Unverified Commit 4b4dbad1 authored by Haoyu Zhang's avatar Haoyu Zhang Committed by GitHub
Browse files

Use LR schedule ops instead of LR callback for tweaked tests (#6745)

* Modified tweaked tests to use tensor learning rate
parent 40543869
...@@ -279,6 +279,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -279,6 +279,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked') FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
FLAGS.dtype = 'fp16' FLAGS.dtype = 'fp16'
FLAGS.batch_size = 256 FLAGS.batch_size = 256
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -359,6 +360,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -359,6 +360,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
'benchmark_graph_xla_1_gpu_fp16_tweaked') 'benchmark_graph_xla_1_gpu_fp16_tweaked')
FLAGS.dtype = 'fp16' FLAGS.dtype = 'fp16'
FLAGS.batch_size = 256 FLAGS.batch_size = 256
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -394,6 +396,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -394,6 +396,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.distribution_strategy = 'default' FLAGS.distribution_strategy = 'default'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked') FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
FLAGS.batch_size = 128 * 8 # 8 GPUs FLAGS.batch_size = 128 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
FLAGS.datasets_num_private_threads = 14 FLAGS.datasets_num_private_threads = 14
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -432,6 +435,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -432,6 +435,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.distribution_strategy = 'default' FLAGS.distribution_strategy = 'default'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked') FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -448,6 +452,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -448,6 +452,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
'benchmark_8_gpu_fp16_dynamic_tweaked') 'benchmark_8_gpu_fp16_dynamic_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.loss_scale = 'dynamic' FLAGS.loss_scale = 'dynamic'
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -476,6 +481,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -476,6 +481,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.distribution_strategy = 'default' FLAGS.distribution_strategy = 'default'
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked') FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
# FLAGS.tf_gpu_thread_mode = 'gpu_private' # FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -493,6 +499,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -493,6 +499,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
'benchmark_xla_8_gpu_fp16_dynamic_tweaked') 'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.loss_scale = 'dynamic' FLAGS.loss_scale = 'dynamic'
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -509,6 +516,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -509,6 +516,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.model_dir = self._get_model_dir( FLAGS.model_dir = self._get_model_dir(
'benchmark_xla_8_gpu_fp16_tensorboard_tweaked') 'benchmark_xla_8_gpu_fp16_tensorboard_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.data_prefetch_with_slack = True FLAGS.data_prefetch_with_slack = True
FLAGS.enable_tensorboard = True FLAGS.enable_tensorboard = True
...@@ -574,6 +582,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -574,6 +582,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.distribution_strategy = 'default' FLAGS.distribution_strategy = 'default'
FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked') FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -591,6 +600,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -591,6 +600,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.model_dir = self._get_model_dir( FLAGS.model_dir = self._get_model_dir(
'benchmark_graph_xla_8_gpu_fp16_tweaked') 'benchmark_graph_xla_8_gpu_fp16_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -606,6 +616,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -606,6 +616,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
'benchmark_graph_8_gpu_fp16_dynamic_tweaked') 'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.loss_scale = 'dynamic' FLAGS.loss_scale = 'dynamic'
FLAGS.use_tensor_lr = True
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -621,6 +632,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): ...@@ -621,6 +632,7 @@ class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
FLAGS.model_dir = self._get_model_dir( FLAGS.model_dir = self._get_model_dir(
'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked') 'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.use_tensor_lr = True
FLAGS.loss_scale = 'dynamic' FLAGS.loss_scale = 'dynamic'
FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark() self._run_and_report_benchmark()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment