
)
char_logits
=
layer
.
create_logits
()
self
.
assertEqual
(
tf
.
TensorShape
([
batch_size
,
seq_length
,
num_char_classes
]),
char_logits
.
get_shape
())
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
attention_ocr/python/train.py
0 → 100644
View file @
4cc1fa0f
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script to train the Attention OCR model.
A simple usage example:
python train.py
"""
import
collections
import
logging
import
tensorflow
as
tf
from
tensorflow.contrib
import
slim
from
tensorflow
import
app
from
tensorflow.python.platform
import
flags
from
tensorflow.contrib.tfprof
import
model_analyzer
import
data_provider
import
common_flags
FLAGS
=
flags
.
FLAGS
common_flags
.
define
()
# yapf: disable
flags
.
DEFINE_integer
(
'task'
,
0
,
'The Task ID. This value is used when training with '
'multiple workers to identify each worker.'
)
flags
.
DEFINE_integer
(
'ps_tasks'
,
0
,
'The number of parameter servers. If the value is 0, then'
' the parameters are handled locally by the worker.'
)
flags
.
DEFINE_integer
(
'save_summaries_secs'
,
60
,
'The frequency with which summaries are saved, in '
'seconds.'
)
flags
.
DEFINE_integer
(
'save_interval_secs'
,
600
,
'Frequency in seconds of saving the model.'
)
flags
.
DEFINE_integer
(
'max_number_of_steps'
,
int
(
1e10
),
'The maximum number of gradient steps.'
)
flags
.
DEFINE_string
(
'checkpoint_inception'
,
''
,
'Checkpoint to recover inception weights from.'
)
flags
.
DEFINE_float
(
'clip_gradient_norm'
,
2.0
,
'If greater than 0 then the gradients would be clipped by '
'it.'
)
flags
.
DEFINE_bool
(
'sync_replicas'
,
False
,
'If True will synchronize replicas during training.'
)
flags
.
DEFINE_integer
(
'replicas_to_aggregate'
,
1
,
'The number of gradients updates before updating params.'
)
flags
.
DEFINE_integer
(
'total_num_replicas'
,
1
,
'Total number of worker replicas.'
)
flags
.
DEFINE_integer
(
'startup_delay_steps'
,
15
,
'Number of training steps between replicas startup.'
)
flags
.
DEFINE_boolean
(
'reset_train_dir'
,
False
,
'If true will delete all files in the train_log_dir'
)
flags
.
DEFINE_boolean
(
'show_graph_stats'
,
False
,
'Output model size stats to stderr.'
)
# yapf: enable
TrainingHParams
=
collections
.
namedtuple
(
'TrainingHParams'
,
[
'learning_rate'
,
'optimizer'
,
'momentum'
,
'use_augment_input'
,
])
def
get_training_hparams
():
return
TrainingHParams
(
learning_rate
=
FLAGS
.
learning_rate
,
optimizer
=
FLAGS
.
optimizer
,
momentum
=
FLAGS
.
momentum
,
use_augment_input
=
FLAGS
.
use_augment_input
)
def
create_optimizer
(
hparams
):
"""Creates optimized based on the specified flags."""
if
hparams
.
optimizer
==
'momentum'
:
optimizer
=
tf
.
train
.
MomentumOptimizer
(
hparams
.
learning_rate
,
momentum
=
hparams
.
momentum
)
elif
hparams
.
optimizer
==
'adam'
:
optimizer
=
tf
.
train
.
AdamOptimizer
(
hparams
.
learning_rate
)
elif
hparams
.
optimizer
==
'adadelta'
:
optimizer
=
tf
.
train
.
AdadeltaOptimizer
(
hparams
.
learning_rate
)
elif
hparams
.
optimizer
==
'adagrad'
:
optimizer
=
tf
.
train
.
AdagradOptimizer
(
hparams
.
learning_rate
)
elif
hparams
.
optimizer
==
'rmsprop'
:
optimizer
=
tf
.
train
.
RMSPropOptimizer
(
hparams
.
learning_rate
,
momentum
=
hparams
.
momentum
)
return
optimizer
def
train
(
loss
,
init_fn
,
hparams
):
"""Wraps slim.learning.train to run a training loop.
Args:
loss: a loss tensor
init_fn: A callable to be executed after all other initialization is done.
hparams: a model hyper parameters
"""
optimizer
=
create_optimizer
(
hparams
)
if
FLAGS
.
sync_replicas
:
replica_id
=
tf
.
constant
(
FLAGS
.
task
,
tf
.
int32
,
shape
=
())
optimizer
=
tf
.
LegacySyncReplicasOptimizer
(
opt
=
optimizer
,
replicas_to_aggregate
=
FLAGS
.
replicas_to_aggregate
,
replica_id
=
replica_id
,
total_num_replicas
=
FLAGS
.
total_num_replicas
)
sync_optimizer
=
optimizer
startup_delay_steps
=
0
else
:
startup_delay_steps
=
0
sync_optimizer
=
None
train_op
=
slim
.
learning
.
create_train_op
(
loss
,
optimizer
,
summarize_gradients
=
True
,
clip_gradient_norm
=
FLAGS
.
clip_gradient_norm
)
slim
.
learning
.
train
(
train_op
=
train_op
,
logdir
=
FLAGS
.
train_log_dir
,
graph
=
loss
.
graph
,
master
=
FLAGS
.
master
,
is_chief
=
(
FLAGS
.
task
==
0
),
number_of_steps
=
FLAGS
.
max_number_of_steps
,
save_summaries_secs
=
FLAGS
.
save_summaries_secs
,
save_interval_secs
=
FLAGS
.
save_interval_secs
,
startup_delay_steps
=
startup_delay_steps
,
sync_optimizer
=
sync_optimizer
,
init_fn
=
init_fn
)
def
prepare_training_dir
():
if
not
tf
.
gfile
.
Exists
(
FLAGS
.
train_log_dir
):
logging
.
info
(
'Create a new training directory %s'
,
FLAGS
.
train_log_dir
)
tf
.
gfile
.
MakeDirs
(
FLAGS
.
train_log_dir
)
else
:
if
FLAGS
.
reset_train_dir
:
logging
.
info
(
'Reset the training directory %s'
,
FLAGS
.
train_log_dir
)
tf
.
gfile
.
DeleteRecursively
(
FLAGS
.
train_log_dir
)
tf
.
gfile
.
MakeDirs
(
FLAGS
.
train_log_dir
)
else
:
logging
.
info
(
'Use already existing training directory %s'
,
FLAGS
.
train_log_dir
)
def
calculate_graph_metrics
():
param_stats
=
model_analyzer
.
print_model_analysis
(
tf
.
get_default_graph
(),
tfprof_options
=
model_analyzer
.
TRAINABLE_VARS_PARAMS_STAT_OPTIONS
)
return
param_stats
.
total_parameters
def
main
(
_
):
prepare_training_dir
()
dataset
=
common_flags
.
create_dataset
(
split_name
=
FLAGS
.
split_name
)
model
=
common_flags
.
create_model
(
dataset
.
num_char_classes
,
dataset
.
max_sequence_length
,
dataset
.
num_of_views
,
dataset
.
null_code
)
hparams
=
get_training_hparams
()
# If ps_tasks is zero, the local device is used. When using multiple
# (non-local) replicas, the ReplicaDeviceSetter distributes the variables
# across the different devices.
device_setter
=
tf
.
train
.
replica_device_setter
(
FLAGS
.
ps_tasks
,
merge_devices
=
True
)
with
tf
.
device
(
device_setter
):
data
=
data_provider
.
get_data
(
dataset
,
FLAGS
.
batch_size
,
augment
=
hparams
.
use_augment_input
,
central_crop_size
=
common_flags
.
get_crop_size
())
endpoints
=
model
.
create_base
(
data
.
images
,
data
.
labels_one_hot
)
total_loss
=
model
.
create_loss
(
data
,
endpoints
)
model
.
create_summaries
(
data
,
endpoints
,
dataset
.
charset
,
is_training
=
True
)
init_fn
=
model
.
create_init_fn_to_restore
(
FLAGS
.
checkpoint
,
FLAGS
.
checkpoint_inception
)
if
FLAGS
.
show_graph_stats
:
logging
.
info
(
'Total number of weights in the graph: %s'
,
calculate_graph_metrics
())
train
(
total_loss
,
init_fn
,
hparams
)
if
__name__
==
'__main__'
:
app
.
run
()
attention_ocr/python/utils.py
0 → 100644
View file @
4cc1fa0f
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to support building models for StreetView text transcription."""
import
tensorflow
as
tf
from
tensorflow.contrib
import
slim
def
logits_to_log_prob
(
logits
):
"""Computes log probabilities using numerically stable trick.
This uses two numerical stability tricks:
1) softmax(x) = softmax(x - c) where c is a constant applied to all
arguments. If we set c = max(x) then the softmax is more numerically
stable.
2) log softmax(x) is not numerically stable, but we can stabilize it
by using the identity log softmax(x) = x - log sum exp(x)
Args:
logits: Tensor of arbitrary shape whose last dimension contains logits.
Returns:
A tensor of the same shape as the input, but with corresponding log
probabilities.
"""
with
tf
.
variable_scope
(
'log_probabilities'
):
reduction_indices
=
len
(
logits
.
shape
.
as_list
())
-
1
max_logits
=
tf
.
reduce_max
(
logits
,
reduction_indices
=
reduction_indices
,
keep_dims
=
True
)
safe_logits
=
tf
.
subtract
(
logits
,
max_logits
)
sum_exp
=
tf
.
reduce_sum
(
tf
.
exp
(
safe_logits
),
reduction_indices
=
reduction_indices
,
keep_dims
=
True
)
log_probs
=
tf
.
subtract
(
safe_logits
,
tf
.
log
(
sum_exp
))
return
log_probs
def
variables_to_restore
(
scope
=
None
,
strip_scope
=
False
):
"""Returns a list of variables to restore for the specified list of methods.
It is supposed that variable name starts with the method's scope (a prefix
returned by _method_scope function).
Args:
methods_names: a list of names of configurable methods.
strip_scope: if True will return variable names without method's scope.
If methods_names is None will return names unchanged.
model_scope: a scope for a whole model.
Returns:
a dictionary mapping variable names to variables for restore.
"""
if
scope
:
variable_map
=
{}
method_variables
=
slim
.
get_variables_to_restore
(
include
=
[
scope
])
for
var
in
method_variables
:
if
strip_scope
:
var_name
=
var
.
op
.
name
[
len
(
scope
)
+
1
:]
else
:
var_name
=
var
.
op
.
name
variable_map
[
var_name
]
=
var
return
variable_map
else
:
return
{
v
.
op
.
name
:
v
for
v
in
slim
.
get_variables_to_restore
()}
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment