Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
4c83bd7f
Commit
4c83bd7f
authored
Jul 16, 2020
by
Yu-hui Chen
Committed by
TF Object Detection Team
Jul 17, 2020
Browse files
Internal change
PiperOrigin-RevId: 321666729
parent
2e6ccf02
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
194 additions
and
8 deletions
+194
-8
research/object_detection/models/keras_models/resnet_v1.py
research/object_detection/models/keras_models/resnet_v1.py
+151
-7
research/object_detection/models/keras_models/resnet_v1_tf2_test.py
...bject_detection/models/keras_models/resnet_v1_tf2_test.py
+43
-1
No files found.
research/object_detection/models/keras_models/resnet_v1.py
View file @
4c83bd7f
...
...
@@ -21,6 +21,7 @@ from __future__ import print_function
import
tensorflow.compat.v1
as
tf
from
tensorflow.python.keras.applications
import
resnet
from
object_detection.core
import
freezable_batch_norm
from
object_detection.models.keras_models
import
model_utils
...
...
@@ -95,11 +96,11 @@ class _LayersOverride(object):
self
.
regularizer
=
tf
.
keras
.
regularizers
.
l2
(
weight_decay
)
self
.
initializer
=
tf
.
variance_scaling_initializer
()
def
_FixedPaddingLayer
(
self
,
kernel_size
,
rate
=
1
):
def
_FixedPaddingLayer
(
self
,
kernel_size
,
rate
=
1
):
# pylint: disable=invalid-name
return
tf
.
keras
.
layers
.
Lambda
(
lambda
x
:
_fixed_padding
(
x
,
kernel_size
,
rate
))
def
Conv2D
(
self
,
filters
,
kernel_size
,
**
kwargs
):
def
Conv2D
(
self
,
filters
,
kernel_size
,
**
kwargs
):
# pylint: disable=invalid-name
"""Builds a Conv2D layer according to the current Object Detection config.
Overrides the Keras Resnet application's convolutions with ones that
...
...
@@ -141,7 +142,7 @@ class _LayersOverride(object):
else
:
return
tf
.
keras
.
layers
.
Conv2D
(
filters
,
kernel_size
,
**
kwargs
)
def
Activation
(
self
,
*
args
,
**
kwargs
):
# pylint: disable=unused-argument
def
Activation
(
self
,
*
args
,
**
kwargs
):
# pylint: disable=unused-argument
,invalid-name
"""Builds an activation layer.
Overrides the Keras application Activation layer specified by the
...
...
@@ -163,7 +164,7 @@ class _LayersOverride(object):
else
:
return
tf
.
keras
.
layers
.
Lambda
(
tf
.
nn
.
relu
,
name
=
name
)
def
BatchNormalization
(
self
,
**
kwargs
):
def
BatchNormalization
(
self
,
**
kwargs
):
# pylint: disable=invalid-name
"""Builds a normalization layer.
Overrides the Keras application batch norm with the norm specified by the
...
...
@@ -191,7 +192,7 @@ class _LayersOverride(object):
momentum
=
self
.
_default_batchnorm_momentum
,
**
kwargs
)
def
Input
(
self
,
shape
):
def
Input
(
self
,
shape
):
# pylint: disable=invalid-name
"""Builds an Input layer.
Overrides the Keras application Input layer with one that uses a
...
...
@@ -219,7 +220,7 @@ class _LayersOverride(object):
input
=
input_tensor
,
shape
=
[
None
]
+
shape
)
return
model_utils
.
input_layer
(
shape
,
placeholder_with_default
)
def
MaxPooling2D
(
self
,
pool_size
,
**
kwargs
):
def
MaxPooling2D
(
self
,
pool_size
,
**
kwargs
):
# pylint: disable=invalid-name
"""Builds a MaxPooling2D layer with default padding as 'SAME'.
This is specified by the default resnet arg_scope in slim.
...
...
@@ -237,7 +238,7 @@ class _LayersOverride(object):
# Add alias as Keras also has it.
MaxPool2D
=
MaxPooling2D
# pylint: disable=invalid-name
def
ZeroPadding2D
(
self
,
padding
,
**
kwargs
):
# pylint: disable=unused-argument
def
ZeroPadding2D
(
self
,
padding
,
**
kwargs
):
# pylint: disable=unused-argument
,invalid-name
"""Replaces explicit padding in the Keras application with a no-op.
Args:
...
...
@@ -395,3 +396,146 @@ def resnet_v1_152(batchnorm_training,
return
tf
.
keras
.
applications
.
resnet
.
ResNet152
(
layers
=
layers_override
,
**
kwargs
)
# pylint: enable=invalid-name
# The following codes are based on the existing keras ResNet model pattern:
# google3/third_party/tensorflow/python/keras/applications/resnet.py
def
block_basic
(
x
,
filters
,
kernel_size
=
3
,
stride
=
1
,
conv_shortcut
=
False
,
name
=
None
):
"""A residual block for ResNet18/34.
Arguments:
x: input tensor.
filters: integer, filters of the bottleneck layer.
kernel_size: default 3, kernel size of the bottleneck layer.
stride: default 1, stride of the first layer.
conv_shortcut: default False, use convolution shortcut if True, otherwise
identity shortcut.
name: string, block label.
Returns:
Output tensor for the residual block.
"""
layers
=
tf
.
keras
.
layers
bn_axis
=
3
if
tf
.
keras
.
backend
.
image_data_format
()
==
'channels_last'
else
1
preact
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
epsilon
=
1.001e-5
,
name
=
name
+
'_preact_bn'
)(
x
)
preact
=
layers
.
Activation
(
'relu'
,
name
=
name
+
'_preact_relu'
)(
preact
)
if
conv_shortcut
:
shortcut
=
layers
.
Conv2D
(
filters
,
1
,
strides
=
1
,
name
=
name
+
'_0_conv'
)(
preact
)
else
:
shortcut
=
layers
.
MaxPooling2D
(
1
,
strides
=
stride
)(
x
)
if
stride
>
1
else
x
x
=
layers
.
ZeroPadding2D
(
padding
=
((
1
,
1
),
(
1
,
1
)),
name
=
name
+
'_1_pad'
)(
preact
)
x
=
layers
.
Conv2D
(
filters
,
kernel_size
,
strides
=
1
,
use_bias
=
False
,
name
=
name
+
'_1_conv'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
epsilon
=
1.001e-5
,
name
=
name
+
'_1_bn'
)(
x
)
x
=
layers
.
Activation
(
'relu'
,
name
=
name
+
'_1_relu'
)(
x
)
x
=
layers
.
ZeroPadding2D
(
padding
=
((
1
,
1
),
(
1
,
1
)),
name
=
name
+
'_2_pad'
)(
x
)
x
=
layers
.
Conv2D
(
filters
,
kernel_size
,
strides
=
stride
,
use_bias
=
False
,
name
=
name
+
'_2_conv'
)(
x
)
x
=
layers
.
BatchNormalization
(
axis
=
bn_axis
,
epsilon
=
1.001e-5
,
name
=
name
+
'_2_bn'
)(
x
)
x
=
layers
.
Activation
(
'relu'
,
name
=
name
+
'_2_relu'
)(
x
)
x
=
layers
.
Add
(
name
=
name
+
'_out'
)([
shortcut
,
x
])
return
x
def
stack_basic
(
x
,
filters
,
blocks
,
stride1
=
2
,
name
=
None
):
"""A set of stacked residual blocks for ResNet18/34.
Arguments:
x: input tensor.
filters: integer, filters of the bottleneck layer in a block.
blocks: integer, blocks in the stacked blocks.
stride1: default 2, stride of the first layer in the first block.
name: string, stack label.
Returns:
Output tensor for the stacked blocks.
"""
x
=
block_basic
(
x
,
filters
,
conv_shortcut
=
True
,
name
=
name
+
'_block1'
)
for
i
in
range
(
2
,
blocks
):
x
=
block_basic
(
x
,
filters
,
name
=
name
+
'_block'
+
str
(
i
))
x
=
block_basic
(
x
,
filters
,
stride
=
stride1
,
name
=
name
+
'_block'
+
str
(
blocks
))
return
x
def
resnet_v1_18
(
include_top
=
True
,
weights
=
'imagenet'
,
input_tensor
=
None
,
input_shape
=
None
,
pooling
=
None
,
classes
=
1000
,
classifier_activation
=
'softmax'
):
"""Instantiates the ResNet18 architecture."""
def
stack_fn
(
x
):
x
=
stack_basic
(
x
,
64
,
2
,
stride1
=
1
,
name
=
'conv2'
)
x
=
stack_basic
(
x
,
128
,
2
,
name
=
'conv3'
)
x
=
stack_basic
(
x
,
256
,
2
,
name
=
'conv4'
)
return
stack_basic
(
x
,
512
,
2
,
name
=
'conv5'
)
return
resnet
.
ResNet
(
stack_fn
,
True
,
True
,
'resnet18'
,
include_top
,
weights
,
input_tensor
,
input_shape
,
pooling
,
classes
,
classifier_activation
=
classifier_activation
)
def
resnet_v1_34
(
include_top
=
True
,
weights
=
'imagenet'
,
input_tensor
=
None
,
input_shape
=
None
,
pooling
=
None
,
classes
=
1000
,
classifier_activation
=
'softmax'
):
"""Instantiates the ResNet34 architecture."""
def
stack_fn
(
x
):
x
=
stack_basic
(
x
,
64
,
3
,
stride1
=
1
,
name
=
'conv2'
)
x
=
stack_basic
(
x
,
128
,
4
,
name
=
'conv3'
)
x
=
stack_basic
(
x
,
256
,
6
,
name
=
'conv4'
)
return
stack_basic
(
x
,
512
,
3
,
name
=
'conv5'
)
return
resnet
.
ResNet
(
stack_fn
,
True
,
True
,
'resnet34'
,
include_top
,
weights
,
input_tensor
,
input_shape
,
pooling
,
classes
,
classifier_activation
=
classifier_activation
)
research/object_detection/models/keras_models/resnet_v1_tf2_test.py
View file @
4c83bd7f
...
...
@@ -20,12 +20,13 @@ object detection. To verify the consistency of the two models, we compare:
2. Number of global variables.
"""
import
unittest
from
absl.testing
import
parameterized
import
numpy
as
np
from
six.moves
import
zip
import
tensorflow.compat.v1
as
tf
from
google.protobuf
import
text_format
from
object_detection.builders
import
hyperparams_builder
from
object_detection.models.keras_models
import
resnet_v1
from
object_detection.protos
import
hyperparams_pb2
...
...
@@ -180,5 +181,46 @@ class ResnetV1Test(test_case.TestCase):
self
.
assertEqual
(
len
(
variables
),
var_num
)
class
ResnetShapeTest
(
test_case
.
TestCase
,
parameterized
.
TestCase
):
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
@
parameterized
.
parameters
(
{
'resnet_type'
:
'resnet_v1_34'
,
'output_layer_names'
:
[
'conv2_block3_out'
,
'conv3_block4_out'
,
'conv4_block6_out'
,
'conv5_block3_out'
]
},
{
'resnet_type'
:
'resnet_v1_18'
,
'output_layer_names'
:
[
'conv2_block2_out'
,
'conv3_block2_out'
,
'conv4_block2_out'
,
'conv5_block2_out'
]
})
def
test_output_shapes
(
self
,
resnet_type
,
output_layer_names
):
if
resnet_type
==
'resnet_v1_34'
:
model
=
resnet_v1
.
resnet_v1_34
(
weights
=
None
)
else
:
model
=
resnet_v1
.
resnet_v1_18
(
weights
=
None
)
outputs
=
[
model
.
get_layer
(
output_layer_name
).
output
for
output_layer_name
in
output_layer_names
]
resnet_model
=
tf
.
keras
.
models
.
Model
(
inputs
=
model
.
input
,
outputs
=
outputs
)
outputs
=
resnet_model
(
np
.
zeros
((
2
,
64
,
64
,
3
),
dtype
=
np
.
float32
))
# Check the shape of 'conv2_block3_out':
self
.
assertEqual
(
outputs
[
0
].
shape
,
[
2
,
16
,
16
,
64
])
# Check the shape of 'conv3_block4_out':
self
.
assertEqual
(
outputs
[
1
].
shape
,
[
2
,
8
,
8
,
128
])
# Check the shape of 'conv4_block6_out':
self
.
assertEqual
(
outputs
[
2
].
shape
,
[
2
,
4
,
4
,
256
])
# Check the shape of 'conv5_block3_out':
self
.
assertEqual
(
outputs
[
3
].
shape
,
[
2
,
2
,
2
,
512
])
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment