Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
47bc1813
Commit
47bc1813
authored
Jul 01, 2020
by
syiming
Browse files
Merge remote-tracking branch 'upstream/master' into add_multilevel_crop_and_resize
parents
d8611151
b035a227
Changes
329
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
0 additions
and
3295 deletions
+0
-3295
official/r1/transformer/ffn_layer.py
official/r1/transformer/ffn_layer.py
+0
-89
official/r1/transformer/schedule.py
official/r1/transformer/schedule.py
+0
-130
official/r1/transformer/schedule_test.py
official/r1/transformer/schedule_test.py
+0
-84
official/r1/transformer/transformer.py
official/r1/transformer/transformer.py
+0
-417
official/r1/transformer/transformer_main.py
official/r1/transformer/transformer_main.py
+0
-710
official/r1/transformer/translate.py
official/r1/transformer/translate.py
+0
-237
official/r1/utils/__init__.py
official/r1/utils/__init__.py
+0
-0
official/r1/utils/data/__init__.py
official/r1/utils/data/__init__.py
+0
-0
official/r1/utils/data/file_io.py
official/r1/utils/data/file_io.py
+0
-207
official/r1/utils/data/file_io_test.py
official/r1/utils/data/file_io_test.py
+0
-197
official/r1/utils/export.py
official/r1/utils/export.py
+0
-49
official/r1/utils/export_test.py
official/r1/utils/export_test.py
+0
-63
official/r1/utils/logs/__init__.py
official/r1/utils/logs/__init__.py
+0
-0
official/r1/utils/logs/cloud_lib.py
official/r1/utils/logs/cloud_lib.py
+0
-34
official/r1/utils/logs/guidelines.md
official/r1/utils/logs/guidelines.md
+0
-58
official/r1/utils/logs/hooks.py
official/r1/utils/logs/hooks.py
+0
-130
official/r1/utils/logs/hooks_helper.py
official/r1/utils/logs/hooks_helper.py
+0
-173
official/r1/utils/logs/hooks_test.py
official/r1/utils/logs/hooks_test.py
+0
-159
official/r1/utils/logs/logger.py
official/r1/utils/logs/logger.py
+0
-305
official/r1/utils/logs/logger_test.py
official/r1/utils/logs/logger_test.py
+0
-253
No files found.
Too many changes to show.
To preserve performance only
329 of 329+
files are displayed.
Plain diff
Email patch
official/r1/transformer/ffn_layer.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of fully connected network."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow.compat.v1
as
tf
class
FeedFowardNetwork
(
tf
.
layers
.
Layer
):
"""Fully connected feedforward network."""
def
__init__
(
self
,
hidden_size
,
filter_size
,
relu_dropout
,
train
,
allow_pad
):
super
(
FeedFowardNetwork
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
filter_size
=
filter_size
self
.
relu_dropout
=
relu_dropout
self
.
train
=
train
self
.
allow_pad
=
allow_pad
self
.
filter_dense_layer
=
tf
.
layers
.
Dense
(
filter_size
,
use_bias
=
True
,
activation
=
tf
.
nn
.
relu
,
name
=
"filter_layer"
)
self
.
output_dense_layer
=
tf
.
layers
.
Dense
(
hidden_size
,
use_bias
=
True
,
name
=
"output_layer"
)
def
call
(
self
,
x
,
padding
=
None
):
"""Return outputs of the feedforward network.
Args:
x: tensor with shape [batch_size, length, hidden_size]
padding: (optional) If set, the padding values are temporarily removed
from x (provided self.allow_pad is set). The padding values are placed
back in the output tensor in the same locations.
shape [batch_size, length]
Returns:
Output of the feedforward network.
tensor with shape [batch_size, length, hidden_size]
"""
padding
=
None
if
not
self
.
allow_pad
else
padding
# Retrieve dynamically known shapes
batch_size
=
tf
.
shape
(
x
)[
0
]
length
=
tf
.
shape
(
x
)[
1
]
if
padding
is
not
None
:
with
tf
.
name_scope
(
"remove_padding"
):
# Flatten padding to [batch_size*length]
pad_mask
=
tf
.
reshape
(
padding
,
[
-
1
])
nonpad_ids
=
tf
.
to_int32
(
tf
.
where
(
pad_mask
<
1e-9
))
# Reshape x to [batch_size*length, hidden_size] to remove padding
x
=
tf
.
reshape
(
x
,
[
-
1
,
self
.
hidden_size
])
x
=
tf
.
gather_nd
(
x
,
indices
=
nonpad_ids
)
# Reshape x from 2 dimensions to 3 dimensions.
x
.
set_shape
([
None
,
self
.
hidden_size
])
x
=
tf
.
expand_dims
(
x
,
axis
=
0
)
output
=
self
.
filter_dense_layer
(
x
)
if
self
.
train
:
output
=
tf
.
nn
.
dropout
(
output
,
1.0
-
self
.
relu_dropout
)
output
=
self
.
output_dense_layer
(
output
)
if
padding
is
not
None
:
with
tf
.
name_scope
(
"re_add_padding"
):
output
=
tf
.
squeeze
(
output
,
axis
=
0
)
output
=
tf
.
scatter_nd
(
indices
=
nonpad_ids
,
updates
=
output
,
shape
=
[
batch_size
*
length
,
self
.
hidden_size
]
)
output
=
tf
.
reshape
(
output
,
[
batch_size
,
length
,
self
.
hidden_size
])
return
output
official/r1/transformer/schedule.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Abstract training on a step or epoch basis."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
tensorflow.compat.v1
as
tf
_TRAIN
,
_EVAL
=
tf
.
estimator
.
ModeKeys
.
TRAIN
,
tf
.
estimator
.
ModeKeys
.
EVAL
NUM_EXAMPLES
=
{
tf
.
estimator
.
ModeKeys
.
TRAIN
:
4572160
,
# # Examples that are too long are filtered out, thus the total is less
# # than the total number of lines.
# 2399123 + # news-commentary-v12.de-en
# 1920209 + # commoncrawl.de-en
# 270769, # europarl-v7.de-en
tf
.
estimator
.
ModeKeys
.
EVAL
:
3000
,
# newstest2013
}
class
Manager
(
object
):
"""Container for convenience functions to abstract step or epoch basis.
Transformer allows users to specify an epoch basis (generally recommended for
full training) or a number of steps basis (convenient since epochs are rather
large). TPUs furthermore require a step basis; however epochs are the norm in
the machine learning community and it is desirable to allow users to specify
epochs even when running with TPUS which requires behind the scenes
conversions.
This container simply groups what are largely mundane checks and conversions
rather than interspersing them throughout the run loop code.
"""
def
__init__
(
self
,
train_steps
,
steps_between_evals
,
train_epochs
,
epochs_between_evals
,
default_train_epochs
,
batch_size
,
max_length
,
use_tpu
=
False
,
num_tpu_shards
=
8
):
if
train_steps
and
train_epochs
:
raise
ValueError
(
"Both train_steps or train_epochs were be defined."
)
# Determine training schedule based on flags.
if
train_steps
:
self
.
train_eval_iterations
=
train_steps
//
steps_between_evals
self
.
_single_iteration_train_steps
=
steps_between_evals
self
.
_single_iteration_train_epochs
=
None
else
:
train_epochs
=
train_epochs
or
default_train_epochs
self
.
train_eval_iterations
=
train_epochs
//
epochs_between_evals
self
.
_single_iteration_train_steps
=
None
self
.
_single_iteration_train_epochs
=
epochs_between_evals
self
.
max_length
=
max_length
self
.
batch_size
=
batch_size
self
.
use_tpu
=
use_tpu
self
.
num_tpu_shards
=
num_tpu_shards
if
self
.
use_tpu
:
assert
(
self
.
batch_size
//
self
.
max_length
)
%
self
.
num_tpu_shards
==
0
@
property
def
single_iteration_train_steps
(
self
):
if
self
.
_single_iteration_train_steps
or
not
self
.
use_tpu
:
return
self
.
_single_iteration_train_steps
return
self
.
epochs_to_steps
(
num_epochs
=
self
.
_single_iteration_train_epochs
,
mode
=
_TRAIN
)
@
property
def
single_iteration_eval_steps
(
self
):
if
not
self
.
use_tpu
:
return
None
return
self
.
epochs_to_steps
(
num_epochs
=
1
,
mode
=
_EVAL
)
@
property
def
train_increment_str
(
self
):
if
self
.
_single_iteration_train_steps
:
return
"{} steps."
.
format
(
self
.
_single_iteration_train_steps
)
if
not
self
.
use_tpu
:
return
"{} epochs."
.
format
(
self
.
_single_iteration_train_epochs
)
return
"~{} epochs. ({} steps)"
.
format
(
self
.
_single_iteration_train_epochs
,
self
.
single_iteration_train_steps
)
@
property
def
repeat_dataset
(
self
):
if
(
self
.
_single_iteration_train_epochs
is
None
and
self
.
_single_iteration_train_steps
>
NUM_EXAMPLES
[
_TRAIN
]):
return
math
.
ceil
(
self
.
_single_iteration_train_steps
/
NUM_EXAMPLES
[
_TRAIN
])
return
self
.
_single_iteration_train_epochs
def
epochs_to_steps
(
self
,
num_epochs
,
mode
):
"""Converts a number of epochs to a number of training steps.
TPU only: This function assumes that static_batch is True.
TPU can not tolerate an OutOfRange error from a dataset. As a result the
number of examples to be processed must be known ahead of time. TPUs also
do not allow partial batches, so this function rounds down.
Args:
num_epochs: An integer of the number of epochs to convert to steps.
mode: The estimator ModeKey of the computation
Returns:
An integer of the number of equivalent steps rounded down.
"""
assert
self
.
use_tpu
,
"epochs_to_steps should only be reached when using TPU"
total_num_tokens
=
NUM_EXAMPLES
[
mode
]
*
self
.
max_length
*
num_epochs
return
total_num_tokens
//
self
.
batch_size
official/r1/transformer/schedule_test.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test Transformer's schedule manager."""
import
tensorflow.compat.v1
as
tf
from
official.r1.transformer
import
schedule
class
ScheduleBaseTester
(
tf
.
test
.
TestCase
):
def
test_mutual_exclusivity
(
self
):
with
self
.
assertRaises
(
ValueError
):
schedule
.
Manager
(
train_steps
=
100
,
steps_between_evals
=
100
,
train_epochs
=
2
,
epochs_between_evals
=
1
,
default_train_epochs
=
None
,
batch_size
=
2048
,
max_length
=
256
)
def
test_step_basis
(
self
):
manager
=
schedule
.
Manager
(
train_steps
=
1000
,
steps_between_evals
=
100
,
train_epochs
=
None
,
epochs_between_evals
=
None
,
default_train_epochs
=
None
,
batch_size
=
2048
,
max_length
=
256
)
self
.
assertEqual
(
manager
.
single_iteration_train_steps
,
100
)
# Evaluation uses the full set
self
.
assertIsNone
(
manager
.
single_iteration_eval_steps
)
self
.
assertIsNone
(
manager
.
repeat_dataset
)
def
test_epoch_basis
(
self
):
manager
=
schedule
.
Manager
(
train_steps
=
None
,
steps_between_evals
=
None
,
train_epochs
=
10
,
epochs_between_evals
=
2
,
default_train_epochs
=
None
,
batch_size
=
2048
,
max_length
=
256
)
# For non-TPU, estimator relies on dataset exhausion
self
.
assertIsNone
(
manager
.
single_iteration_train_steps
)
self
.
assertIsNone
(
manager
.
single_iteration_eval_steps
)
self
.
assertEqual
(
manager
.
repeat_dataset
,
2
)
def
test_step_basis_tpu
(
self
):
manager
=
schedule
.
Manager
(
train_steps
=
1000
,
steps_between_evals
=
100
,
train_epochs
=
None
,
epochs_between_evals
=
None
,
default_train_epochs
=
None
,
batch_size
=
2048
,
max_length
=
256
,
use_tpu
=
True
)
self
.
assertEqual
(
manager
.
single_iteration_train_steps
,
100
)
# num_eval_examples / (batch_size / max_length) == 3000 / (2048 / 256)
self
.
assertEqual
(
manager
.
single_iteration_eval_steps
,
375
)
self
.
assertIsNone
(
manager
.
repeat_dataset
)
def
test_epoch_basis_tpu
(
self
):
manager
=
schedule
.
Manager
(
train_steps
=
None
,
steps_between_evals
=
None
,
train_epochs
=
10
,
epochs_between_evals
=
2
,
default_train_epochs
=
None
,
batch_size
=
2048
,
max_length
=
256
,
use_tpu
=
True
)
self
.
assertEqual
(
manager
.
single_iteration_train_steps
,
schedule
.
NUM_EXAMPLES
[
tf
.
estimator
.
ModeKeys
.
TRAIN
]
*
2
//
(
2048
/
256
)
)
# num_eval_examples / (batch_size / max_length) == 3000 / (2048 / 256)
self
.
assertEqual
(
manager
.
single_iteration_eval_steps
,
375
)
self
.
assertEqual
(
manager
.
repeat_dataset
,
2
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/r1/transformer/transformer.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines the Transformer model, and its encoder and decoder stacks.
Model paper: https://arxiv.org/pdf/1706.03762.pdf
Transformer model code source: https://github.com/tensorflow/tensor2tensor
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow.compat.v1
as
tf
from
official.nlp.transformer
import
beam_search_v1
as
beam_search
from
official.nlp.transformer
import
model_utils
from
official.nlp.transformer.utils.tokenizer
import
EOS_ID
from
official.r1.transformer
import
attention_layer
from
official.r1.transformer
import
embedding_layer
from
official.r1.transformer
import
ffn_layer
_NEG_INF
=
-
1e9
class
Transformer
(
object
):
"""Transformer model for sequence to sequence data.
Implemented as described in: https://arxiv.org/pdf/1706.03762.pdf
The Transformer model consists of an encoder and decoder. The input is an int
sequence (or a batch of sequences). The encoder produces a continous
representation, and the decoder uses the encoder output to generate
probabilities for the output sequence.
"""
def
__init__
(
self
,
params
,
train
):
"""Initialize layers to build Transformer model.
Args:
params: hyperparameter object defining layer sizes, dropout values, etc.
train: boolean indicating whether the model is in training mode. Used to
determine if dropout layers should be added.
"""
self
.
train
=
train
self
.
params
=
params
self
.
embedding_softmax_layer
=
embedding_layer
.
EmbeddingSharedWeights
(
params
[
"vocab_size"
],
params
[
"hidden_size"
],
method
=
"matmul"
if
params
[
"tpu"
]
else
"gather"
)
self
.
encoder_stack
=
EncoderStack
(
params
,
train
)
self
.
decoder_stack
=
DecoderStack
(
params
,
train
)
def
__call__
(
self
,
inputs
,
targets
=
None
):
"""Calculate target logits or inferred target sequences.
Args:
inputs: int tensor with shape [batch_size, input_length].
targets: None or int tensor with shape [batch_size, target_length].
Returns:
If targets is defined, then return logits for each word in the target
sequence. float tensor with shape [batch_size, target_length, vocab_size]
If target is none, then generate output sequence one token at a time.
returns a dictionary {
output: [batch_size, decoded length]
score: [batch_size, float]}
"""
# Variance scaling is used here because it seems to work in many problems.
# Other reasonable initializers may also work just as well.
initializer
=
tf
.
variance_scaling_initializer
(
self
.
params
[
"initializer_gain"
],
mode
=
"fan_avg"
,
distribution
=
"uniform"
)
with
tf
.
variable_scope
(
"Transformer"
,
initializer
=
initializer
):
# Calculate attention bias for encoder self-attention and decoder
# multi-headed attention layers.
attention_bias
=
model_utils
.
get_padding_bias
(
inputs
)
# Run the inputs through the encoder layer to map the symbol
# representations to continuous representations.
encoder_outputs
=
self
.
encode
(
inputs
,
attention_bias
)
# Generate output sequence if targets is None, or return logits if target
# sequence is known.
if
targets
is
None
:
return
self
.
predict
(
encoder_outputs
,
attention_bias
)
else
:
logits
=
self
.
decode
(
targets
,
encoder_outputs
,
attention_bias
)
return
logits
def
encode
(
self
,
inputs
,
attention_bias
):
"""Generate continuous representation for inputs.
Args:
inputs: int tensor with shape [batch_size, input_length].
attention_bias: float tensor with shape [batch_size, 1, 1, input_length]
Returns:
float tensor with shape [batch_size, input_length, hidden_size]
"""
with
tf
.
name_scope
(
"encode"
):
# Prepare inputs to the layer stack by adding positional encodings and
# applying dropout.
embedded_inputs
=
self
.
embedding_softmax_layer
(
inputs
)
inputs_padding
=
model_utils
.
get_padding
(
inputs
)
with
tf
.
name_scope
(
"add_pos_encoding"
):
length
=
tf
.
shape
(
embedded_inputs
)[
1
]
pos_encoding
=
model_utils
.
get_position_encoding
(
length
,
self
.
params
[
"hidden_size"
])
encoder_inputs
=
embedded_inputs
+
pos_encoding
if
self
.
train
:
encoder_inputs
=
tf
.
nn
.
dropout
(
encoder_inputs
,
1
-
self
.
params
[
"layer_postprocess_dropout"
])
return
self
.
encoder_stack
(
encoder_inputs
,
attention_bias
,
inputs_padding
)
def
decode
(
self
,
targets
,
encoder_outputs
,
attention_bias
):
"""Generate logits for each value in the target sequence.
Args:
targets: target values for the output sequence.
int tensor with shape [batch_size, target_length]
encoder_outputs: continuous representation of input sequence.
float tensor with shape [batch_size, input_length, hidden_size]
attention_bias: float tensor with shape [batch_size, 1, 1, input_length]
Returns:
float32 tensor with shape [batch_size, target_length, vocab_size]
"""
with
tf
.
name_scope
(
"decode"
):
# Prepare inputs to decoder layers by shifting targets, adding positional
# encoding and applying dropout.
decoder_inputs
=
self
.
embedding_softmax_layer
(
targets
)
with
tf
.
name_scope
(
"shift_targets"
):
# Shift targets to the right, and remove the last element
decoder_inputs
=
tf
.
pad
(
decoder_inputs
,
[[
0
,
0
],
[
1
,
0
],
[
0
,
0
]])[:,
:
-
1
,
:]
with
tf
.
name_scope
(
"add_pos_encoding"
):
length
=
tf
.
shape
(
decoder_inputs
)[
1
]
decoder_inputs
+=
model_utils
.
get_position_encoding
(
length
,
self
.
params
[
"hidden_size"
])
if
self
.
train
:
decoder_inputs
=
tf
.
nn
.
dropout
(
decoder_inputs
,
1
-
self
.
params
[
"layer_postprocess_dropout"
])
# Run values
decoder_self_attention_bias
=
model_utils
.
get_decoder_self_attention_bias
(
length
)
outputs
=
self
.
decoder_stack
(
decoder_inputs
,
encoder_outputs
,
decoder_self_attention_bias
,
attention_bias
)
logits
=
self
.
embedding_softmax_layer
.
linear
(
outputs
)
return
logits
def
_get_symbols_to_logits_fn
(
self
,
max_decode_length
):
"""Returns a decoding function that calculates logits of the next tokens."""
timing_signal
=
model_utils
.
get_position_encoding
(
max_decode_length
+
1
,
self
.
params
[
"hidden_size"
])
decoder_self_attention_bias
=
model_utils
.
get_decoder_self_attention_bias
(
max_decode_length
)
def
symbols_to_logits_fn
(
ids
,
i
,
cache
):
"""Generate logits for next potential IDs.
Args:
ids: Current decoded sequences.
int tensor with shape [batch_size * beam_size, i + 1]
i: Loop index
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values)
"""
# Set decoder input to the last generated IDs
decoder_input
=
ids
[:,
-
1
:]
# Preprocess decoder input by getting embeddings and adding timing signal.
decoder_input
=
self
.
embedding_softmax_layer
(
decoder_input
)
decoder_input
+=
timing_signal
[
i
:
i
+
1
]
self_attention_bias
=
decoder_self_attention_bias
[:,
:,
i
:
i
+
1
,
:
i
+
1
]
decoder_outputs
=
self
.
decoder_stack
(
decoder_input
,
cache
.
get
(
"encoder_outputs"
),
self_attention_bias
,
cache
.
get
(
"encoder_decoder_attention_bias"
),
cache
)
logits
=
self
.
embedding_softmax_layer
.
linear
(
decoder_outputs
)
logits
=
tf
.
squeeze
(
logits
,
axis
=
[
1
])
return
logits
,
cache
return
symbols_to_logits_fn
def
predict
(
self
,
encoder_outputs
,
encoder_decoder_attention_bias
):
"""Return predicted sequence."""
batch_size
=
tf
.
shape
(
encoder_outputs
)[
0
]
input_length
=
tf
.
shape
(
encoder_outputs
)[
1
]
max_decode_length
=
input_length
+
self
.
params
[
"extra_decode_length"
]
symbols_to_logits_fn
=
self
.
_get_symbols_to_logits_fn
(
max_decode_length
)
# Create initial set of IDs that will be passed into symbols_to_logits_fn.
initial_ids
=
tf
.
zeros
([
batch_size
],
dtype
=
tf
.
int32
)
# Create cache storing decoder attention values for each layer.
cache
=
{
"layer_%d"
%
layer
:
{
"k"
:
tf
.
zeros
([
batch_size
,
0
,
self
.
params
[
"hidden_size"
]]),
"v"
:
tf
.
zeros
([
batch_size
,
0
,
self
.
params
[
"hidden_size"
]]),
}
for
layer
in
range
(
self
.
params
[
"num_hidden_layers"
])}
# Add encoder output and attention bias to the cache.
cache
[
"encoder_outputs"
]
=
encoder_outputs
cache
[
"encoder_decoder_attention_bias"
]
=
encoder_decoder_attention_bias
# Use beam search to find the top beam_size sequences and scores.
decoded_ids
,
scores
=
beam_search
.
sequence_beam_search
(
symbols_to_logits_fn
=
symbols_to_logits_fn
,
initial_ids
=
initial_ids
,
initial_cache
=
cache
,
vocab_size
=
self
.
params
[
"vocab_size"
],
beam_size
=
self
.
params
[
"beam_size"
],
alpha
=
self
.
params
[
"alpha"
],
max_decode_length
=
max_decode_length
,
eos_id
=
EOS_ID
)
# Get the top sequence for each batch element
top_decoded_ids
=
decoded_ids
[:,
0
,
1
:]
top_scores
=
scores
[:,
0
]
return
{
"outputs"
:
top_decoded_ids
,
"scores"
:
top_scores
}
class
LayerNormalization
(
tf
.
layers
.
Layer
):
"""Applies layer normalization."""
def
__init__
(
self
,
hidden_size
):
super
(
LayerNormalization
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
def
build
(
self
,
_
):
self
.
scale
=
tf
.
get_variable
(
"layer_norm_scale"
,
[
self
.
hidden_size
],
initializer
=
tf
.
ones_initializer
())
self
.
bias
=
tf
.
get_variable
(
"layer_norm_bias"
,
[
self
.
hidden_size
],
initializer
=
tf
.
zeros_initializer
())
self
.
built
=
True
def
call
(
self
,
x
,
epsilon
=
1e-6
):
mean
=
tf
.
reduce_mean
(
x
,
axis
=
[
-
1
],
keepdims
=
True
)
variance
=
tf
.
reduce_mean
(
tf
.
square
(
x
-
mean
),
axis
=
[
-
1
],
keepdims
=
True
)
norm_x
=
(
x
-
mean
)
*
tf
.
rsqrt
(
variance
+
epsilon
)
return
norm_x
*
self
.
scale
+
self
.
bias
class
PrePostProcessingWrapper
(
object
):
"""Wrapper class that applies layer pre-processing and post-processing."""
def
__init__
(
self
,
layer
,
params
,
train
):
self
.
layer
=
layer
self
.
postprocess_dropout
=
params
[
"layer_postprocess_dropout"
]
self
.
train
=
train
# Create normalization layer
self
.
layer_norm
=
LayerNormalization
(
params
[
"hidden_size"
])
def
__call__
(
self
,
x
,
*
args
,
**
kwargs
):
# Preprocessing: apply layer normalization
y
=
self
.
layer_norm
(
x
)
# Get layer output
y
=
self
.
layer
(
y
,
*
args
,
**
kwargs
)
# Postprocessing: apply dropout and residual connection
if
self
.
train
:
y
=
tf
.
nn
.
dropout
(
y
,
1
-
self
.
postprocess_dropout
)
return
x
+
y
class
EncoderStack
(
tf
.
layers
.
Layer
):
"""Transformer encoder stack.
The encoder stack is made up of N identical layers. Each layer is composed
of the sublayers:
1. Self-attention layer
2. Feedforward network (which is 2 fully-connected layers)
"""
def
__init__
(
self
,
params
,
train
):
super
(
EncoderStack
,
self
).
__init__
()
self
.
layers
=
[]
for
_
in
range
(
params
[
"num_hidden_layers"
]):
# Create sublayers for each layer.
self_attention_layer
=
attention_layer
.
SelfAttention
(
params
[
"hidden_size"
],
params
[
"num_heads"
],
params
[
"attention_dropout"
],
train
)
feed_forward_network
=
ffn_layer
.
FeedFowardNetwork
(
params
[
"hidden_size"
],
params
[
"filter_size"
],
params
[
"relu_dropout"
],
train
,
params
[
"allow_ffn_pad"
])
self
.
layers
.
append
([
PrePostProcessingWrapper
(
self_attention_layer
,
params
,
train
),
PrePostProcessingWrapper
(
feed_forward_network
,
params
,
train
)])
# Create final layer normalization layer.
self
.
output_normalization
=
LayerNormalization
(
params
[
"hidden_size"
])
def
call
(
self
,
encoder_inputs
,
attention_bias
,
inputs_padding
):
"""Return the output of the encoder layer stacks.
Args:
encoder_inputs: tensor with shape [batch_size, input_length, hidden_size]
attention_bias: bias for the encoder self-attention layer.
[batch_size, 1, 1, input_length]
inputs_padding: P
Returns:
Output of encoder layer stack.
float32 tensor with shape [batch_size, input_length, hidden_size]
"""
for
n
,
layer
in
enumerate
(
self
.
layers
):
# Run inputs through the sublayers.
self_attention_layer
=
layer
[
0
]
feed_forward_network
=
layer
[
1
]
with
tf
.
variable_scope
(
"layer_%d"
%
n
):
with
tf
.
variable_scope
(
"self_attention"
):
encoder_inputs
=
self_attention_layer
(
encoder_inputs
,
attention_bias
)
with
tf
.
variable_scope
(
"ffn"
):
encoder_inputs
=
feed_forward_network
(
encoder_inputs
,
inputs_padding
)
return
self
.
output_normalization
(
encoder_inputs
)
class
DecoderStack
(
tf
.
layers
.
Layer
):
"""Transformer decoder stack.
Like the encoder stack, the decoder stack is made up of N identical layers.
Each layer is composed of the sublayers:
1. Self-attention layer
2. Multi-headed attention layer combining encoder outputs with results from
the previous self-attention layer.
3. Feedforward network (2 fully-connected layers)
"""
def
__init__
(
self
,
params
,
train
):
super
(
DecoderStack
,
self
).
__init__
()
self
.
layers
=
[]
for
_
in
range
(
params
[
"num_hidden_layers"
]):
self_attention_layer
=
attention_layer
.
SelfAttention
(
params
[
"hidden_size"
],
params
[
"num_heads"
],
params
[
"attention_dropout"
],
train
)
enc_dec_attention_layer
=
attention_layer
.
Attention
(
params
[
"hidden_size"
],
params
[
"num_heads"
],
params
[
"attention_dropout"
],
train
)
feed_forward_network
=
ffn_layer
.
FeedFowardNetwork
(
params
[
"hidden_size"
],
params
[
"filter_size"
],
params
[
"relu_dropout"
],
train
,
params
[
"allow_ffn_pad"
])
self
.
layers
.
append
([
PrePostProcessingWrapper
(
self_attention_layer
,
params
,
train
),
PrePostProcessingWrapper
(
enc_dec_attention_layer
,
params
,
train
),
PrePostProcessingWrapper
(
feed_forward_network
,
params
,
train
)])
self
.
output_normalization
=
LayerNormalization
(
params
[
"hidden_size"
])
def
call
(
self
,
decoder_inputs
,
encoder_outputs
,
decoder_self_attention_bias
,
attention_bias
,
cache
=
None
):
"""Return the output of the decoder layer stacks.
Args:
decoder_inputs: tensor with shape [batch_size, target_length, hidden_size]
encoder_outputs: tensor with shape [batch_size, input_length, hidden_size]
decoder_self_attention_bias: bias for decoder self-attention layer.
[1, 1, target_len, target_length]
attention_bias: bias for encoder-decoder attention layer.
[batch_size, 1, 1, input_length]
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": tensor with shape [batch_size, i, key_channels],
"v": tensor with shape [batch_size, i, value_channels]},
...}
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size]
"""
for
n
,
layer
in
enumerate
(
self
.
layers
):
self_attention_layer
=
layer
[
0
]
enc_dec_attention_layer
=
layer
[
1
]
feed_forward_network
=
layer
[
2
]
# Run inputs through the sublayers.
layer_name
=
"layer_%d"
%
n
layer_cache
=
cache
[
layer_name
]
if
cache
is
not
None
else
None
with
tf
.
variable_scope
(
layer_name
):
with
tf
.
variable_scope
(
"self_attention"
):
decoder_inputs
=
self_attention_layer
(
decoder_inputs
,
decoder_self_attention_bias
,
cache
=
layer_cache
)
with
tf
.
variable_scope
(
"encdec_attention"
):
decoder_inputs
=
enc_dec_attention_layer
(
decoder_inputs
,
encoder_outputs
,
attention_bias
)
with
tf
.
variable_scope
(
"ffn"
):
decoder_inputs
=
feed_forward_network
(
decoder_inputs
)
return
self
.
output_normalization
(
decoder_inputs
)
official/r1/transformer/transformer_main.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train and evaluate the Transformer model.
See README for description of setting the training schedule and evaluating the
BLEU score.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
tempfile
# pylint: disable=g-bad-import-order
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
from
absl
import
app
as
absl_app
from
absl
import
flags
import
tensorflow.compat.v1
as
tf
# pylint: enable=g-bad-import-order
from
official.nlp.transformer
import
model_params
from
official.r1.utils
import
export
from
official.r1.utils
import
tpu
as
tpu_util
from
official.r1.transformer
import
translate
from
official.r1.transformer
import
transformer
from
official.r1.transformer
import
dataset
from
official.r1.transformer
import
schedule
from
official.nlp.transformer
import
compute_bleu
from
official.nlp.transformer.utils
import
metrics
from
official.nlp.transformer.utils
import
tokenizer
from
official.utils.flags
import
core
as
flags_core
from
official.r1.utils.logs
import
hooks_helper
from
official.r1.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
model_helpers
PARAMS_MAP
=
{
"tiny"
:
model_params
.
TINY_PARAMS
,
"base"
:
model_params
.
BASE_PARAMS
,
"big"
:
model_params
.
BIG_PARAMS
,
}
DEFAULT_TRAIN_EPOCHS
=
10
INF
=
1000000000
# 1e9
BLEU_DIR
=
"bleu"
# Dictionary containing tensors that are logged by the logging hooks. Each item
# maps a string to the tensor name.
TENSORS_TO_LOG
=
{
"learning_rate"
:
"model/get_train_op/learning_rate/learning_rate"
,
"cross_entropy_loss"
:
"model/cross_entropy"
}
def
model_fn
(
features
,
labels
,
mode
,
params
):
"""Defines how to train, evaluate and predict from the transformer model."""
with
tf
.
variable_scope
(
"model"
):
inputs
,
targets
=
features
,
labels
# Create model and get output logits.
model
=
transformer
.
Transformer
(
params
,
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
)
logits
=
model
(
inputs
,
targets
)
# When in prediction mode, the labels/targets is None. The model output
# is the prediction
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
if
params
[
"use_tpu"
]:
raise
NotImplementedError
(
"Prediction is not yet supported on TPUs."
)
return
tf
.
estimator
.
EstimatorSpec
(
tf
.
estimator
.
ModeKeys
.
PREDICT
,
predictions
=
logits
,
export_outputs
=
{
"translate"
:
tf
.
estimator
.
export
.
PredictOutput
(
logits
)
})
# Explicitly set the shape of the logits for XLA (TPU). This is needed
# because the logits are passed back to the host VM CPU for metric
# evaluation, and the shape of [?, ?, vocab_size] is too vague. However
# it is known from Transformer that the first two dimensions of logits
# are the dimensions of targets. Note that the ambiguous shape of logits is
# not a problem when computing xentropy, because padded_cross_entropy_loss
# resolves the shape on the TPU.
logits
.
set_shape
(
targets
.
shape
.
as_list
()
+
logits
.
shape
.
as_list
()[
2
:])
# Calculate model loss.
# xentropy contains the cross entropy loss of every nonpadding token in the
# targets.
xentropy
,
weights
=
metrics
.
padded_cross_entropy_loss
(
logits
,
targets
,
params
[
"label_smoothing"
],
params
[
"vocab_size"
])
loss
=
tf
.
reduce_sum
(
xentropy
)
/
tf
.
reduce_sum
(
weights
)
# Save loss as named tensor that will be logged with the logging hook.
tf
.
identity
(
loss
,
"cross_entropy"
)
if
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
if
params
[
"use_tpu"
]:
# host call functions should only have tensors as arguments.
# This lambda pre-populates params so that metric_fn is
# TPUEstimator compliant.
metric_fn
=
lambda
logits
,
labels
:
(
metrics
.
get_eval_metrics
(
logits
,
labels
,
params
=
params
))
eval_metrics
=
(
metric_fn
,
[
logits
,
labels
])
return
tf
.
estimator
.
tpu
.
TPUEstimatorSpec
(
mode
=
mode
,
loss
=
loss
,
predictions
=
{
"predictions"
:
logits
},
eval_metrics
=
eval_metrics
)
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
loss
=
loss
,
predictions
=
{
"predictions"
:
logits
},
eval_metric_ops
=
metrics
.
get_eval_metrics
(
logits
,
labels
,
params
))
else
:
train_op
,
metric_dict
=
get_train_op_and_metrics
(
loss
,
params
)
# Epochs can be quite long. This gives some intermediate information
# in TensorBoard.
metric_dict
[
"minibatch_loss"
]
=
loss
if
params
[
"use_tpu"
]:
return
tf
.
estimator
.
tpu
.
TPUEstimatorSpec
(
mode
=
mode
,
loss
=
loss
,
train_op
=
train_op
,
host_call
=
tpu_util
.
construct_scalar_host_call
(
metric_dict
=
metric_dict
,
model_dir
=
params
[
"model_dir"
],
prefix
=
"training/"
))
record_scalars
(
metric_dict
)
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
loss
=
loss
,
train_op
=
train_op
)
def
record_scalars
(
metric_dict
):
for
key
,
value
in
metric_dict
.
items
():
tf
.
summary
.
scalar
(
name
=
key
,
tensor
=
value
)
def
get_learning_rate
(
learning_rate
,
hidden_size
,
learning_rate_warmup_steps
):
"""Calculate learning rate with linear warmup and rsqrt decay."""
with
tf
.
name_scope
(
"learning_rate"
):
warmup_steps
=
tf
.
to_float
(
learning_rate_warmup_steps
)
step
=
tf
.
to_float
(
tf
.
train
.
get_or_create_global_step
())
learning_rate
*=
(
hidden_size
**
-
0.5
)
# Apply linear warmup
learning_rate
*=
tf
.
minimum
(
1.0
,
step
/
warmup_steps
)
# Apply rsqrt decay
learning_rate
*=
tf
.
rsqrt
(
tf
.
maximum
(
step
,
warmup_steps
))
# Create a named tensor that will be logged using the logging hook.
# The full name includes variable and names scope. In this case, the name
# is model/get_train_op/learning_rate/learning_rate
tf
.
identity
(
learning_rate
,
"learning_rate"
)
return
learning_rate
def
get_train_op_and_metrics
(
loss
,
params
):
"""Generate training op and metrics to save in TensorBoard."""
with
tf
.
variable_scope
(
"get_train_op"
):
learning_rate
=
get_learning_rate
(
learning_rate
=
params
[
"learning_rate"
],
hidden_size
=
params
[
"hidden_size"
],
learning_rate_warmup_steps
=
params
[
"learning_rate_warmup_steps"
])
# Create optimizer. Use LazyAdamOptimizer from TF contrib, which is faster
# than the TF core Adam optimizer.
from
tensorflow.contrib
import
opt
as
contrib_opt
# pylint: disable=g-import-not-at-top
optimizer
=
contrib_opt
.
LazyAdamOptimizer
(
learning_rate
,
beta1
=
params
[
"optimizer_adam_beta1"
],
beta2
=
params
[
"optimizer_adam_beta2"
],
epsilon
=
params
[
"optimizer_adam_epsilon"
])
if
params
[
"use_tpu"
]
and
params
[
"tpu"
]
!=
tpu_util
.
LOCAL
:
optimizer
=
tf
.
compat
.
v1
.
tpu
.
CrossShardOptimizer
(
optimizer
)
# Uses automatic mixed precision FP16 training if on GPU.
if
params
[
"dtype"
]
==
"fp16"
:
optimizer
=
tf
.
train
.
experimental
.
enable_mixed_precision_graph_rewrite
(
optimizer
)
# Calculate and apply gradients using LazyAdamOptimizer.
global_step
=
tf
.
train
.
get_global_step
()
tvars
=
tf
.
trainable_variables
()
gradients
=
optimizer
.
compute_gradients
(
loss
,
tvars
,
colocate_gradients_with_ops
=
True
)
minimize_op
=
optimizer
.
apply_gradients
(
gradients
,
global_step
=
global_step
,
name
=
"train"
)
update_ops
=
tf
.
get_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
)
train_op
=
tf
.
group
(
minimize_op
,
update_ops
)
train_metrics
=
{
"learning_rate"
:
learning_rate
}
if
not
params
[
"use_tpu"
]:
# gradient norm is not included as a summary when running on TPU, as
# it can cause instability between the TPU and the host controller.
gradient_norm
=
tf
.
global_norm
(
list
(
zip
(
*
gradients
))[
0
])
train_metrics
[
"global_norm/gradient_norm"
]
=
gradient_norm
return
train_op
,
train_metrics
def
translate_and_compute_bleu
(
estimator
,
subtokenizer
,
bleu_source
,
bleu_ref
):
"""Translate file and report the cased and uncased bleu scores."""
# Create temporary file to store translation.
tmp
=
tempfile
.
NamedTemporaryFile
(
delete
=
False
)
tmp_filename
=
tmp
.
name
translate
.
translate_file
(
estimator
,
subtokenizer
,
bleu_source
,
output_file
=
tmp_filename
,
print_all_translations
=
False
)
# Compute uncased and cased bleu scores.
uncased_score
=
compute_bleu
.
bleu_wrapper
(
bleu_ref
,
tmp_filename
,
False
)
cased_score
=
compute_bleu
.
bleu_wrapper
(
bleu_ref
,
tmp_filename
,
True
)
os
.
remove
(
tmp_filename
)
return
uncased_score
,
cased_score
def
get_global_step
(
estimator
):
"""Return estimator's last checkpoint."""
return
int
(
estimator
.
latest_checkpoint
().
split
(
"-"
)[
-
1
])
def
evaluate_and_log_bleu
(
estimator
,
bleu_source
,
bleu_ref
,
vocab_file
):
"""Calculate and record the BLEU score."""
subtokenizer
=
tokenizer
.
Subtokenizer
(
vocab_file
)
uncased_score
,
cased_score
=
translate_and_compute_bleu
(
estimator
,
subtokenizer
,
bleu_source
,
bleu_ref
)
tf
.
logging
.
info
(
"Bleu score (uncased): %f"
,
uncased_score
)
tf
.
logging
.
info
(
"Bleu score (cased): %f"
,
cased_score
)
return
uncased_score
,
cased_score
def
_validate_file
(
filepath
):
"""Make sure that file exists."""
if
not
tf
.
io
.
gfile
.
exists
(
filepath
):
raise
tf
.
errors
.
NotFoundError
(
None
,
None
,
"File %s not found."
%
filepath
)
def
run_loop
(
estimator
,
schedule_manager
,
train_hooks
=
None
,
benchmark_logger
=
None
,
bleu_source
=
None
,
bleu_ref
=
None
,
bleu_threshold
=
None
,
vocab_file
=
None
):
"""Train and evaluate model, and optionally compute model's BLEU score.
**Step vs. Epoch vs. Iteration**
Steps and epochs are canonical terms used in TensorFlow and general machine
learning. They are used to describe running a single process (train/eval):
- Step refers to running the process through a single or batch of examples.
- Epoch refers to running the process through an entire dataset.
E.g. training a dataset with 100 examples. The dataset is
divided into 20 batches with 5 examples per batch. A single training step
trains the model on one batch. After 20 training steps, the model will have
trained on every batch in the dataset, or, in other words, one epoch.
Meanwhile, iteration is used in this implementation to describe running
multiple processes (training and eval).
- A single iteration:
1. trains the model for a specific number of steps or epochs.
2. evaluates the model.
3. (if source and ref files are provided) compute BLEU score.
This function runs through multiple train+eval+bleu iterations.
Args:
estimator: tf.Estimator containing model to train.
schedule_manager: A schedule.Manager object to guide the run loop.
train_hooks: List of hooks to pass to the estimator during training.
benchmark_logger: a BenchmarkLogger object that logs evaluation data
bleu_source: File containing text to be translated for BLEU calculation.
bleu_ref: File containing reference translations for BLEU calculation.
bleu_threshold: minimum BLEU score before training is stopped.
vocab_file: Path to vocab file that will be used to subtokenize bleu_source.
Returns:
Dict of results of the run. Contains the keys `eval_results`,
`train_hooks`, `bleu_cased`, and `bleu_uncased`. `train_hooks` is a list the
instances of hooks used during training.
Raises:
ValueError: if both or none of single_iteration_train_steps and
single_iteration_train_epochs were defined.
NotFoundError: if the vocab file or bleu files don't exist.
"""
if
bleu_source
:
_validate_file
(
bleu_source
)
if
bleu_ref
:
_validate_file
(
bleu_ref
)
if
vocab_file
:
_validate_file
(
vocab_file
)
evaluate_bleu
=
bleu_source
is
not
None
and
bleu_ref
is
not
None
if
evaluate_bleu
and
schedule_manager
.
use_tpu
:
raise
ValueError
(
"BLEU score can not be computed when training with a TPU, "
"as it requires estimator.predict which is not yet "
"supported."
)
# Print details of training schedule.
tf
.
logging
.
info
(
"Training schedule:"
)
tf
.
logging
.
info
(
"
\t
1. Train for {}"
.
format
(
schedule_manager
.
train_increment_str
))
tf
.
logging
.
info
(
"
\t
2. Evaluate model."
)
if
evaluate_bleu
:
tf
.
logging
.
info
(
"
\t
3. Compute BLEU score."
)
if
bleu_threshold
is
not
None
:
tf
.
logging
.
info
(
"Repeat above steps until the BLEU score reaches %f"
%
bleu_threshold
)
if
not
evaluate_bleu
or
bleu_threshold
is
None
:
tf
.
logging
.
info
(
"Repeat above steps %d times."
%
schedule_manager
.
train_eval_iterations
)
if
evaluate_bleu
:
# Create summary writer to log bleu score (values can be displayed in
# Tensorboard).
bleu_writer
=
tf
.
summary
.
FileWriter
(
os
.
path
.
join
(
estimator
.
model_dir
,
BLEU_DIR
))
if
bleu_threshold
is
not
None
:
# Change loop stopping condition if bleu_threshold is defined.
schedule_manager
.
train_eval_iterations
=
INF
# Loop training/evaluation/bleu cycles
stats
=
{}
for
i
in
xrange
(
schedule_manager
.
train_eval_iterations
):
tf
.
logging
.
info
(
"Starting iteration %d"
%
(
i
+
1
))
# Train the model for single_iteration_train_steps or until the input fn
# runs out of examples (if single_iteration_train_steps is None).
estimator
.
train
(
dataset
.
train_input_fn
,
steps
=
schedule_manager
.
single_iteration_train_steps
,
hooks
=
train_hooks
)
eval_results
=
None
eval_results
=
estimator
.
evaluate
(
input_fn
=
dataset
.
eval_input_fn
,
steps
=
schedule_manager
.
single_iteration_eval_steps
)
tf
.
logging
.
info
(
"Evaluation results (iter %d/%d):"
%
(
i
+
1
,
schedule_manager
.
train_eval_iterations
))
tf
.
logging
.
info
(
eval_results
)
benchmark_logger
.
log_evaluation_result
(
eval_results
)
# The results from estimator.evaluate() are measured on an approximate
# translation, which utilize the target golden values provided. The actual
# bleu score must be computed using the estimator.predict() path, which
# outputs translations that are not based on golden values. The translations
# are compared to reference file to get the actual bleu score.
if
evaluate_bleu
:
uncased_score
,
cased_score
=
evaluate_and_log_bleu
(
estimator
,
bleu_source
,
bleu_ref
,
vocab_file
)
stats
[
"bleu_uncased"
]
=
uncased_score
stats
[
"bleu_cased"
]
=
cased_score
# Write actual bleu scores using summary writer and benchmark logger
global_step
=
get_global_step
(
estimator
)
summary
=
tf
.
Summary
(
value
=
[
tf
.
Summary
.
Value
(
tag
=
"bleu/uncased"
,
simple_value
=
uncased_score
),
tf
.
Summary
.
Value
(
tag
=
"bleu/cased"
,
simple_value
=
cased_score
),
])
bleu_writer
.
add_summary
(
summary
,
global_step
)
bleu_writer
.
flush
()
benchmark_logger
.
log_metric
(
"bleu_uncased"
,
uncased_score
,
global_step
=
global_step
)
benchmark_logger
.
log_metric
(
"bleu_cased"
,
cased_score
,
global_step
=
global_step
)
# Stop training if bleu stopping threshold is met.
if
model_helpers
.
past_stop_threshold
(
bleu_threshold
,
uncased_score
):
bleu_writer
.
close
()
break
stats
[
"eval_results"
]
=
eval_results
stats
[
"train_hooks"
]
=
train_hooks
return
stats
def
define_transformer_flags
():
"""Add flags and flag validators for running transformer_main."""
# Add common flags (data_dir, model_dir, train_epochs, etc.).
flags
.
DEFINE_integer
(
name
=
"max_length"
,
short_name
=
"ml"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"Max length."
))
flags_core
.
define_base
(
clean
=
True
,
train_epochs
=
True
,
epochs_between_evals
=
True
,
stop_threshold
=
True
,
num_gpu
=
True
,
hooks
=
True
,
export_dir
=
True
,
distribution_strategy
=
True
)
flags_core
.
define_performance
(
num_parallel_calls
=
True
,
inter_op
=
False
,
intra_op
=
False
,
synthetic_data
=
True
,
max_train_steps
=
False
,
dtype
=
True
,
all_reduce_alg
=
True
)
flags_core
.
define_benchmark
()
flags_core
.
define_device
(
tpu
=
True
)
# Set flags from the flags_core module as "key flags" so they're listed when
# the '-h' flag is used. Without this line, the flags defined above are
# only shown in the full `--helpful` help text.
flags
.
adopt_module_key_flags
(
flags_core
)
# Add transformer-specific flags
flags
.
DEFINE_enum
(
name
=
"param_set"
,
short_name
=
"mp"
,
default
=
"big"
,
enum_values
=
PARAMS_MAP
.
keys
(),
help
=
flags_core
.
help_wrap
(
"Parameter set to use when creating and training the model. The "
"parameters define the input shape (batch size and max length), "
"model configuration (size of embedding, # of hidden layers, etc.), "
"and various other settings. The big parameter set increases the "
"default batch size, embedding/hidden size, and filter size. For a "
"complete list of parameters, please see model/model_params.py."
))
flags
.
DEFINE_bool
(
name
=
"static_batch"
,
default
=
False
,
help
=
flags_core
.
help_wrap
(
"Whether the batches in the dataset should have static shapes. In "
"general, this setting should be False. Dynamic shapes allow the "
"inputs to be grouped so that the number of padding tokens is "
"minimized, and helps model training. In cases where the input shape "
"must be static (e.g. running on TPU), this setting will be ignored "
"and static batching will always be used."
))
# Flags for training with steps (may be used for debugging)
flags
.
DEFINE_integer
(
name
=
"train_steps"
,
short_name
=
"ts"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"The number of steps used to train."
))
flags
.
DEFINE_integer
(
name
=
"steps_between_evals"
,
short_name
=
"sbe"
,
default
=
1000
,
help
=
flags_core
.
help_wrap
(
"The Number of training steps to run between evaluations. This is "
"used if --train_steps is defined."
))
# BLEU score computation
flags
.
DEFINE_string
(
name
=
"bleu_source"
,
short_name
=
"bls"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"Path to source file containing text translate when calculating the "
"official BLEU score. Both --bleu_source and --bleu_ref must be set. "
"Use the flag --stop_threshold to stop the script based on the "
"uncased BLEU score."
))
flags
.
DEFINE_string
(
name
=
"bleu_ref"
,
short_name
=
"blr"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"Path to source file containing text translate when calculating the "
"official BLEU score. Both --bleu_source and --bleu_ref must be set. "
"Use the flag --stop_threshold to stop the script based on the "
"uncased BLEU score."
))
flags
.
DEFINE_string
(
name
=
"vocab_file"
,
short_name
=
"vf"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"Path to subtoken vocabulary file. If data_download.py was used to "
"download and encode the training data, look in the data_dir to find "
"the vocab file."
))
flags_core
.
set_defaults
(
data_dir
=
"/tmp/translate_ende"
,
model_dir
=
"/tmp/transformer_model"
,
batch_size
=
None
,
train_epochs
=
None
)
@
flags
.
multi_flags_validator
(
[
"train_epochs"
,
"train_steps"
],
message
=
"Both --train_steps and --train_epochs were set. Only one may be "
"defined."
)
def
_check_train_limits
(
flag_dict
):
return
flag_dict
[
"train_epochs"
]
is
None
or
flag_dict
[
"train_steps"
]
is
None
@
flags
.
multi_flags_validator
(
[
"bleu_source"
,
"bleu_ref"
],
message
=
"Both or neither --bleu_source and --bleu_ref must be defined."
)
def
_check_bleu_files
(
flags_dict
):
return
(
flags_dict
[
"bleu_source"
]
is
None
)
==
(
flags_dict
[
"bleu_ref"
]
is
None
)
@
flags
.
multi_flags_validator
(
[
"bleu_source"
,
"bleu_ref"
,
"vocab_file"
],
message
=
"--vocab_file must be defined if --bleu_source and --bleu_ref "
"are defined."
)
def
_check_bleu_vocab_file
(
flags_dict
):
if
flags_dict
[
"bleu_source"
]
and
flags_dict
[
"bleu_ref"
]:
return
flags_dict
[
"vocab_file"
]
is
not
None
return
True
@
flags
.
multi_flags_validator
(
[
"export_dir"
,
"vocab_file"
],
message
=
"--vocab_file must be defined if --export_dir is set."
)
def
_check_export_vocab_file
(
flags_dict
):
if
flags_dict
[
"export_dir"
]:
return
flags_dict
[
"vocab_file"
]
is
not
None
return
True
flags_core
.
require_cloud_storage
([
"data_dir"
,
"model_dir"
,
"export_dir"
])
def
construct_estimator
(
flags_obj
,
params
,
schedule_manager
):
"""Construct an estimator from either Estimator or TPUEstimator.
Args:
flags_obj: The FLAGS object parsed from command line.
params: A dict of run specific parameters.
schedule_manager: A schedule.Manager object containing the run schedule.
Returns:
An estimator object to be used for training and eval.
"""
if
not
params
[
"use_tpu"
]:
distribution_strategy
=
distribution_utils
.
get_distribution_strategy
(
distribution_strategy
=
flags_obj
.
distribution_strategy
,
num_gpus
=
flags_core
.
get_num_gpus
(
flags_obj
),
all_reduce_alg
=
flags_obj
.
all_reduce_alg
)
return
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
,
model_dir
=
flags_obj
.
model_dir
,
params
=
params
,
config
=
tf
.
estimator
.
RunConfig
(
train_distribute
=
distribution_strategy
))
tpu_cluster_resolver
=
tf
.
compat
.
v1
.
cluster_resolver
.
TPUClusterResolver
(
tpu
=
flags_obj
.
tpu
,
zone
=
flags_obj
.
tpu_zone
,
project
=
flags_obj
.
tpu_gcp_project
)
tpu_config
=
tf
.
estimator
.
tpu
.
TPUConfig
(
iterations_per_loop
=
schedule_manager
.
single_iteration_train_steps
,
num_shards
=
flags_obj
.
num_tpu_shards
)
run_config
=
tf
.
estimator
.
tpu
.
RunConfig
(
cluster
=
tpu_cluster_resolver
,
model_dir
=
flags_obj
.
model_dir
,
session_config
=
tf
.
ConfigProto
(
allow_soft_placement
=
True
,
log_device_placement
=
True
),
tpu_config
=
tpu_config
)
return
tf
.
estimator
.
tpu
.
TPUEstimator
(
model_fn
=
model_fn
,
use_tpu
=
params
[
"use_tpu"
]
and
flags_obj
.
tpu
!=
tpu_util
.
LOCAL
,
train_batch_size
=
schedule_manager
.
batch_size
,
eval_batch_size
=
schedule_manager
.
batch_size
,
params
=
{
# TPUEstimator needs to populate batch_size itself due to sharding.
key
:
value
for
key
,
value
in
params
.
items
()
if
key
!=
"batch_size"
},
config
=
run_config
)
def
per_replica_batch_size
(
batch_size
,
num_gpus
):
"""For multi-gpu, batch-size must be a multiple of the number of GPUs.
Note that distribution strategy handles this automatically when used with
Keras. For using with Estimator, we need to get per GPU batch.
Args:
batch_size: Global batch size to be divided among devices. This should be
equal to num_gpus times the single-GPU batch_size for multi-gpu training.
num_gpus: How many GPUs are used with DistributionStrategies.
Returns:
Batch size per device.
Raises:
ValueError: if batch_size is not divisible by number of devices
"""
if
num_gpus
<=
1
:
return
batch_size
remainder
=
batch_size
%
num_gpus
if
remainder
:
err
=
(
'When running with multiple GPUs, batch size '
'must be a multiple of the number of available GPUs. Found {} '
'GPUs with a batch size of {}; try --batch_size={} instead.'
).
format
(
num_gpus
,
batch_size
,
batch_size
-
remainder
)
raise
ValueError
(
err
)
return
int
(
batch_size
/
num_gpus
)
def
run_transformer
(
flags_obj
):
"""Create tf.Estimator to train and evaluate transformer model.
Args:
flags_obj: Object containing parsed flag values.
Returns:
Dict of results of the run. Contains the keys `eval_results`,
`train_hooks`, `bleu_cased`, and `bleu_uncased`. `train_hooks` is a list the
instances of hooks used during training.
"""
num_gpus
=
flags_core
.
get_num_gpus
(
flags_obj
)
# Add flag-defined parameters to params object
params
=
PARAMS_MAP
[
flags_obj
.
param_set
]
if
num_gpus
>
1
:
if
flags_obj
.
param_set
==
"big"
:
params
=
model_params
.
BIG_MULTI_GPU_PARAMS
elif
flags_obj
.
param_set
==
"base"
:
params
=
model_params
.
BASE_MULTI_GPU_PARAMS
params
[
"data_dir"
]
=
flags_obj
.
data_dir
params
[
"model_dir"
]
=
flags_obj
.
model_dir
params
[
"num_parallel_calls"
]
=
flags_obj
.
num_parallel_calls
params
[
"tpu"
]
=
flags_obj
.
tpu
params
[
"use_tpu"
]
=
bool
(
flags_obj
.
tpu
)
# was a tpu specified.
params
[
"static_batch"
]
=
flags_obj
.
static_batch
or
params
[
"use_tpu"
]
params
[
"allow_ffn_pad"
]
=
not
params
[
"use_tpu"
]
params
[
"max_length"
]
=
flags_obj
.
max_length
or
params
[
"max_length"
]
params
[
"use_synthetic_data"
]
=
flags_obj
.
use_synthetic_data
# Set batch size parameter, which depends on the availability of
# TPU and GPU, and distribution settings.
params
[
"batch_size"
]
=
(
flags_obj
.
batch_size
or
(
params
[
"default_batch_size_tpu"
]
if
params
[
"use_tpu"
]
else
params
[
"default_batch_size"
]))
total_batch_size
=
params
[
"batch_size"
]
if
not
params
[
"use_tpu"
]:
params
[
"batch_size"
]
=
per_replica_batch_size
(
params
[
"batch_size"
],
num_gpus
)
schedule_manager
=
schedule
.
Manager
(
train_steps
=
flags_obj
.
train_steps
,
steps_between_evals
=
flags_obj
.
steps_between_evals
,
train_epochs
=
flags_obj
.
train_epochs
,
epochs_between_evals
=
flags_obj
.
epochs_between_evals
,
default_train_epochs
=
DEFAULT_TRAIN_EPOCHS
,
batch_size
=
params
[
"batch_size"
],
max_length
=
params
[
"max_length"
],
use_tpu
=
params
[
"use_tpu"
],
num_tpu_shards
=
flags_obj
.
num_tpu_shards
)
params
[
"repeat_dataset"
]
=
schedule_manager
.
repeat_dataset
model_helpers
.
apply_clean
(
flags
.
FLAGS
)
# Create hooks that log information about the training and metric values
train_hooks
=
hooks_helper
.
get_train_hooks
(
flags_obj
.
hooks
,
model_dir
=
flags_obj
.
model_dir
,
tensors_to_log
=
TENSORS_TO_LOG
,
# used for logging hooks
batch_size
=
total_batch_size
,
# for ExamplesPerSecondHook
use_tpu
=
params
[
"use_tpu"
]
# Not all hooks can run with TPUs
)
benchmark_logger
=
logger
.
get_benchmark_logger
()
benchmark_logger
.
log_run_info
(
model_name
=
"transformer"
,
dataset_name
=
"wmt_translate_ende"
,
run_params
=
params
,
test_id
=
flags_obj
.
benchmark_test_id
)
# Train and evaluate transformer model
estimator
=
construct_estimator
(
flags_obj
,
params
,
schedule_manager
)
stats
=
run_loop
(
estimator
=
estimator
,
# Training arguments
schedule_manager
=
schedule_manager
,
train_hooks
=
train_hooks
,
benchmark_logger
=
benchmark_logger
,
# BLEU calculation arguments
bleu_source
=
flags_obj
.
bleu_source
,
bleu_ref
=
flags_obj
.
bleu_ref
,
bleu_threshold
=
flags_obj
.
stop_threshold
,
vocab_file
=
flags_obj
.
vocab_file
)
if
flags_obj
.
export_dir
and
not
params
[
"use_tpu"
]:
serving_input_fn
=
export
.
build_tensor_serving_input_receiver_fn
(
shape
=
[
None
],
dtype
=
tf
.
int64
,
batch_size
=
None
)
# Export saved model, and save the vocab file as an extra asset. The vocab
# file is saved to allow consistent input encoding and output decoding.
# (See the "Export trained model" section in the README for an example of
# how to use the vocab file.)
# Since the model itself does not use the vocab file, this file is saved as
# an extra asset rather than a core asset.
estimator
.
export_savedmodel
(
flags_obj
.
export_dir
,
serving_input_fn
,
assets_extra
=
{
"vocab.txt"
:
flags_obj
.
vocab_file
},
strip_default_attrs
=
True
)
return
stats
def
main
(
_
):
with
logger
.
benchmark_context
(
flags
.
FLAGS
):
run_transformer
(
flags
.
FLAGS
)
if
__name__
==
"__main__"
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
define_transformer_flags
()
absl_app
.
run
(
main
)
official/r1/transformer/translate.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Translate text or files using trained transformer model."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
# pylint: disable=g-bad-import-order
from
absl
import
app
as
absl_app
from
absl
import
flags
import
tensorflow.compat.v1
as
tf
# pylint: enable=g-bad-import-order
from
official.nlp.transformer.utils
import
tokenizer
from
official.utils.flags
import
core
as
flags_core
_DECODE_BATCH_SIZE
=
32
_EXTRA_DECODE_LENGTH
=
100
_BEAM_SIZE
=
4
_ALPHA
=
0.6
def
_get_sorted_inputs
(
filename
):
"""Read and sort lines from the file sorted by decreasing length.
Args:
filename: String name of file to read inputs from.
Returns:
Sorted list of inputs, and dictionary mapping original index->sorted index
of each element.
"""
with
tf
.
io
.
gfile
.
GFile
(
filename
)
as
f
:
records
=
f
.
read
().
split
(
"
\n
"
)
inputs
=
[
record
.
strip
()
for
record
in
records
]
if
not
inputs
[
-
1
]:
inputs
.
pop
()
input_lens
=
[(
i
,
len
(
line
.
split
()))
for
i
,
line
in
enumerate
(
inputs
)]
sorted_input_lens
=
sorted
(
input_lens
,
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
sorted_inputs
=
[
None
]
*
len
(
sorted_input_lens
)
sorted_keys
=
[
0
]
*
len
(
sorted_input_lens
)
for
i
,
(
index
,
_
)
in
enumerate
(
sorted_input_lens
):
sorted_inputs
[
i
]
=
inputs
[
index
]
sorted_keys
[
index
]
=
i
return
sorted_inputs
,
sorted_keys
def
_encode_and_add_eos
(
line
,
subtokenizer
):
"""Encode line with subtokenizer, and add EOS id to the end."""
return
subtokenizer
.
encode
(
line
)
+
[
tokenizer
.
EOS_ID
]
def
_trim_and_decode
(
ids
,
subtokenizer
):
"""Trim EOS and PAD tokens from ids, and decode to return a string."""
try
:
index
=
list
(
ids
).
index
(
tokenizer
.
EOS_ID
)
return
subtokenizer
.
decode
(
ids
[:
index
])
except
ValueError
:
# No EOS found in sequence
return
subtokenizer
.
decode
(
ids
)
def
translate_file
(
estimator
,
subtokenizer
,
input_file
,
output_file
=
None
,
print_all_translations
=
True
):
"""Translate lines in file, and save to output file if specified.
Args:
estimator: tf.Estimator used to generate the translations.
subtokenizer: Subtokenizer object for encoding and decoding source and
translated lines.
input_file: file containing lines to translate
output_file: file that stores the generated translations.
print_all_translations: If true, all translations are printed to stdout.
Raises:
ValueError: if output file is invalid.
"""
batch_size
=
_DECODE_BATCH_SIZE
# Read and sort inputs by length. Keep dictionary (original index-->new index
# in sorted list) to write translations in the original order.
sorted_inputs
,
sorted_keys
=
_get_sorted_inputs
(
input_file
)
num_decode_batches
=
(
len
(
sorted_inputs
)
-
1
)
//
batch_size
+
1
def
input_generator
():
"""Yield encoded strings from sorted_inputs."""
for
i
,
line
in
enumerate
(
sorted_inputs
):
if
i
%
batch_size
==
0
:
batch_num
=
(
i
//
batch_size
)
+
1
tf
.
logging
.
info
(
"Decoding batch %d out of %d."
%
(
batch_num
,
num_decode_batches
))
yield
_encode_and_add_eos
(
line
,
subtokenizer
)
def
input_fn
():
"""Created batched dataset of encoded inputs."""
ds
=
tf
.
data
.
Dataset
.
from_generator
(
input_generator
,
tf
.
int64
,
tf
.
TensorShape
([
None
]))
ds
=
ds
.
padded_batch
(
batch_size
,
[
None
])
return
ds
translations
=
[]
for
i
,
prediction
in
enumerate
(
estimator
.
predict
(
input_fn
)):
translation
=
_trim_and_decode
(
prediction
[
"outputs"
],
subtokenizer
)
translations
.
append
(
translation
)
if
print_all_translations
:
tf
.
logging
.
info
(
"Translating:
\n\t
Input: %s
\n\t
Output: %s"
%
(
sorted_inputs
[
i
],
translation
))
# Write translations in the order they appeared in the original file.
if
output_file
is
not
None
:
if
tf
.
io
.
gfile
.
isdir
(
output_file
):
raise
ValueError
(
"File output is a directory, will not save outputs to "
"file."
)
tf
.
logging
.
info
(
"Writing to file %s"
%
output_file
)
with
tf
.
io
.
gfile
.
GFile
(
output_file
,
"w"
)
as
f
:
for
i
in
sorted_keys
:
f
.
write
(
"%s
\n
"
%
translations
[
i
])
def
translate_text
(
estimator
,
subtokenizer
,
txt
):
"""Translate a single string."""
encoded_txt
=
_encode_and_add_eos
(
txt
,
subtokenizer
)
def
input_fn
():
ds
=
tf
.
data
.
Dataset
.
from_tensors
(
encoded_txt
)
ds
=
ds
.
batch
(
_DECODE_BATCH_SIZE
)
return
ds
predictions
=
estimator
.
predict
(
input_fn
)
translation
=
next
(
predictions
)[
"outputs"
]
translation
=
_trim_and_decode
(
translation
,
subtokenizer
)
tf
.
logging
.
info
(
"Translation of
\"
%s
\"
:
\"
%s
\"
"
%
(
txt
,
translation
))
def
main
(
unused_argv
):
from
official.transformer
import
transformer_main
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
if
FLAGS
.
text
is
None
and
FLAGS
.
file
is
None
:
tf
.
logging
.
warn
(
"Nothing to translate. Make sure to call this script using "
"flags --text or --file."
)
return
subtokenizer
=
tokenizer
.
Subtokenizer
(
FLAGS
.
vocab_file
)
# Set up estimator and params
params
=
transformer_main
.
PARAMS_MAP
[
FLAGS
.
param_set
]
params
[
"beam_size"
]
=
_BEAM_SIZE
params
[
"alpha"
]
=
_ALPHA
params
[
"extra_decode_length"
]
=
_EXTRA_DECODE_LENGTH
params
[
"batch_size"
]
=
_DECODE_BATCH_SIZE
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
transformer_main
.
model_fn
,
model_dir
=
FLAGS
.
model_dir
,
params
=
params
)
if
FLAGS
.
text
is
not
None
:
tf
.
logging
.
info
(
"Translating text: %s"
%
FLAGS
.
text
)
translate_text
(
estimator
,
subtokenizer
,
FLAGS
.
text
)
if
FLAGS
.
file
is
not
None
:
input_file
=
os
.
path
.
abspath
(
FLAGS
.
file
)
tf
.
logging
.
info
(
"Translating file: %s"
%
input_file
)
if
not
tf
.
gfile
.
Exists
(
FLAGS
.
file
):
raise
ValueError
(
"File does not exist: %s"
%
input_file
)
output_file
=
None
if
FLAGS
.
file_out
is
not
None
:
output_file
=
os
.
path
.
abspath
(
FLAGS
.
file_out
)
tf
.
logging
.
info
(
"File output specified: %s"
%
output_file
)
translate_file
(
estimator
,
subtokenizer
,
input_file
,
output_file
)
def
define_translate_flags
():
"""Define flags used for translation script."""
# Model flags
flags
.
DEFINE_string
(
name
=
"model_dir"
,
short_name
=
"md"
,
default
=
"/tmp/transformer_model"
,
help
=
flags_core
.
help_wrap
(
"Directory containing Transformer model checkpoints."
))
flags
.
DEFINE_enum
(
name
=
"param_set"
,
short_name
=
"mp"
,
default
=
"big"
,
enum_values
=
[
"base"
,
"big"
],
help
=
flags_core
.
help_wrap
(
"Parameter set to use when creating and training the model. The "
"parameters define the input shape (batch size and max length), "
"model configuration (size of embedding, # of hidden layers, etc.), "
"and various other settings. The big parameter set increases the "
"default batch size, embedding/hidden size, and filter size. For a "
"complete list of parameters, please see model/model_params.py."
))
flags
.
DEFINE_string
(
name
=
"vocab_file"
,
short_name
=
"vf"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"Path to subtoken vocabulary file. If data_download.py was used to "
"download and encode the training data, look in the data_dir to find "
"the vocab file."
))
flags
.
mark_flag_as_required
(
"vocab_file"
)
flags
.
DEFINE_string
(
name
=
"text"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"Text to translate. Output will be printed to console."
))
flags
.
DEFINE_string
(
name
=
"file"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"File containing text to translate. Translation will be printed to "
"console and, if --file_out is provided, saved to an output file."
))
flags
.
DEFINE_string
(
name
=
"file_out"
,
default
=
None
,
help
=
flags_core
.
help_wrap
(
"If --file flag is specified, save translation to this file."
))
if
__name__
==
"__main__"
:
define_translate_flags
()
FLAGS
=
flags
.
FLAGS
absl_app
.
run
(
main
)
official/r1/utils/__init__.py
deleted
100644 → 0
View file @
d8611151
official/r1/utils/data/__init__.py
deleted
100644 → 0
View file @
d8611151
official/r1/utils/data/file_io.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Convenience functions for managing dataset file buffers."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
atexit
import
multiprocessing
import
multiprocessing.dummy
import
os
import
tempfile
import
uuid
from
absl
import
logging
import
numpy
as
np
import
six
import
tensorflow
as
tf
# pylint:disable=logging-format-interpolation
class
_GarbageCollector
(
object
):
"""Deletes temporary buffer files at exit.
Certain tasks (such as NCF Recommendation) require writing buffers to
temporary files. (Which may be local or distributed.) It is not generally safe
to delete these files during operation, but they should be cleaned up. This
class keeps track of temporary files created, and deletes them at exit.
"""
def
__init__
(
self
):
self
.
temp_buffers
=
[]
def
register
(
self
,
filepath
):
self
.
temp_buffers
.
append
(
filepath
)
def
purge
(
self
):
try
:
for
i
in
self
.
temp_buffers
:
if
tf
.
io
.
gfile
.
exists
(
i
):
tf
.
io
.
gfile
.
remove
(
i
)
logging
.
info
(
"Buffer file {} removed"
.
format
(
i
))
except
Exception
as
e
:
logging
.
error
(
"Failed to cleanup buffer files: {}"
.
format
(
e
))
_GARBAGE_COLLECTOR
=
_GarbageCollector
()
atexit
.
register
(
_GARBAGE_COLLECTOR
.
purge
)
_ROWS_PER_CORE
=
50000
def
write_to_temp_buffer
(
dataframe
,
buffer_folder
,
columns
):
if
buffer_folder
is
None
:
_
,
buffer_path
=
tempfile
.
mkstemp
()
else
:
tf
.
io
.
gfile
.
makedirs
(
buffer_folder
)
buffer_path
=
os
.
path
.
join
(
buffer_folder
,
str
(
uuid
.
uuid4
()))
_GARBAGE_COLLECTOR
.
register
(
buffer_path
)
return
write_to_buffer
(
dataframe
,
buffer_path
,
columns
)
def
iter_shard_dataframe
(
df
,
rows_per_core
=
1000
):
"""Two way shard of a dataframe.
This function evenly shards a dataframe so that it can be mapped efficiently.
It yields a list of dataframes with length equal to the number of CPU cores,
with each dataframe having rows_per_core rows. (Except for the last batch
which may have fewer rows in the dataframes.) Passing vectorized inputs to
a pool is more effecient than iterating through a dataframe in serial and
passing a list of inputs to the pool.
Args:
df: Pandas dataframe to be sharded.
rows_per_core: Number of rows in each shard.
Returns:
A list of dataframe shards.
"""
n
=
len
(
df
)
num_cores
=
min
([
multiprocessing
.
cpu_count
(),
n
])
num_blocks
=
int
(
np
.
ceil
(
n
/
num_cores
/
rows_per_core
))
max_batch_size
=
num_cores
*
rows_per_core
for
i
in
range
(
num_blocks
):
min_index
=
i
*
max_batch_size
max_index
=
min
([(
i
+
1
)
*
max_batch_size
,
n
])
df_shard
=
df
[
min_index
:
max_index
]
n_shard
=
len
(
df_shard
)
boundaries
=
np
.
linspace
(
0
,
n_shard
,
num_cores
+
1
,
dtype
=
np
.
int64
)
yield
[
df_shard
[
boundaries
[
j
]:
boundaries
[
j
+
1
]]
for
j
in
range
(
num_cores
)]
def
_shard_dict_to_examples
(
shard_dict
):
"""Converts a dict of arrays into a list of example bytes."""
n
=
[
i
for
i
in
shard_dict
.
values
()][
0
].
shape
[
0
]
feature_list
=
[{}
for
_
in
range
(
n
)]
for
column
,
values
in
shard_dict
.
items
():
if
len
(
values
.
shape
)
==
1
:
values
=
np
.
reshape
(
values
,
values
.
shape
+
(
1
,))
if
values
.
dtype
.
kind
==
"i"
:
feature_map
=
lambda
x
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
x
))
elif
values
.
dtype
.
kind
==
"f"
:
feature_map
=
lambda
x
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
x
))
else
:
raise
ValueError
(
"Invalid dtype"
)
for
i
in
range
(
n
):
feature_list
[
i
][
column
]
=
feature_map
(
values
[
i
])
examples
=
[
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
example_features
))
for
example_features
in
feature_list
]
return
[
e
.
SerializeToString
()
for
e
in
examples
]
def
_serialize_shards
(
df_shards
,
columns
,
pool
,
writer
):
"""Map sharded dataframes to bytes, and write them to a buffer.
Args:
df_shards: A list of pandas dataframes. (Should be of similar size)
columns: The dataframe columns to be serialized.
pool: A pool to serialize in parallel.
writer: A TFRecordWriter to write the serialized shards.
"""
# Pandas does not store columns of arrays as nd arrays. stack remedies this.
map_inputs
=
[{
c
:
np
.
stack
(
shard
[
c
].
values
,
axis
=
0
)
for
c
in
columns
}
for
shard
in
df_shards
]
# Failure within pools is very irksome. Thus, it is better to thoroughly check
# inputs in the main process.
for
inp
in
map_inputs
:
# Check that all fields have the same number of rows.
assert
len
(
set
([
v
.
shape
[
0
]
for
v
in
inp
.
values
()]))
==
1
for
val
in
inp
.
values
():
assert
hasattr
(
val
,
"dtype"
)
assert
hasattr
(
val
.
dtype
,
"kind"
)
assert
val
.
dtype
.
kind
in
(
"i"
,
"f"
)
assert
len
(
val
.
shape
)
in
(
1
,
2
)
shard_bytes
=
pool
.
map
(
_shard_dict_to_examples
,
map_inputs
)
for
s
in
shard_bytes
:
for
example
in
s
:
writer
.
write
(
example
)
def
write_to_buffer
(
dataframe
,
buffer_path
,
columns
,
expected_size
=
None
):
"""Write a dataframe to a binary file for a dataset to consume.
Args:
dataframe: The pandas dataframe to be serialized.
buffer_path: The path where the serialized results will be written.
columns: The dataframe columns to be serialized.
expected_size: The size in bytes of the serialized results. This is used to
lazily construct the buffer.
Returns:
The path of the buffer.
"""
if
(
tf
.
io
.
gfile
.
exists
(
buffer_path
)
and
tf
.
io
.
gfile
.
stat
(
buffer_path
).
length
>
0
):
actual_size
=
tf
.
io
.
gfile
.
stat
(
buffer_path
).
length
if
expected_size
==
actual_size
:
return
buffer_path
logging
.
warning
(
"Existing buffer {} has size {}. Expected size {}. Deleting and "
"rebuilding buffer."
.
format
(
buffer_path
,
actual_size
,
expected_size
))
tf
.
io
.
gfile
.
remove
(
buffer_path
)
if
dataframe
is
None
:
raise
ValueError
(
"dataframe was None but a valid existing buffer was not found."
)
tf
.
io
.
gfile
.
makedirs
(
os
.
path
.
split
(
buffer_path
)[
0
])
logging
.
info
(
"Constructing TFRecordDataset buffer: {}"
.
format
(
buffer_path
))
count
=
0
pool
=
multiprocessing
.
dummy
.
Pool
(
multiprocessing
.
cpu_count
())
try
:
with
tf
.
io
.
TFRecordWriter
(
buffer_path
)
as
writer
:
for
df_shards
in
iter_shard_dataframe
(
df
=
dataframe
,
rows_per_core
=
_ROWS_PER_CORE
):
_serialize_shards
(
df_shards
,
columns
,
pool
,
writer
)
count
+=
sum
([
len
(
s
)
for
s
in
df_shards
])
logging
.
info
(
"{}/{} examples written."
.
format
(
str
(
count
).
ljust
(
8
),
len
(
dataframe
)))
finally
:
pool
.
terminate
()
logging
.
info
(
"Buffer write complete."
)
return
buffer_path
official/r1/utils/data/file_io_test.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for binary data file utilities."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
contextlib
import
multiprocessing
# pylint: disable=wrong-import-order
import
numpy
as
np
import
pandas
as
pd
import
tensorflow
as
tf
# pylint: enable=wrong-import-order
from
official.r1.utils.data
import
file_io
_RAW_ROW
=
"raw_row"
_DUMMY_COL
=
"column_0"
_DUMMY_VEC_COL
=
"column_1"
_DUMMY_VEC_LEN
=
4
_ROWS_PER_CORE
=
4
_TEST_CASES
=
[
# One batch of one
dict
(
row_count
=
1
,
cpu_count
=
1
,
expected
=
[
[[
0
]]
]),
dict
(
row_count
=
10
,
cpu_count
=
1
,
expected
=
[
[[
0
,
1
,
2
,
3
]],
[[
4
,
5
,
6
,
7
]],
[[
8
,
9
]]
]),
dict
(
row_count
=
21
,
cpu_count
=
1
,
expected
=
[
[[
0
,
1
,
2
,
3
]],
[[
4
,
5
,
6
,
7
]],
[[
8
,
9
,
10
,
11
]],
[[
12
,
13
,
14
,
15
]],
[[
16
,
17
,
18
,
19
]],
[[
20
]]
]),
dict
(
row_count
=
1
,
cpu_count
=
4
,
expected
=
[
[[
0
]]
]),
dict
(
row_count
=
10
,
cpu_count
=
4
,
expected
=
[
[[
0
,
1
],
[
2
,
3
,
4
],
[
5
,
6
],
[
7
,
8
,
9
]]
]),
dict
(
row_count
=
21
,
cpu_count
=
4
,
expected
=
[
[[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
],
[
12
,
13
,
14
,
15
]],
[[
16
],
[
17
],
[
18
],
[
19
,
20
]]
]),
dict
(
row_count
=
10
,
cpu_count
=
8
,
expected
=
[
[[
0
],
[
1
],
[
2
],
[
3
,
4
],
[
5
],
[
6
],
[
7
],
[
8
,
9
]]
]),
dict
(
row_count
=
40
,
cpu_count
=
8
,
expected
=
[
[[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
],
[
12
,
13
,
14
,
15
],
[
16
,
17
,
18
,
19
],
[
20
,
21
,
22
,
23
],
[
24
,
25
,
26
,
27
],
[
28
,
29
,
30
,
31
]],
[[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
37
],
[
38
],
[
39
]]
]),
]
_FEATURE_MAP
=
{
_RAW_ROW
:
tf
.
io
.
FixedLenFeature
([
1
],
dtype
=
tf
.
int64
),
_DUMMY_COL
:
tf
.
io
.
FixedLenFeature
([
1
],
dtype
=
tf
.
int64
),
_DUMMY_VEC_COL
:
tf
.
io
.
FixedLenFeature
([
_DUMMY_VEC_LEN
],
dtype
=
tf
.
float32
)
}
@
contextlib
.
contextmanager
def
fixed_core_count
(
cpu_count
):
"""Override CPU count.
file_io.py uses the cpu_count function to scale to the size of the instance.
However, this is not desirable for testing because it can make the test flaky.
Instead, this context manager fixes the count for more robust testing.
Args:
cpu_count: How many cores multiprocessing claims to have.
Yields:
Nothing. (for context manager only)
"""
old_count_fn
=
multiprocessing
.
cpu_count
multiprocessing
.
cpu_count
=
lambda
:
cpu_count
yield
multiprocessing
.
cpu_count
=
old_count_fn
class
BaseTest
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
super
(
BaseTest
,
self
).
setUp
()
tf
.
compat
.
v1
.
disable_eager_execution
()
def
_test_sharding
(
self
,
row_count
,
cpu_count
,
expected
):
df
=
pd
.
DataFrame
({
_DUMMY_COL
:
list
(
range
(
row_count
))})
with
fixed_core_count
(
cpu_count
):
shards
=
list
(
file_io
.
iter_shard_dataframe
(
df
,
_ROWS_PER_CORE
))
result
=
[[
j
[
_DUMMY_COL
].
tolist
()
for
j
in
i
]
for
i
in
shards
]
self
.
assertAllEqual
(
expected
,
result
)
def
test_tiny_rows_low_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
0
])
def
test_small_rows_low_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
1
])
def
test_large_rows_low_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
2
])
def
test_tiny_rows_medium_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
3
])
def
test_small_rows_medium_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
4
])
def
test_large_rows_medium_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
5
])
def
test_small_rows_large_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
6
])
def
test_large_rows_large_core
(
self
):
self
.
_test_sharding
(
**
_TEST_CASES
[
7
])
def
_serialize_deserialize
(
self
,
num_cores
=
1
,
num_rows
=
20
):
np
.
random
.
seed
(
1
)
df
=
pd
.
DataFrame
({
# Serialization order is only deterministic for num_cores=1. raw_row is
# used in validation after the deserialization.
_RAW_ROW
:
np
.
array
(
range
(
num_rows
),
dtype
=
np
.
int64
),
_DUMMY_COL
:
np
.
random
.
randint
(
0
,
35
,
size
=
(
num_rows
,)),
_DUMMY_VEC_COL
:
[
np
.
array
([
np
.
random
.
random
()
for
_
in
range
(
_DUMMY_VEC_LEN
)])
for
i
in
range
(
num_rows
)
# pylint: disable=unused-variable
]
})
with
fixed_core_count
(
num_cores
):
buffer_path
=
file_io
.
write_to_temp_buffer
(
df
,
self
.
get_temp_dir
(),
[
_RAW_ROW
,
_DUMMY_COL
,
_DUMMY_VEC_COL
])
with
self
.
session
(
graph
=
tf
.
Graph
())
as
sess
:
dataset
=
tf
.
data
.
TFRecordDataset
(
buffer_path
)
dataset
=
dataset
.
batch
(
1
).
map
(
lambda
x
:
tf
.
io
.
parse_example
(
serialized
=
x
,
features
=
_FEATURE_MAP
))
data_iter
=
tf
.
compat
.
v1
.
data
.
make_one_shot_iterator
(
dataset
)
seen_rows
=
set
()
for
i
in
range
(
num_rows
+
5
):
row
=
data_iter
.
get_next
()
try
:
row_id
,
val_0
,
val_1
=
sess
.
run
(
[
row
[
_RAW_ROW
],
row
[
_DUMMY_COL
],
row
[
_DUMMY_VEC_COL
]])
row_id
,
val_0
,
val_1
=
row_id
[
0
][
0
],
val_0
[
0
][
0
],
val_1
[
0
]
assert
row_id
not
in
seen_rows
seen_rows
.
add
(
row_id
)
self
.
assertEqual
(
val_0
,
df
[
_DUMMY_COL
][
row_id
])
self
.
assertAllClose
(
val_1
,
df
[
_DUMMY_VEC_COL
][
row_id
])
self
.
assertLess
(
i
,
num_rows
,
msg
=
"Too many rows."
)
except
tf
.
errors
.
OutOfRangeError
:
self
.
assertGreaterEqual
(
i
,
num_rows
,
msg
=
"Too few rows."
)
file_io
.
_GARBAGE_COLLECTOR
.
purge
()
assert
not
tf
.
io
.
gfile
.
exists
(
buffer_path
)
def
test_serialize_deserialize_0
(
self
):
self
.
_serialize_deserialize
(
num_cores
=
1
)
def
test_serialize_deserialize_1
(
self
):
self
.
_serialize_deserialize
(
num_cores
=
2
)
def
test_serialize_deserialize_2
(
self
):
self
.
_serialize_deserialize
(
num_cores
=
8
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/r1/utils/export.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Convenience functions for exporting models as SavedModels or other types."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow
as
tf
def
build_tensor_serving_input_receiver_fn
(
shape
,
dtype
=
tf
.
float32
,
batch_size
=
1
):
"""Returns a input_receiver_fn that can be used during serving.
This expects examples to come through as float tensors, and simply
wraps them as TensorServingInputReceivers.
Arguably, this should live in tf.estimator.export. Testing here first.
Args:
shape: list representing target size of a single example.
dtype: the expected datatype for the input example
batch_size: number of input tensors that will be passed for prediction
Returns:
A function that itself returns a TensorServingInputReceiver.
"""
def
serving_input_receiver_fn
():
# Prep a placeholder where the input example will be fed in
features
=
tf
.
compat
.
v1
.
placeholder
(
dtype
=
dtype
,
shape
=
[
batch_size
]
+
shape
,
name
=
'input_tensor'
)
return
tf
.
estimator
.
export
.
TensorServingInputReceiver
(
features
=
features
,
receiver_tensors
=
features
)
return
serving_input_receiver_fn
official/r1/utils/export_test.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for exporting utils."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
from
official.r1.utils
import
export
class
ExportUtilsTest
(
tf
.
test
.
TestCase
):
"""Tests for the ExportUtils."""
def
test_build_tensor_serving_input_receiver_fn
(
self
):
receiver_fn
=
export
.
build_tensor_serving_input_receiver_fn
(
shape
=
[
4
,
5
])
with
tf
.
Graph
().
as_default
():
receiver
=
receiver_fn
()
self
.
assertIsInstance
(
receiver
,
tf
.
estimator
.
export
.
TensorServingInputReceiver
)
self
.
assertIsInstance
(
receiver
.
features
,
tf
.
Tensor
)
self
.
assertEqual
(
receiver
.
features
.
shape
,
tf
.
TensorShape
([
1
,
4
,
5
]))
self
.
assertEqual
(
receiver
.
features
.
dtype
,
tf
.
float32
)
self
.
assertIsInstance
(
receiver
.
receiver_tensors
,
dict
)
# Note that Python 3 can no longer index .values() directly; cast to list.
self
.
assertEqual
(
list
(
receiver
.
receiver_tensors
.
values
())[
0
].
shape
,
tf
.
TensorShape
([
1
,
4
,
5
]))
def
test_build_tensor_serving_input_receiver_fn_batch_dtype
(
self
):
receiver_fn
=
export
.
build_tensor_serving_input_receiver_fn
(
shape
=
[
4
,
5
],
dtype
=
tf
.
int8
,
batch_size
=
10
)
with
tf
.
Graph
().
as_default
():
receiver
=
receiver_fn
()
self
.
assertIsInstance
(
receiver
,
tf
.
estimator
.
export
.
TensorServingInputReceiver
)
self
.
assertIsInstance
(
receiver
.
features
,
tf
.
Tensor
)
self
.
assertEqual
(
receiver
.
features
.
shape
,
tf
.
TensorShape
([
10
,
4
,
5
]))
self
.
assertEqual
(
receiver
.
features
.
dtype
,
tf
.
int8
)
self
.
assertIsInstance
(
receiver
.
receiver_tensors
,
dict
)
# Note that Python 3 can no longer index .values() directly; cast to list.
self
.
assertEqual
(
list
(
receiver
.
receiver_tensors
.
values
())[
0
].
shape
,
tf
.
TensorShape
([
10
,
4
,
5
]))
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/r1/utils/logs/__init__.py
deleted
100644 → 0
View file @
d8611151
official/r1/utils/logs/cloud_lib.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities that interact with cloud service.
"""
import
requests
GCP_METADATA_URL
=
"http://metadata/computeMetadata/v1/instance/hostname"
GCP_METADATA_HEADER
=
{
"Metadata-Flavor"
:
"Google"
}
def
on_gcp
():
"""Detect whether the current running environment is on GCP."""
try
:
# Timeout in 5 seconds, in case the test environment has connectivity issue.
# There is not default timeout, which means it might block forever.
response
=
requests
.
get
(
GCP_METADATA_URL
,
headers
=
GCP_METADATA_HEADER
,
timeout
=
5
)
return
response
.
status_code
==
200
except
requests
.
exceptions
.
RequestException
:
return
False
official/r1/utils/logs/guidelines.md
deleted
100644 → 0
View file @
d8611151
# Logging in official models
This library adds logging functions that print or save tensor values. Official models should define all common hooks
(using hooks helper) and a benchmark logger.
1.
**Training Hooks**
Hooks are a TensorFlow concept that define specific actions at certain points of the execution. We use them to obtain and log
tensor values during training.
hooks_helper.py provides an easy way to create common hooks. The following hooks are currently defined:
*
LoggingTensorHook: Logs tensor values
*
ProfilerHook: Writes a timeline json that can be loaded into chrome://tracing.
*
ExamplesPerSecondHook: Logs the number of examples processed per second.
*
LoggingMetricHook: Similar to LoggingTensorHook, except that the tensors are logged in a format defined by our data
anaylsis pipeline.
2.
**Benchmarks**
The benchmark logger provides useful functions for logging environment information, and evaluation results.
The module also contains a context which is used to update the status of the run.
Example usage:
```
from absl import app as absl_app
from official.utils.logs import hooks_helper
from official.utils.logs import logger
def model_main(flags_obj):
estimator = ...
benchmark_logger = logger.get_benchmark_logger()
benchmark_logger.log_run_info(...)
train_hooks = hooks_helper.get_train_hooks(...)
for epoch in range(10):
estimator.train(..., hooks=train_hooks)
eval_results = estimator.evaluate(...)
# Log a dictionary of metrics
benchmark_logger.log_evaluation_result(eval_results)
# Log an individual metric
benchmark_logger.log_metric(...)
def main(_):
with logger.benchmark_context(flags.FLAGS):
model_main(flags.FLAGS)
if __name__ == "__main__":
# define flags
absl_app.run(main)
```
official/r1/utils/logs/hooks.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hook that counts examples per second every N steps or seconds."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
from
official.r1.utils.logs
import
logger
class
ExamplesPerSecondHook
(
tf
.
estimator
.
SessionRunHook
):
"""Hook to print out examples per second.
Total time is tracked and then divided by the total number of steps
to get the average step time and then batch_size is used to determine
the running average of examples per second. The examples per second for the
most recent interval is also logged.
"""
def
__init__
(
self
,
batch_size
,
every_n_steps
=
None
,
every_n_secs
=
None
,
warm_steps
=
0
,
metric_logger
=
None
):
"""Initializer for ExamplesPerSecondHook.
Args:
batch_size: Total batch size across all workers used to calculate
examples/second from global time.
every_n_steps: Log stats every n steps.
every_n_secs: Log stats every n seconds. Exactly one of the
`every_n_steps` or `every_n_secs` should be set.
warm_steps: The number of steps to be skipped before logging and running
average calculation. warm_steps steps refers to global steps across all
workers, not on each worker
metric_logger: instance of `BenchmarkLogger`, the benchmark logger that
hook should use to write the log. If None, BaseBenchmarkLogger will
be used.
Raises:
ValueError: if neither `every_n_steps` or `every_n_secs` is set, or
both are set.
"""
if
(
every_n_steps
is
None
)
==
(
every_n_secs
is
None
):
raise
ValueError
(
"exactly one of every_n_steps"
" and every_n_secs should be provided."
)
self
.
_logger
=
metric_logger
or
logger
.
BaseBenchmarkLogger
()
self
.
_timer
=
tf
.
estimator
.
SecondOrStepTimer
(
every_steps
=
every_n_steps
,
every_secs
=
every_n_secs
)
self
.
_step_train_time
=
0
self
.
_total_steps
=
0
self
.
_batch_size
=
batch_size
self
.
_warm_steps
=
warm_steps
# List of examples per second logged every_n_steps.
self
.
current_examples_per_sec_list
=
[]
def
begin
(
self
):
"""Called once before using the session to check global step."""
self
.
_global_step_tensor
=
tf
.
compat
.
v1
.
train
.
get_global_step
()
if
self
.
_global_step_tensor
is
None
:
raise
RuntimeError
(
"Global step should be created to use StepCounterHook."
)
def
before_run
(
self
,
run_context
):
# pylint: disable=unused-argument
"""Called before each call to run().
Args:
run_context: A SessionRunContext object.
Returns:
A SessionRunArgs object or None if never triggered.
"""
return
tf
.
estimator
.
SessionRunArgs
(
self
.
_global_step_tensor
)
def
after_run
(
self
,
run_context
,
run_values
):
# pylint: disable=unused-argument
"""Called after each call to run().
Args:
run_context: A SessionRunContext object.
run_values: A SessionRunValues object.
"""
global_step
=
run_values
.
results
if
self
.
_timer
.
should_trigger_for_step
(
global_step
)
and
global_step
>
self
.
_warm_steps
:
elapsed_time
,
elapsed_steps
=
self
.
_timer
.
update_last_triggered_step
(
global_step
)
if
elapsed_time
is
not
None
:
self
.
_step_train_time
+=
elapsed_time
self
.
_total_steps
+=
elapsed_steps
# average examples per second is based on the total (accumulative)
# training steps and training time so far
average_examples_per_sec
=
self
.
_batch_size
*
(
self
.
_total_steps
/
self
.
_step_train_time
)
# current examples per second is based on the elapsed training steps
# and training time per batch
current_examples_per_sec
=
self
.
_batch_size
*
(
elapsed_steps
/
elapsed_time
)
# Logs entries to be read from hook during or after run.
self
.
current_examples_per_sec_list
.
append
(
current_examples_per_sec
)
self
.
_logger
.
log_metric
(
"average_examples_per_sec"
,
average_examples_per_sec
,
global_step
=
global_step
)
self
.
_logger
.
log_metric
(
"current_examples_per_sec"
,
current_examples_per_sec
,
global_step
=
global_step
)
official/r1/utils/logs/hooks_helper.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hooks helper to return a list of TensorFlow hooks for training by name.
More hooks can be added to this set. To add a new hook, 1) add the new hook to
the registry in HOOKS, 2) add a corresponding function that parses out necessary
parameters.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
from
absl
import
logging
from
official.r1.utils.logs
import
hooks
from
official.r1.utils.logs
import
logger
from
official.r1.utils.logs
import
metric_hook
_TENSORS_TO_LOG
=
dict
((
x
,
x
)
for
x
in
[
'learning_rate'
,
'cross_entropy'
,
'train_accuracy'
])
def
get_train_hooks
(
name_list
,
use_tpu
=
False
,
**
kwargs
):
"""Factory for getting a list of TensorFlow hooks for training by name.
Args:
name_list: a list of strings to name desired hook classes. Allowed:
LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined
as keys in HOOKS
use_tpu: Boolean of whether computation occurs on a TPU. This will disable
hooks altogether.
**kwargs: a dictionary of arguments to the hooks.
Returns:
list of instantiated hooks, ready to be used in a classifier.train call.
Raises:
ValueError: if an unrecognized name is passed.
"""
if
not
name_list
:
return
[]
if
use_tpu
:
logging
.
warning
(
'hooks_helper received name_list `%s`, but a '
'TPU is specified. No hooks will be used.'
,
name_list
)
return
[]
train_hooks
=
[]
for
name
in
name_list
:
hook_name
=
HOOKS
.
get
(
name
.
strip
().
lower
())
if
hook_name
is
None
:
raise
ValueError
(
'Unrecognized training hook requested: {}'
.
format
(
name
))
else
:
train_hooks
.
append
(
hook_name
(
**
kwargs
))
return
train_hooks
def
get_logging_tensor_hook
(
every_n_iter
=
100
,
tensors_to_log
=
None
,
**
kwargs
):
# pylint: disable=unused-argument
"""Function to get LoggingTensorHook.
Args:
every_n_iter: `int`, print the values of `tensors` once every N local
steps taken on the current worker.
tensors_to_log: List of tensor names or dictionary mapping labels to tensor
names. If not set, log _TENSORS_TO_LOG by default.
**kwargs: a dictionary of arguments to LoggingTensorHook.
Returns:
Returns a LoggingTensorHook with a standard set of tensors that will be
printed to stdout.
"""
if
tensors_to_log
is
None
:
tensors_to_log
=
_TENSORS_TO_LOG
return
tf
.
estimator
.
LoggingTensorHook
(
tensors
=
tensors_to_log
,
every_n_iter
=
every_n_iter
)
def
get_profiler_hook
(
model_dir
,
save_steps
=
1000
,
**
kwargs
):
# pylint: disable=unused-argument
"""Function to get ProfilerHook.
Args:
model_dir: The directory to save the profile traces to.
save_steps: `int`, print profile traces every N steps.
**kwargs: a dictionary of arguments to ProfilerHook.
Returns:
Returns a ProfilerHook that writes out timelines that can be loaded into
profiling tools like chrome://tracing.
"""
return
tf
.
estimator
.
ProfilerHook
(
save_steps
=
save_steps
,
output_dir
=
model_dir
)
def
get_examples_per_second_hook
(
every_n_steps
=
100
,
batch_size
=
128
,
warm_steps
=
5
,
**
kwargs
):
# pylint: disable=unused-argument
"""Function to get ExamplesPerSecondHook.
Args:
every_n_steps: `int`, print current and average examples per second every
N steps.
batch_size: `int`, total batch size used to calculate examples/second from
global time.
warm_steps: skip this number of steps before logging and running average.
**kwargs: a dictionary of arguments to ExamplesPerSecondHook.
Returns:
Returns a ProfilerHook that writes out timelines that can be loaded into
profiling tools like chrome://tracing.
"""
return
hooks
.
ExamplesPerSecondHook
(
batch_size
=
batch_size
,
every_n_steps
=
every_n_steps
,
warm_steps
=
warm_steps
,
metric_logger
=
logger
.
get_benchmark_logger
())
def
get_logging_metric_hook
(
tensors_to_log
=
None
,
every_n_secs
=
600
,
**
kwargs
):
# pylint: disable=unused-argument
"""Function to get LoggingMetricHook.
Args:
tensors_to_log: List of tensor names or dictionary mapping labels to tensor
names. If not set, log _TENSORS_TO_LOG by default.
every_n_secs: `int`, the frequency for logging the metric. Default to every
10 mins.
**kwargs: a dictionary of arguments.
Returns:
Returns a LoggingMetricHook that saves tensor values in a JSON format.
"""
if
tensors_to_log
is
None
:
tensors_to_log
=
_TENSORS_TO_LOG
return
metric_hook
.
LoggingMetricHook
(
tensors
=
tensors_to_log
,
metric_logger
=
logger
.
get_benchmark_logger
(),
every_n_secs
=
every_n_secs
)
def
get_step_counter_hook
(
**
kwargs
):
"""Function to get StepCounterHook."""
del
kwargs
return
tf
.
estimator
.
StepCounterHook
()
# A dictionary to map one hook name and its corresponding function
HOOKS
=
{
'loggingtensorhook'
:
get_logging_tensor_hook
,
'profilerhook'
:
get_profiler_hook
,
'examplespersecondhook'
:
get_examples_per_second_hook
,
'loggingmetrichook'
:
get_logging_metric_hook
,
'stepcounterhook'
:
get_step_counter_hook
}
official/r1/utils/logs/hooks_test.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for hooks."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
time
from
absl
import
logging
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
from
official.r1.utils.logs
import
hooks
from
official.r1.utils.logs
import
mock_lib
logging
.
set_verbosity
(
logging
.
DEBUG
)
class
ExamplesPerSecondHookTest
(
tf
.
test
.
TestCase
):
"""Tests for the ExamplesPerSecondHook.
In the test, we explicitly run global_step tensor after train_op in order to
keep the global_step value and the train_op (which increase the glboal_step
by 1) consistent. This is to correct the discrepancies in reported global_step
value when running on GPUs.
"""
def
setUp
(
self
):
"""Mock out logging calls to verify if correct info is being monitored."""
self
.
_logger
=
mock_lib
.
MockBenchmarkLogger
()
self
.
graph
=
tf
.
Graph
()
with
self
.
graph
.
as_default
():
tf
.
compat
.
v1
.
train
.
create_global_step
()
self
.
train_op
=
tf
.
compat
.
v1
.
assign_add
(
tf
.
compat
.
v1
.
train
.
get_global_step
(),
1
)
self
.
global_step
=
tf
.
compat
.
v1
.
train
.
get_global_step
()
def
test_raise_in_both_secs_and_steps
(
self
):
with
self
.
assertRaises
(
ValueError
):
hooks
.
ExamplesPerSecondHook
(
batch_size
=
256
,
every_n_steps
=
10
,
every_n_secs
=
20
,
metric_logger
=
self
.
_logger
)
def
test_raise_in_none_secs_and_steps
(
self
):
with
self
.
assertRaises
(
ValueError
):
hooks
.
ExamplesPerSecondHook
(
batch_size
=
256
,
every_n_steps
=
None
,
every_n_secs
=
None
,
metric_logger
=
self
.
_logger
)
def
_validate_log_every_n_steps
(
self
,
every_n_steps
,
warm_steps
):
hook
=
hooks
.
ExamplesPerSecondHook
(
batch_size
=
256
,
every_n_steps
=
every_n_steps
,
warm_steps
=
warm_steps
,
metric_logger
=
self
.
_logger
)
with
tf
.
compat
.
v1
.
train
.
MonitoredSession
(
tf
.
compat
.
v1
.
train
.
ChiefSessionCreator
(),
[
hook
])
as
mon_sess
:
for
_
in
range
(
every_n_steps
):
# Explicitly run global_step after train_op to get the accurate
# global_step value
mon_sess
.
run
(
self
.
train_op
)
mon_sess
.
run
(
self
.
global_step
)
# Nothing should be in the list yet
self
.
assertFalse
(
self
.
_logger
.
logged_metric
)
mon_sess
.
run
(
self
.
train_op
)
global_step_val
=
mon_sess
.
run
(
self
.
global_step
)
if
global_step_val
>
warm_steps
:
self
.
_assert_metrics
()
else
:
# Nothing should be in the list yet
self
.
assertFalse
(
self
.
_logger
.
logged_metric
)
# Add additional run to verify proper reset when called multiple times.
prev_log_len
=
len
(
self
.
_logger
.
logged_metric
)
mon_sess
.
run
(
self
.
train_op
)
global_step_val
=
mon_sess
.
run
(
self
.
global_step
)
if
every_n_steps
==
1
and
global_step_val
>
warm_steps
:
# Each time, we log two additional metrics. Did exactly 2 get added?
self
.
assertEqual
(
len
(
self
.
_logger
.
logged_metric
),
prev_log_len
+
2
)
else
:
# No change in the size of the metric list.
self
.
assertEqual
(
len
(
self
.
_logger
.
logged_metric
),
prev_log_len
)
def
test_examples_per_sec_every_1_steps
(
self
):
with
self
.
graph
.
as_default
():
self
.
_validate_log_every_n_steps
(
1
,
0
)
def
test_examples_per_sec_every_5_steps
(
self
):
with
self
.
graph
.
as_default
():
self
.
_validate_log_every_n_steps
(
5
,
0
)
def
test_examples_per_sec_every_1_steps_with_warm_steps
(
self
):
with
self
.
graph
.
as_default
():
self
.
_validate_log_every_n_steps
(
1
,
10
)
def
test_examples_per_sec_every_5_steps_with_warm_steps
(
self
):
with
self
.
graph
.
as_default
():
self
.
_validate_log_every_n_steps
(
5
,
10
)
def
_validate_log_every_n_secs
(
self
,
every_n_secs
):
hook
=
hooks
.
ExamplesPerSecondHook
(
batch_size
=
256
,
every_n_steps
=
None
,
every_n_secs
=
every_n_secs
,
metric_logger
=
self
.
_logger
)
with
tf
.
compat
.
v1
.
train
.
MonitoredSession
(
tf
.
compat
.
v1
.
train
.
ChiefSessionCreator
(),
[
hook
])
as
mon_sess
:
# Explicitly run global_step after train_op to get the accurate
# global_step value
mon_sess
.
run
(
self
.
train_op
)
mon_sess
.
run
(
self
.
global_step
)
# Nothing should be in the list yet
self
.
assertFalse
(
self
.
_logger
.
logged_metric
)
time
.
sleep
(
every_n_secs
)
mon_sess
.
run
(
self
.
train_op
)
mon_sess
.
run
(
self
.
global_step
)
self
.
_assert_metrics
()
def
test_examples_per_sec_every_1_secs
(
self
):
with
self
.
graph
.
as_default
():
self
.
_validate_log_every_n_secs
(
1
)
def
test_examples_per_sec_every_5_secs
(
self
):
with
self
.
graph
.
as_default
():
self
.
_validate_log_every_n_secs
(
5
)
def
_assert_metrics
(
self
):
metrics
=
self
.
_logger
.
logged_metric
self
.
assertEqual
(
metrics
[
-
2
][
"name"
],
"average_examples_per_sec"
)
self
.
assertEqual
(
metrics
[
-
1
][
"name"
],
"current_examples_per_sec"
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/r1/utils/logs/logger.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Logging utilities for benchmark.
For collecting local environment metrics like CPU and memory, certain python
packages need be installed. See README for details.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
contextlib
import
datetime
import
json
import
numbers
import
os
import
threading
import
uuid
from
absl
import
flags
from
absl
import
logging
from
six.moves
import
_thread
as
thread
import
tensorflow
as
tf
from
tensorflow.python.client
import
device_lib
from
official.r1.utils.logs
import
cloud_lib
METRIC_LOG_FILE_NAME
=
"metric.log"
BENCHMARK_RUN_LOG_FILE_NAME
=
"benchmark_run.log"
_DATE_TIME_FORMAT_PATTERN
=
"%Y-%m-%dT%H:%M:%S.%fZ"
GCP_TEST_ENV
=
"GCP"
RUN_STATUS_SUCCESS
=
"success"
RUN_STATUS_FAILURE
=
"failure"
RUN_STATUS_RUNNING
=
"running"
FLAGS
=
flags
.
FLAGS
# Don't use it directly. Use get_benchmark_logger to access a logger.
_benchmark_logger
=
None
_logger_lock
=
threading
.
Lock
()
def
config_benchmark_logger
(
flag_obj
=
None
):
"""Config the global benchmark logger."""
_logger_lock
.
acquire
()
try
:
global
_benchmark_logger
if
not
flag_obj
:
flag_obj
=
FLAGS
if
(
not
hasattr
(
flag_obj
,
"benchmark_logger_type"
)
or
flag_obj
.
benchmark_logger_type
==
"BaseBenchmarkLogger"
):
_benchmark_logger
=
BaseBenchmarkLogger
()
elif
flag_obj
.
benchmark_logger_type
==
"BenchmarkFileLogger"
:
_benchmark_logger
=
BenchmarkFileLogger
(
flag_obj
.
benchmark_log_dir
)
else
:
raise
ValueError
(
"Unrecognized benchmark_logger_type: %s"
%
flag_obj
.
benchmark_logger_type
)
finally
:
_logger_lock
.
release
()
return
_benchmark_logger
def
get_benchmark_logger
():
if
not
_benchmark_logger
:
config_benchmark_logger
()
return
_benchmark_logger
@
contextlib
.
contextmanager
def
benchmark_context
(
flag_obj
):
"""Context of benchmark, which will update status of the run accordingly."""
benchmark_logger
=
config_benchmark_logger
(
flag_obj
)
try
:
yield
benchmark_logger
.
on_finish
(
RUN_STATUS_SUCCESS
)
except
Exception
:
# pylint: disable=broad-except
# Catch all the exception, update the run status to be failure, and re-raise
benchmark_logger
.
on_finish
(
RUN_STATUS_FAILURE
)
raise
class
BaseBenchmarkLogger
(
object
):
"""Class to log the benchmark information to STDOUT."""
def
log_evaluation_result
(
self
,
eval_results
):
"""Log the evaluation result.
The evaluate result is a dictionary that contains metrics defined in
model_fn. It also contains a entry for global_step which contains the value
of the global step when evaluation was performed.
Args:
eval_results: dict, the result of evaluate.
"""
if
not
isinstance
(
eval_results
,
dict
):
logging
.
warning
(
"eval_results should be dictionary for logging. Got %s"
,
type
(
eval_results
))
return
global_step
=
eval_results
[
tf
.
compat
.
v1
.
GraphKeys
.
GLOBAL_STEP
]
for
key
in
sorted
(
eval_results
):
if
key
!=
tf
.
compat
.
v1
.
GraphKeys
.
GLOBAL_STEP
:
self
.
log_metric
(
key
,
eval_results
[
key
],
global_step
=
global_step
)
def
log_metric
(
self
,
name
,
value
,
unit
=
None
,
global_step
=
None
,
extras
=
None
):
"""Log the benchmark metric information to local file.
Currently the logging is done in a synchronized way. This should be updated
to log asynchronously.
Args:
name: string, the name of the metric to log.
value: number, the value of the metric. The value will not be logged if it
is not a number type.
unit: string, the unit of the metric, E.g "image per second".
global_step: int, the global_step when the metric is logged.
extras: map of string:string, the extra information about the metric.
"""
metric
=
_process_metric_to_json
(
name
,
value
,
unit
,
global_step
,
extras
)
if
metric
:
logging
.
info
(
"Benchmark metric: %s"
,
metric
)
def
log_run_info
(
self
,
model_name
,
dataset_name
,
run_params
,
test_id
=
None
):
logging
.
info
(
"Benchmark run: %s"
,
_gather_run_info
(
model_name
,
dataset_name
,
run_params
,
test_id
))
def
on_finish
(
self
,
status
):
pass
class
BenchmarkFileLogger
(
BaseBenchmarkLogger
):
"""Class to log the benchmark information to local disk."""
def
__init__
(
self
,
logging_dir
):
super
(
BenchmarkFileLogger
,
self
).
__init__
()
self
.
_logging_dir
=
logging_dir
if
not
tf
.
io
.
gfile
.
isdir
(
self
.
_logging_dir
):
tf
.
io
.
gfile
.
makedirs
(
self
.
_logging_dir
)
self
.
_metric_file_handler
=
tf
.
io
.
gfile
.
GFile
(
os
.
path
.
join
(
self
.
_logging_dir
,
METRIC_LOG_FILE_NAME
),
"a"
)
def
log_metric
(
self
,
name
,
value
,
unit
=
None
,
global_step
=
None
,
extras
=
None
):
"""Log the benchmark metric information to local file.
Currently the logging is done in a synchronized way. This should be updated
to log asynchronously.
Args:
name: string, the name of the metric to log.
value: number, the value of the metric. The value will not be logged if it
is not a number type.
unit: string, the unit of the metric, E.g "image per second".
global_step: int, the global_step when the metric is logged.
extras: map of string:string, the extra information about the metric.
"""
metric
=
_process_metric_to_json
(
name
,
value
,
unit
,
global_step
,
extras
)
if
metric
:
try
:
json
.
dump
(
metric
,
self
.
_metric_file_handler
)
self
.
_metric_file_handler
.
write
(
"
\n
"
)
self
.
_metric_file_handler
.
flush
()
except
(
TypeError
,
ValueError
)
as
e
:
logging
.
warning
(
"Failed to dump metric to log file: name %s, value %s, error %s"
,
name
,
value
,
e
)
def
log_run_info
(
self
,
model_name
,
dataset_name
,
run_params
,
test_id
=
None
):
"""Collect most of the TF runtime information for the local env.
The schema of the run info follows official/benchmark/datastore/schema.
Args:
model_name: string, the name of the model.
dataset_name: string, the name of dataset for training and evaluation.
run_params: dict, the dictionary of parameters for the run, it could
include hyperparameters or other params that are important for the run.
test_id: string, the unique name of the test run by the combination of key
parameters, eg batch size, num of GPU. It is hardware independent.
"""
run_info
=
_gather_run_info
(
model_name
,
dataset_name
,
run_params
,
test_id
)
with
tf
.
io
.
gfile
.
GFile
(
os
.
path
.
join
(
self
.
_logging_dir
,
BENCHMARK_RUN_LOG_FILE_NAME
),
"w"
)
as
f
:
try
:
json
.
dump
(
run_info
,
f
)
f
.
write
(
"
\n
"
)
except
(
TypeError
,
ValueError
)
as
e
:
logging
.
warning
(
"Failed to dump benchmark run info to log file: %s"
,
e
)
def
on_finish
(
self
,
status
):
self
.
_metric_file_handler
.
flush
()
self
.
_metric_file_handler
.
close
()
def
_gather_run_info
(
model_name
,
dataset_name
,
run_params
,
test_id
):
"""Collect the benchmark run information for the local environment."""
run_info
=
{
"model_name"
:
model_name
,
"dataset"
:
{
"name"
:
dataset_name
},
"machine_config"
:
{},
"test_id"
:
test_id
,
"run_date"
:
datetime
.
datetime
.
utcnow
().
strftime
(
_DATE_TIME_FORMAT_PATTERN
)}
_collect_tensorflow_info
(
run_info
)
_collect_tensorflow_environment_variables
(
run_info
)
_collect_run_params
(
run_info
,
run_params
)
_collect_memory_info
(
run_info
)
_collect_test_environment
(
run_info
)
return
run_info
def
_process_metric_to_json
(
name
,
value
,
unit
=
None
,
global_step
=
None
,
extras
=
None
):
"""Validate the metric data and generate JSON for insert."""
if
not
isinstance
(
value
,
numbers
.
Number
):
logging
.
warning
(
"Metric value to log should be a number. Got %s"
,
type
(
value
))
return
None
extras
=
_convert_to_json_dict
(
extras
)
return
{
"name"
:
name
,
"value"
:
float
(
value
),
"unit"
:
unit
,
"global_step"
:
global_step
,
"timestamp"
:
datetime
.
datetime
.
utcnow
().
strftime
(
_DATE_TIME_FORMAT_PATTERN
),
"extras"
:
extras
}
def
_collect_tensorflow_info
(
run_info
):
run_info
[
"tensorflow_version"
]
=
{
"version"
:
tf
.
version
.
VERSION
,
"git_hash"
:
tf
.
version
.
GIT_VERSION
}
def
_collect_run_params
(
run_info
,
run_params
):
"""Log the parameter information for the benchmark run."""
def
process_param
(
name
,
value
):
type_check
=
{
str
:
{
"name"
:
name
,
"string_value"
:
value
},
int
:
{
"name"
:
name
,
"long_value"
:
value
},
bool
:
{
"name"
:
name
,
"bool_value"
:
str
(
value
)},
float
:
{
"name"
:
name
,
"float_value"
:
value
},
}
return
type_check
.
get
(
type
(
value
),
{
"name"
:
name
,
"string_value"
:
str
(
value
)})
if
run_params
:
run_info
[
"run_parameters"
]
=
[
process_param
(
k
,
v
)
for
k
,
v
in
sorted
(
run_params
.
items
())]
def
_collect_tensorflow_environment_variables
(
run_info
):
run_info
[
"tensorflow_environment_variables"
]
=
[
{
"name"
:
k
,
"value"
:
v
}
for
k
,
v
in
sorted
(
os
.
environ
.
items
())
if
k
.
startswith
(
"TF_"
)]
def
_collect_memory_info
(
run_info
):
try
:
# Note: psutil is not installed in the TensorFlow OSS tree.
# It is installable via pip.
import
psutil
# pylint: disable=g-import-not-at-top
vmem
=
psutil
.
virtual_memory
()
run_info
[
"machine_config"
][
"memory_total"
]
=
vmem
.
total
run_info
[
"machine_config"
][
"memory_available"
]
=
vmem
.
available
except
ImportError
:
logging
.
warn
(
"'psutil' not imported. Memory info will not be logged."
)
def
_collect_test_environment
(
run_info
):
"""Detect the local environment, eg GCE, AWS or DGX, etc."""
if
cloud_lib
.
on_gcp
():
run_info
[
"test_environment"
]
=
GCP_TEST_ENV
# TODO(scottzhu): Add more testing env detection for other platform
def
_parse_gpu_model
(
physical_device_desc
):
# Assume all the GPU connected are same model
for
kv
in
physical_device_desc
.
split
(
","
):
k
,
_
,
v
=
kv
.
partition
(
":"
)
if
k
.
strip
()
==
"name"
:
return
v
.
strip
()
return
None
def
_convert_to_json_dict
(
input_dict
):
if
input_dict
:
return
[{
"name"
:
k
,
"value"
:
v
}
for
k
,
v
in
sorted
(
input_dict
.
items
())]
else
:
return
[]
official/r1/utils/logs/logger_test.py
deleted
100644 → 0
View file @
d8611151
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for benchmark logger."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
json
import
os
import
tempfile
import
time
import
unittest
from
absl
import
logging
from
absl.testing
import
flagsaver
import
tensorflow
as
tf
from
official.r1.utils.logs
import
logger
from
official.utils.flags
import
core
as
flags_core
from
official.utils.misc
import
keras_utils
class
BenchmarkLoggerTest
(
tf
.
test
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
# pylint: disable=invalid-name
super
(
BenchmarkLoggerTest
,
cls
).
setUpClass
()
flags_core
.
define_benchmark
()
def
test_get_default_benchmark_logger
(
self
):
with
flagsaver
.
flagsaver
(
benchmark_logger_type
=
"foo"
):
self
.
assertIsInstance
(
logger
.
get_benchmark_logger
(),
logger
.
BaseBenchmarkLogger
)
def
test_config_base_benchmark_logger
(
self
):
with
flagsaver
.
flagsaver
(
benchmark_logger_type
=
"BaseBenchmarkLogger"
):
logger
.
config_benchmark_logger
()
self
.
assertIsInstance
(
logger
.
get_benchmark_logger
(),
logger
.
BaseBenchmarkLogger
)
def
test_config_benchmark_file_logger
(
self
):
# Set the benchmark_log_dir first since the benchmark_logger_type will need
# the value to be set when it does the validation.
with
flagsaver
.
flagsaver
(
benchmark_log_dir
=
"/tmp"
):
with
flagsaver
.
flagsaver
(
benchmark_logger_type
=
"BenchmarkFileLogger"
):
logger
.
config_benchmark_logger
()
self
.
assertIsInstance
(
logger
.
get_benchmark_logger
(),
logger
.
BenchmarkFileLogger
)
class
BaseBenchmarkLoggerTest
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
super
(
BaseBenchmarkLoggerTest
,
self
).
setUp
()
self
.
_actual_log
=
logging
.
info
self
.
logged_message
=
None
def
mock_log
(
*
args
,
**
kwargs
):
self
.
logged_message
=
args
self
.
_actual_log
(
*
args
,
**
kwargs
)
logging
.
info
=
mock_log
def
tearDown
(
self
):
super
(
BaseBenchmarkLoggerTest
,
self
).
tearDown
()
logging
.
info
=
self
.
_actual_log
def
test_log_metric
(
self
):
log
=
logger
.
BaseBenchmarkLogger
()
log
.
log_metric
(
"accuracy"
,
0.999
,
global_step
=
1e4
,
extras
=
{
"name"
:
"value"
})
expected_log_prefix
=
"Benchmark metric:"
self
.
assertRegexpMatches
(
str
(
self
.
logged_message
),
expected_log_prefix
)
class
BenchmarkFileLoggerTest
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
super
(
BenchmarkFileLoggerTest
,
self
).
setUp
()
# Avoid pulling extra env vars from test environment which affects the test
# result, eg. Kokoro test has a TF_PKG env which affect the test case
# test_collect_tensorflow_environment_variables()
self
.
original_environ
=
dict
(
os
.
environ
)
os
.
environ
.
clear
()
def
tearDown
(
self
):
super
(
BenchmarkFileLoggerTest
,
self
).
tearDown
()
tf
.
io
.
gfile
.
rmtree
(
self
.
get_temp_dir
())
os
.
environ
.
clear
()
os
.
environ
.
update
(
self
.
original_environ
)
def
test_create_logging_dir
(
self
):
non_exist_temp_dir
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
"unknown_dir"
)
self
.
assertFalse
(
tf
.
io
.
gfile
.
isdir
(
non_exist_temp_dir
))
logger
.
BenchmarkFileLogger
(
non_exist_temp_dir
)
self
.
assertTrue
(
tf
.
io
.
gfile
.
isdir
(
non_exist_temp_dir
))
def
test_log_metric
(
self
):
log_dir
=
tempfile
.
mkdtemp
(
dir
=
self
.
get_temp_dir
())
log
=
logger
.
BenchmarkFileLogger
(
log_dir
)
log
.
log_metric
(
"accuracy"
,
0.999
,
global_step
=
1e4
,
extras
=
{
"name"
:
"value"
})
metric_log
=
os
.
path
.
join
(
log_dir
,
"metric.log"
)
self
.
assertTrue
(
tf
.
io
.
gfile
.
exists
(
metric_log
))
with
tf
.
io
.
gfile
.
GFile
(
metric_log
)
as
f
:
metric
=
json
.
loads
(
f
.
readline
())
self
.
assertEqual
(
metric
[
"name"
],
"accuracy"
)
self
.
assertEqual
(
metric
[
"value"
],
0.999
)
self
.
assertEqual
(
metric
[
"unit"
],
None
)
self
.
assertEqual
(
metric
[
"global_step"
],
1e4
)
self
.
assertEqual
(
metric
[
"extras"
],
[{
"name"
:
"name"
,
"value"
:
"value"
}])
def
test_log_multiple_metrics
(
self
):
log_dir
=
tempfile
.
mkdtemp
(
dir
=
self
.
get_temp_dir
())
log
=
logger
.
BenchmarkFileLogger
(
log_dir
)
log
.
log_metric
(
"accuracy"
,
0.999
,
global_step
=
1e4
,
extras
=
{
"name"
:
"value"
})
log
.
log_metric
(
"loss"
,
0.02
,
global_step
=
1e4
)
metric_log
=
os
.
path
.
join
(
log_dir
,
"metric.log"
)
self
.
assertTrue
(
tf
.
io
.
gfile
.
exists
(
metric_log
))
with
tf
.
io
.
gfile
.
GFile
(
metric_log
)
as
f
:
accuracy
=
json
.
loads
(
f
.
readline
())
self
.
assertEqual
(
accuracy
[
"name"
],
"accuracy"
)
self
.
assertEqual
(
accuracy
[
"value"
],
0.999
)
self
.
assertEqual
(
accuracy
[
"unit"
],
None
)
self
.
assertEqual
(
accuracy
[
"global_step"
],
1e4
)
self
.
assertEqual
(
accuracy
[
"extras"
],
[{
"name"
:
"name"
,
"value"
:
"value"
}])
loss
=
json
.
loads
(
f
.
readline
())
self
.
assertEqual
(
loss
[
"name"
],
"loss"
)
self
.
assertEqual
(
loss
[
"value"
],
0.02
)
self
.
assertEqual
(
loss
[
"unit"
],
None
)
self
.
assertEqual
(
loss
[
"global_step"
],
1e4
)
self
.
assertEqual
(
loss
[
"extras"
],
[])
def
test_log_non_number_value
(
self
):
log_dir
=
tempfile
.
mkdtemp
(
dir
=
self
.
get_temp_dir
())
log
=
logger
.
BenchmarkFileLogger
(
log_dir
)
const
=
tf
.
constant
(
1
)
log
.
log_metric
(
"accuracy"
,
const
)
metric_log
=
os
.
path
.
join
(
log_dir
,
"metric.log"
)
self
.
assertFalse
(
tf
.
io
.
gfile
.
exists
(
metric_log
))
def
test_log_evaluation_result
(
self
):
eval_result
=
{
"loss"
:
0.46237424
,
"global_step"
:
207082
,
"accuracy"
:
0.9285
}
log_dir
=
tempfile
.
mkdtemp
(
dir
=
self
.
get_temp_dir
())
log
=
logger
.
BenchmarkFileLogger
(
log_dir
)
log
.
log_evaluation_result
(
eval_result
)
metric_log
=
os
.
path
.
join
(
log_dir
,
"metric.log"
)
self
.
assertTrue
(
tf
.
io
.
gfile
.
exists
(
metric_log
))
with
tf
.
io
.
gfile
.
GFile
(
metric_log
)
as
f
:
accuracy
=
json
.
loads
(
f
.
readline
())
self
.
assertEqual
(
accuracy
[
"name"
],
"accuracy"
)
self
.
assertEqual
(
accuracy
[
"value"
],
0.9285
)
self
.
assertEqual
(
accuracy
[
"unit"
],
None
)
self
.
assertEqual
(
accuracy
[
"global_step"
],
207082
)
loss
=
json
.
loads
(
f
.
readline
())
self
.
assertEqual
(
loss
[
"name"
],
"loss"
)
self
.
assertEqual
(
loss
[
"value"
],
0.46237424
)
self
.
assertEqual
(
loss
[
"unit"
],
None
)
self
.
assertEqual
(
loss
[
"global_step"
],
207082
)
def
test_log_evaluation_result_with_invalid_type
(
self
):
eval_result
=
"{'loss': 0.46237424, 'global_step': 207082}"
log_dir
=
tempfile
.
mkdtemp
(
dir
=
self
.
get_temp_dir
())
log
=
logger
.
BenchmarkFileLogger
(
log_dir
)
log
.
log_evaluation_result
(
eval_result
)
metric_log
=
os
.
path
.
join
(
log_dir
,
"metric.log"
)
self
.
assertFalse
(
tf
.
io
.
gfile
.
exists
(
metric_log
))
def
test_collect_tensorflow_info
(
self
):
run_info
=
{}
logger
.
_collect_tensorflow_info
(
run_info
)
self
.
assertNotEqual
(
run_info
[
"tensorflow_version"
],
{})
self
.
assertEqual
(
run_info
[
"tensorflow_version"
][
"version"
],
tf
.
version
.
VERSION
)
self
.
assertEqual
(
run_info
[
"tensorflow_version"
][
"git_hash"
],
tf
.
version
.
GIT_VERSION
)
def
test_collect_run_params
(
self
):
run_info
=
{}
run_parameters
=
{
"batch_size"
:
32
,
"synthetic_data"
:
True
,
"train_epochs"
:
100.00
,
"dtype"
:
"fp16"
,
"resnet_size"
:
50
,
"random_tensor"
:
tf
.
constant
(
2.0
)
}
logger
.
_collect_run_params
(
run_info
,
run_parameters
)
self
.
assertEqual
(
len
(
run_info
[
"run_parameters"
]),
6
)
self
.
assertEqual
(
run_info
[
"run_parameters"
][
0
],
{
"name"
:
"batch_size"
,
"long_value"
:
32
})
self
.
assertEqual
(
run_info
[
"run_parameters"
][
1
],
{
"name"
:
"dtype"
,
"string_value"
:
"fp16"
})
v1_tensor
=
{
"name"
:
"random_tensor"
,
"string_value"
:
"Tensor(
\"
Const:0
\"
, shape=(), dtype=float32)"
}
v2_tensor
=
{
"name"
:
"random_tensor"
,
"string_value"
:
"tf.Tensor(2.0, shape=(), dtype=float32)"
}
self
.
assertIn
(
run_info
[
"run_parameters"
][
2
],
[
v1_tensor
,
v2_tensor
])
self
.
assertEqual
(
run_info
[
"run_parameters"
][
3
],
{
"name"
:
"resnet_size"
,
"long_value"
:
50
})
self
.
assertEqual
(
run_info
[
"run_parameters"
][
4
],
{
"name"
:
"synthetic_data"
,
"bool_value"
:
"True"
})
self
.
assertEqual
(
run_info
[
"run_parameters"
][
5
],
{
"name"
:
"train_epochs"
,
"float_value"
:
100.00
})
def
test_collect_tensorflow_environment_variables
(
self
):
os
.
environ
[
"TF_ENABLE_WINOGRAD_NONFUSED"
]
=
"1"
os
.
environ
[
"TF_OTHER"
]
=
"2"
os
.
environ
[
"OTHER"
]
=
"3"
run_info
=
{}
logger
.
_collect_tensorflow_environment_variables
(
run_info
)
self
.
assertIsNotNone
(
run_info
[
"tensorflow_environment_variables"
])
expected_tf_envs
=
[
{
"name"
:
"TF_ENABLE_WINOGRAD_NONFUSED"
,
"value"
:
"1"
},
{
"name"
:
"TF_OTHER"
,
"value"
:
"2"
},
]
self
.
assertEqual
(
run_info
[
"tensorflow_environment_variables"
],
expected_tf_envs
)
def
test_collect_memory_info
(
self
):
run_info
=
{
"machine_config"
:
{}}
logger
.
_collect_memory_info
(
run_info
)
self
.
assertIsNotNone
(
run_info
[
"machine_config"
][
"memory_total"
])
self
.
assertIsNotNone
(
run_info
[
"machine_config"
][
"memory_available"
])
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
Prev
1
2
3
4
5
6
7
8
9
10
…
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment