Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
461b3587
Commit
461b3587
authored
Aug 01, 2021
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Aug 01, 2021
Browse files
Internal change
PiperOrigin-RevId: 388118554
parent
992a864b
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
20 additions
and
32 deletions
+20
-32
official/nlp/modeling/models/bert_classifier_test.py
official/nlp/modeling/models/bert_classifier_test.py
+2
-4
official/nlp/modeling/models/bert_pretrainer_test.py
official/nlp/modeling/models/bert_pretrainer_test.py
+4
-8
official/nlp/modeling/models/bert_span_labeler_test.py
official/nlp/modeling/models/bert_span_labeler_test.py
+2
-4
official/nlp/modeling/models/dual_encoder_test.py
official/nlp/modeling/models/dual_encoder_test.py
+5
-10
official/nlp/modeling/models/electra_pretrainer_test.py
official/nlp/modeling/models/electra_pretrainer_test.py
+0
-2
official/nlp/modeling/networks/bert_encoder.py
official/nlp/modeling/networks/bert_encoder.py
+7
-3
official/nlp/nhnet/models.py
official/nlp/nhnet/models.py
+0
-1
No files found.
official/nlp/modeling/models/bert_classifier_test.py
View file @
461b3587
...
@@ -87,10 +87,8 @@ class BertClassifierTest(keras_parameterized.TestCase):
...
@@ -87,10 +87,8 @@ class BertClassifierTest(keras_parameterized.TestCase):
inner_dim
=
0
,
num_classes
=
4
)))
inner_dim
=
0
,
num_classes
=
4
)))
def
test_serialize_deserialize
(
self
,
cls_head
):
def
test_serialize_deserialize
(
self
,
cls_head
):
"""Validate that the BERT trainer can be serialized and deserialized."""
"""Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
,
sequence_length
=
5
)
# Create a BERT trainer with the created network. (Note that all the args
# Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
# are different, so we can catch any serialization mismatches.)
...
...
official/nlp/modeling/models/bert_pretrainer_test.py
View file @
461b3587
...
@@ -67,10 +67,8 @@ class BertPretrainerTest(keras_parameterized.TestCase):
...
@@ -67,10 +67,8 @@ class BertPretrainerTest(keras_parameterized.TestCase):
def
test_bert_trainer_tensor_call
(
self
):
def
test_bert_trainer_tensor_call
(
self
):
"""Validate that the Keras object can be invoked."""
"""Validate that the Keras object can be invoked."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
,
sequence_length
=
2
)
# Create a BERT trainer with the created network.
# Create a BERT trainer with the created network.
bert_trainer_model
=
bert_pretrainer
.
BertPretrainer
(
bert_trainer_model
=
bert_pretrainer
.
BertPretrainer
(
...
@@ -213,10 +211,8 @@ class BertPretrainerV2Test(keras_parameterized.TestCase):
...
@@ -213,10 +211,8 @@ class BertPretrainerV2Test(keras_parameterized.TestCase):
def
test_v2_serialize_deserialize
(
self
):
def
test_v2_serialize_deserialize
(
self
):
"""Validate that the BERT trainer can be serialized and deserialized."""
"""Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
,
sequence_length
=
5
)
# Create a BERT trainer with the created network. (Note that all the args
# Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
# are different, so we can catch any serialization mismatches.)
...
...
official/nlp/modeling/models/bert_span_labeler_test.py
View file @
461b3587
...
@@ -93,10 +93,8 @@ class BertSpanLabelerTest(keras_parameterized.TestCase):
...
@@ -93,10 +93,8 @@ class BertSpanLabelerTest(keras_parameterized.TestCase):
def
test_serialize_deserialize
(
self
):
def
test_serialize_deserialize
(
self
):
"""Validate that the BERT trainer can be serialized and deserialized."""
"""Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
)
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
,
sequence_length
=
5
)
# Create a BERT trainer with the created network. (Note that all the args
# Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
# are different, so we can catch any serialization mismatches.)
...
...
official/nlp/modeling/models/dual_encoder_test.py
View file @
461b3587
...
@@ -37,7 +37,6 @@ class DualEncoderTest(keras_parameterized.TestCase):
...
@@ -37,7 +37,6 @@ class DualEncoderTest(keras_parameterized.TestCase):
vocab_size
=
vocab_size
,
vocab_size
=
vocab_size
,
num_layers
=
2
,
num_layers
=
2
,
hidden_size
=
hidden_size
,
hidden_size
=
hidden_size
,
sequence_length
=
sequence_length
,
dict_outputs
=
True
)
dict_outputs
=
True
)
# Create a dual encoder model with the created network.
# Create a dual encoder model with the created network.
...
@@ -72,11 +71,9 @@ class DualEncoderTest(keras_parameterized.TestCase):
...
@@ -72,11 +71,9 @@ class DualEncoderTest(keras_parameterized.TestCase):
@
parameterized
.
parameters
((
192
,
'logits'
),
(
768
,
'predictions'
))
@
parameterized
.
parameters
((
192
,
'logits'
),
(
768
,
'predictions'
))
def
test_dual_encoder_tensor_call
(
self
,
hidden_size
,
output
):
def
test_dual_encoder_tensor_call
(
self
,
hidden_size
,
output
):
"""Validate that the Keras object can be invoked."""
"""Validate that the Keras object can be invoked."""
# Build a transformer network to use within the dual encoder model. (Here,
# Build a transformer network to use within the dual encoder model.
# we use # a short sequence_length for convenience.)
sequence_length
=
2
sequence_length
=
2
test_network
=
networks
.
BertEncoder
(
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
)
vocab_size
=
100
,
num_layers
=
2
,
sequence_length
=
sequence_length
)
# Create a dual encoder model with the created network.
# Create a dual encoder model with the created network.
dual_encoder_model
=
dual_encoder
.
DualEncoder
(
dual_encoder_model
=
dual_encoder
.
DualEncoder
(
...
@@ -98,18 +95,16 @@ class DualEncoderTest(keras_parameterized.TestCase):
...
@@ -98,18 +95,16 @@ class DualEncoderTest(keras_parameterized.TestCase):
def
test_serialize_deserialize
(
self
):
def
test_serialize_deserialize
(
self
):
"""Validate that the dual encoder model can be serialized / deserialized."""
"""Validate that the dual encoder model can be serialized / deserialized."""
# Build a transformer network to use within the dual encoder model. (Here,
# Build a transformer network to use within the dual encoder model.
# we use a short sequence_length for convenience.)
sequence_length
=
32
sequence_length
=
32
test_network
=
networks
.
BertEncoder
(
test_network
=
networks
.
BertEncoder
(
vocab_size
=
100
,
num_layers
=
2
)
vocab_size
=
100
,
num_layers
=
2
,
sequence_length
=
sequence_length
)
# Create a dual encoder model with the created network. (Note that all the
# Create a dual encoder model with the created network. (Note that all the
# args are different, so we can catch any serialization mismatches.)
# args are different, so we can catch any serialization mismatches.)
dual_encoder_model
=
dual_encoder
.
DualEncoder
(
dual_encoder_model
=
dual_encoder
.
DualEncoder
(
test_network
,
max_seq_length
=
sequence_length
,
output
=
'predictions'
)
test_network
,
max_seq_length
=
sequence_length
,
output
=
'predictions'
)
# Create another dual encoder mo
d
el via serialization and deserialization.
# Create another dual encoder moel via serialization and deserialization.
config
=
dual_encoder_model
.
get_config
()
config
=
dual_encoder_model
.
get_config
()
new_dual_encoder
=
dual_encoder
.
DualEncoder
.
from_config
(
config
)
new_dual_encoder
=
dual_encoder
.
DualEncoder
.
from_config
(
config
)
...
...
official/nlp/modeling/models/electra_pretrainer_test.py
View file @
461b3587
...
@@ -100,7 +100,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
...
@@ -100,7 +100,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
discriminator_network
=
test_discriminator_network
,
discriminator_network
=
test_discriminator_network
,
vocab_size
=
100
,
vocab_size
=
100
,
num_classes
=
2
,
num_classes
=
2
,
sequence_length
=
3
,
num_token_predictions
=
2
)
num_token_predictions
=
2
)
# Create a set of 2-dimensional data tensors to feed into the model.
# Create a set of 2-dimensional data tensors to feed into the model.
...
@@ -138,7 +137,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
...
@@ -138,7 +137,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
discriminator_network
=
test_discriminator_network
,
discriminator_network
=
test_discriminator_network
,
vocab_size
=
100
,
vocab_size
=
100
,
num_classes
=
2
,
num_classes
=
2
,
sequence_length
=
3
,
num_token_predictions
=
2
)
num_token_predictions
=
2
)
# Create another BERT trainer via serialization and deserialization.
# Create another BERT trainer via serialization and deserialization.
...
...
official/nlp/modeling/networks/bert_encoder.py
View file @
461b3587
...
@@ -15,6 +15,8 @@
...
@@ -15,6 +15,8 @@
"""Transformer-based text encoder network."""
"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes
# pylint: disable=g-classes-have-attributes
import
collections
import
collections
from
absl
import
logging
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.modeling
import
activations
from
official.modeling
import
activations
...
@@ -47,8 +49,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
...
@@ -47,8 +49,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
num_layers: The number of transformer layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
hidden size must be divisible by the number of attention heads.
sequence_length: [Deprecated]. TODO(hongkuny): remove this argument once no
user is using it.
max_sequence_length: The maximum sequence length that this encoder can
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
This determines the variable shape for positional embeddings.
...
@@ -87,7 +87,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
...
@@ -87,7 +87,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
hidden_size
=
768
,
hidden_size
=
768
,
num_layers
=
12
,
num_layers
=
12
,
num_attention_heads
=
12
,
num_attention_heads
=
12
,
sequence_length
=
None
,
max_sequence_length
=
512
,
max_sequence_length
=
512
,
type_vocab_size
=
16
,
type_vocab_size
=
16
,
intermediate_size
=
3072
,
intermediate_size
=
3072
,
...
@@ -126,6 +125,11 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
...
@@ -126,6 +125,11 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
embedding_width
=
embedding_width
,
embedding_width
=
embedding_width
,
embedding_layer
=
embedding_layer
,
embedding_layer
=
embedding_layer
,
norm_first
=
norm_first
)
norm_first
=
norm_first
)
if
'sequence_length'
in
kwargs
:
kwargs
.
pop
(
'sequence_length'
)
logging
.
warning
(
'`sequence_length` is a deprecated argument to '
'`BertEncoder`, which has no effect for a while. Please '
'remove `sequence_length` argument.'
)
self
.
_embedding_layer_instance
=
embedding_layer
self
.
_embedding_layer_instance
=
embedding_layer
...
...
official/nlp/nhnet/models.py
View file @
461b3587
...
@@ -458,7 +458,6 @@ def get_nhnet_layers(params: configs.NHNetConfig):
...
@@ -458,7 +458,6 @@ def get_nhnet_layers(params: configs.NHNetConfig):
activation
=
tf_utils
.
get_activation
(
bert_config
.
hidden_act
),
activation
=
tf_utils
.
get_activation
(
bert_config
.
hidden_act
),
dropout_rate
=
bert_config
.
hidden_dropout_prob
,
dropout_rate
=
bert_config
.
hidden_dropout_prob
,
attention_dropout_rate
=
bert_config
.
attention_probs_dropout_prob
,
attention_dropout_rate
=
bert_config
.
attention_probs_dropout_prob
,
sequence_length
=
None
,
max_sequence_length
=
bert_config
.
max_position_embeddings
,
max_sequence_length
=
bert_config
.
max_position_embeddings
,
type_vocab_size
=
bert_config
.
type_vocab_size
,
type_vocab_size
=
bert_config
.
type_vocab_size
,
initializer
=
tf
.
keras
.
initializers
.
TruncatedNormal
(
initializer
=
tf
.
keras
.
initializers
.
TruncatedNormal
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment