Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
454f8be7
Commit
454f8be7
authored
Mar 12, 2021
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 362548055
parent
fd90a65f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
195 additions
and
156 deletions
+195
-156
official/vision/beta/modeling/backbones/mobilenet.py
official/vision/beta/modeling/backbones/mobilenet.py
+182
-143
official/vision/beta/modeling/backbones/mobilenet_test.py
official/vision/beta/modeling/backbones/mobilenet_test.py
+13
-13
No files found.
official/vision/beta/modeling/backbones/mobilenet.py
View file @
454f8be7
...
...
@@ -148,22 +148,23 @@ Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
"""
MNV1_BLOCK_SPECS
=
{
'spec_name'
:
'MobileNetV1'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
],
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
32
),
(
'depsepconv'
,
3
,
1
,
64
),
(
'depsepconv'
,
3
,
2
,
128
),
(
'depsepconv'
,
3
,
1
,
128
),
(
'depsepconv'
,
3
,
2
,
256
),
(
'depsepconv'
,
3
,
1
,
256
),
(
'depsepconv'
,
3
,
2
,
512
),
(
'depsepconv'
,
3
,
1
,
512
),
(
'depsepconv'
,
3
,
1
,
512
),
(
'depsepconv'
,
3
,
1
,
512
),
(
'depsepconv'
,
3
,
1
,
512
),
(
'depsepconv'
,
3
,
1
,
512
),
(
'depsepconv'
,
3
,
2
,
1024
),
(
'depsepconv'
,
3
,
1
,
1024
),
(
'convbn'
,
3
,
2
,
32
,
False
),
(
'depsepconv'
,
3
,
1
,
64
,
False
),
(
'depsepconv'
,
3
,
2
,
128
,
False
),
(
'depsepconv'
,
3
,
1
,
128
,
True
),
(
'depsepconv'
,
3
,
2
,
256
,
False
),
(
'depsepconv'
,
3
,
1
,
256
,
True
),
(
'depsepconv'
,
3
,
2
,
512
,
False
),
(
'depsepconv'
,
3
,
1
,
512
,
False
),
(
'depsepconv'
,
3
,
1
,
512
,
False
),
(
'depsepconv'
,
3
,
1
,
512
,
False
),
(
'depsepconv'
,
3
,
1
,
512
,
False
),
(
'depsepconv'
,
3
,
1
,
512
,
True
),
(
'depsepconv'
,
3
,
2
,
1024
,
False
),
(
'depsepconv'
,
3
,
1
,
1024
,
True
),
]
}
...
...
@@ -176,27 +177,27 @@ Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
MNV2_BLOCK_SPECS
=
{
'spec_name'
:
'MobileNetV2'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'expand_ratio'
],
'expand_ratio'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
32
,
None
),
(
'invertedbottleneck'
,
3
,
1
,
16
,
1.
),
(
'invertedbottleneck'
,
3
,
2
,
24
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
24
,
6.
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
6.
),
(
'invertedbottleneck'
,
3
,
2
,
64
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
6.
),
(
'invertedbottleneck'
,
3
,
2
,
160
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
6.
),
(
'invertedbottleneck'
,
3
,
1
,
320
,
6.
),
(
'convbn'
,
1
,
1
,
1280
,
None
),
(
'convbn'
,
3
,
2
,
32
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
16
,
1.
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
24
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
24
,
6.
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
6.
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
64
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
6.
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
160
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
6.
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
320
,
6.
,
True
),
(
'convbn'
,
1
,
1
,
1280
,
None
,
False
),
]
}
...
...
@@ -211,27 +212,46 @@ MNV3Large_BLOCK_SPECS = {
'spec_name'
:
'MobileNetV3Large'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'activation'
,
'se_ratio'
,
'expand_ratio'
,
'use_normalization'
,
'use_bias'
],
'use_normalization'
,
'use_bias'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
16
,
'hard_swish'
,
None
,
None
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
16
,
'relu'
,
None
,
1.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
24
,
'relu'
,
None
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
24
,
'relu'
,
None
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
40
,
'relu'
,
0.25
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'relu'
,
0.25
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'relu'
,
0.25
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
80
,
'hard_swish'
,
None
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
80
,
'hard_swish'
,
None
,
2.5
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
80
,
'hard_swish'
,
None
,
2.3
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
80
,
'hard_swish'
,
None
,
2.3
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
112
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
112
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
160
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'convbn'
,
1
,
1
,
960
,
'hard_swish'
,
None
,
None
,
True
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
None
),
(
'convbn'
,
1
,
1
,
1280
,
'hard_swish'
,
None
,
None
,
False
,
True
),
(
'convbn'
,
3
,
2
,
16
,
'hard_swish'
,
None
,
None
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
16
,
'relu'
,
None
,
1.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
24
,
'relu'
,
None
,
4.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
24
,
'relu'
,
None
,
3.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
40
,
'relu'
,
0.25
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'relu'
,
0.25
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'relu'
,
0.25
,
3.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
80
,
'hard_swish'
,
None
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
80
,
'hard_swish'
,
None
,
2.5
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
80
,
'hard_swish'
,
None
,
2.3
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
80
,
'hard_swish'
,
None
,
2.3
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
112
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
112
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
160
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
True
),
(
'convbn'
,
1
,
1
,
960
,
'hard_swish'
,
None
,
None
,
True
,
False
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
False
),
(
'convbn'
,
1
,
1
,
1280
,
'hard_swish'
,
None
,
None
,
False
,
True
,
False
),
]
}
...
...
@@ -239,23 +259,38 @@ MNV3Small_BLOCK_SPECS = {
'spec_name'
:
'MobileNetV3Small'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'activation'
,
'se_ratio'
,
'expand_ratio'
,
'use_normalization'
,
'use_bias'
],
'use_normalization'
,
'use_bias'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
16
,
'hard_swish'
,
None
,
None
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
16
,
'relu'
,
0.25
,
1
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
24
,
'relu'
,
None
,
72.
/
16
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
24
,
'relu'
,
None
,
88.
/
24
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
40
,
'hard_swish'
,
0.25
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
48
,
'hard_swish'
,
0.25
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
48
,
'hard_swish'
,
0.25
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
96
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
96
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
96
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
),
(
'convbn'
,
1
,
1
,
576
,
'hard_swish'
,
None
,
None
,
True
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
None
),
(
'convbn'
,
1
,
1
,
1024
,
'hard_swish'
,
None
,
None
,
False
,
True
),
(
'convbn'
,
3
,
2
,
16
,
'hard_swish'
,
None
,
None
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
16
,
'relu'
,
0.25
,
1
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
24
,
'relu'
,
None
,
72.
/
16
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
24
,
'relu'
,
None
,
88.
/
24
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
40
,
'hard_swish'
,
0.25
,
4.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
40
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
48
,
'hard_swish'
,
0.25
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
48
,
'hard_swish'
,
0.25
,
3.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
96
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
96
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
96
,
'hard_swish'
,
0.25
,
6.
,
None
,
False
,
True
),
(
'convbn'
,
1
,
1
,
576
,
'hard_swish'
,
None
,
None
,
True
,
False
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
False
),
(
'convbn'
,
1
,
1
,
1024
,
'hard_swish'
,
None
,
None
,
False
,
True
,
False
),
]
}
...
...
@@ -267,32 +302,32 @@ MNV3EdgeTPU_BLOCK_SPECS = {
'spec_name'
:
'MobileNetV3EdgeTPU'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'activation'
,
'se_ratio'
,
'expand_ratio'
,
'use_residual'
,
'use_depthwise'
],
'use_residual'
,
'use_depthwise'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
32
,
'relu'
,
None
,
None
,
None
,
None
),
(
'invertedbottleneck'
,
3
,
1
,
16
,
'relu'
,
None
,
1.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
'relu'
,
None
,
8.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
None
,
4.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
None
,
4.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
None
,
4.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
48
,
'relu'
,
None
,
8.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
48
,
'relu'
,
None
,
4.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
48
,
'relu'
,
None
,
4.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
48
,
'relu'
,
None
,
4.
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
96
,
'relu'
,
None
,
8.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
8.
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
160
,
'relu'
,
None
,
8.
,
True
,
True
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
None
,
4.
,
True
,
True
),
(
'invertedbottleneck'
,
3
,
1
,
192
,
'relu'
,
None
,
8.
,
True
,
True
),
(
'convbn'
,
1
,
1
,
1280
,
'relu'
,
None
,
None
,
None
,
None
),
(
'convbn'
,
3
,
2
,
32
,
'relu'
,
None
,
None
,
None
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
16
,
'relu'
,
None
,
1.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
'relu'
,
None
,
8.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
None
,
4.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
None
,
4.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
None
,
4.
,
True
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
48
,
'relu'
,
None
,
8.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
48
,
'relu'
,
None
,
4.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
48
,
'relu'
,
None
,
4.
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
48
,
'relu'
,
None
,
4.
,
True
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
96
,
'relu'
,
None
,
8.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
8.
,
False
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
96
,
'relu'
,
None
,
4.
,
True
,
True
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
160
,
'relu'
,
None
,
8.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
None
,
4.
,
True
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
192
,
'relu'
,
None
,
8.
,
True
,
True
,
True
),
(
'convbn'
,
1
,
1
,
1280
,
'relu'
,
None
,
None
,
None
,
None
,
False
),
]
}
...
...
@@ -308,26 +343,26 @@ MNMultiMAX_BLOCK_SPECS = {
'spec_name'
:
'MobileNetMultiMAX'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'activation'
,
'expand_ratio'
,
'use_normalization'
,
'use_bias'
],
'use_normalization'
,
'use_bias'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
32
,
'relu'
,
None
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
64
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
2.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
2.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
128
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
160
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
'relu'
,
5.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
4.
,
None
,
False
),
(
'convbn'
,
1
,
1
,
960
,
'relu'
,
None
,
True
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
),
(
'convbn'
,
1
,
1
,
1280
,
'relu'
,
None
,
False
,
True
),
(
'convbn'
,
3
,
2
,
32
,
'relu'
,
None
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
'relu'
,
3.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
64
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
2.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
2.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
128
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
4.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
160
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
4.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
'relu'
,
5.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
160
,
'relu'
,
4.
,
None
,
False
,
True
),
(
'convbn'
,
1
,
1
,
960
,
'relu'
,
None
,
True
,
False
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
False
),
(
'convbn'
,
1
,
1
,
1280
,
'relu'
,
None
,
False
,
True
,
False
),
]
}
...
...
@@ -335,28 +370,28 @@ MNMultiAVG_BLOCK_SPECS = {
'spec_name'
:
'MobileNetMultiAVG'
,
'block_spec_schema'
:
[
'block_fn'
,
'kernel_size'
,
'strides'
,
'filters'
,
'activation'
,
'expand_ratio'
,
'use_normalization'
,
'use_bias'
],
'use_normalization'
,
'use_bias'
,
'is_output'
],
'block_specs'
:
[
(
'convbn'
,
3
,
2
,
32
,
'relu'
,
None
,
True
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
2.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
64
,
'relu'
,
5.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
2.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
2
,
128
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
'relu'
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
192
,
'relu'
,
6.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
192
,
'relu'
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
192
,
'relu'
,
4.
,
None
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
192
,
'relu'
,
4.
,
None
,
False
),
(
'convbn'
,
1
,
1
,
960
,
'relu'
,
None
,
True
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
),
(
'convbn'
,
1
,
1
,
1280
,
'relu'
,
None
,
False
,
True
),
(
'convbn'
,
3
,
2
,
32
,
'relu'
,
None
,
True
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
2
,
32
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
32
,
'relu'
,
2.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
64
,
'relu'
,
5.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
2.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
64
,
'relu'
,
3.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
5
,
2
,
128
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
128
,
'relu'
,
3.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
3
,
1
,
160
,
'relu'
,
4.
,
None
,
False
,
True
),
(
'invertedbottleneck'
,
3
,
2
,
192
,
'relu'
,
6.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
192
,
'relu'
,
4.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
192
,
'relu'
,
4.
,
None
,
False
,
False
),
(
'invertedbottleneck'
,
5
,
1
,
192
,
'relu'
,
4.
,
None
,
False
,
True
),
(
'convbn'
,
1
,
1
,
960
,
'relu'
,
None
,
True
,
False
,
False
),
(
'gpooling'
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
False
),
(
'convbn'
,
1
,
1
,
1280
,
'relu'
,
None
,
False
,
True
,
False
),
]
}
...
...
@@ -388,6 +423,7 @@ class BlockSpec(hyperparams.Config):
se_ratio
:
Optional
[
float
]
=
None
use_depthwise
:
bool
=
True
use_residual
:
bool
=
True
is_output
:
bool
=
True
def
block_spec_decoder
(
specs
:
Dict
[
Any
,
Any
],
...
...
@@ -552,9 +588,9 @@ class MobileNet(tf.keras.Model):
divisible_by
=
self
.
_get_divisible_by
(),
finegrain_classification_mode
=
self
.
_finegrain_classification_mode
)
x
,
endpoints
=
self
.
_mobilenet_base
(
inputs
=
inputs
)
x
,
endpoints
,
next_endpoint_level
=
self
.
_mobilenet_base
(
inputs
=
inputs
)
endpoints
[
max
(
endpoints
.
keys
())
+
1
]
=
x
endpoints
[
str
(
next_endpoint_level
)
]
=
x
self
.
_output_specs
=
{
l
:
endpoints
[
l
].
get_shape
()
for
l
in
endpoints
}
super
(
MobileNet
,
self
).
__init__
(
...
...
@@ -568,7 +604,7 @@ class MobileNet(tf.keras.Model):
def
_mobilenet_base
(
self
,
inputs
:
tf
.
Tensor
)
->
Tuple
[
tf
.
Tensor
,
Dict
[
int
,
tf
.
Tensor
]]:
)
->
Tuple
[
tf
.
Tensor
,
Dict
[
str
,
tf
.
Tensor
]
,
int
]:
"""Builds the base MobileNet architecture.
Args:
...
...
@@ -594,7 +630,7 @@ class MobileNet(tf.keras.Model):
net
=
inputs
endpoints
=
{}
endpoint_level
=
1
endpoint_level
=
2
for
i
,
block_def
in
enumerate
(
self
.
_decoded_specs
):
block_name
=
'block_group_{}_{}'
.
format
(
block_def
.
block_fn
,
i
)
# A small catch for gpooling block with None strides
...
...
@@ -688,10 +724,13 @@ class MobileNet(tf.keras.Model):
raise
ValueError
(
'Unknown block type {} for layer {}'
.
format
(
block_def
.
block_fn
,
i
))
endpoints
[
endpoint_level
]
=
net
endpoint_level
+=
1
net
=
tf
.
identity
(
net
,
name
=
block_name
)
return
net
,
endpoints
if
block_def
.
is_output
:
endpoints
[
str
(
endpoint_level
)]
=
net
endpoint_level
+=
1
return
net
,
endpoints
,
endpoint_level
def
get_config
(
self
):
config_dict
=
{
...
...
official/vision/beta/modeling/backbones/mobilenet_test.py
View file @
454f8be7
...
...
@@ -109,27 +109,27 @@ class MobileNetTest(parameterized.TestCase, tf.test.TestCase):
tf
.
keras
.
backend
.
set_image_data_format
(
'channels_last'
)
mobilenet_layers
=
{
# The
stride (relative to input) and number of filters
#
of first few layers
for filter_size_scale =
0.75
'MobileNetV1'
:
[
(
1
,
24
),
(
1
,
48
),
(
2
,
96
),
(
2
,
96
)
],
'MobileNetV2'
:
[
(
1
,
24
)
,
(
1
,
16
),
(
2
,
24
),
(
2
,
24
)
],
'MobileNetV3Small'
:
[
(
1
,
16
),
(
2
,
16
),
(
3
,
24
)
,
(
3
,
24
)
],
'MobileNetV3Large'
:
[
(
1
,
16
),
(
1
,
16
),
(
2
,
24
),
(
2
,
24
)
],
'MobileNetV3EdgeTPU'
:
[
(
1
,
24
),
(
1
,
16
),
(
2
,
24
),
(
2
,
24
)
],
'MobileNetMultiMAX'
:
[
(
1
,
24
),
(
2
,
24
),
(
3
,
48
),
(
3
,
48
)
],
'MobileNetMultiAVG'
:
[
(
1
,
24
),
(
2
,
24
),
(
2
,
24
),
(
3
,
48
)
],
# The
number of filters of layers having outputs been collected
# for filter_size_scale =
1.0
'MobileNetV1'
:
[
128
,
256
,
512
,
1024
],
'MobileNetV2'
:
[
24
,
32
,
96
,
320
],
'MobileNetV3Small'
:
[
16
,
24
,
48
,
96
],
'MobileNetV3Large'
:
[
24
,
40
,
112
,
160
],
'MobileNetV3EdgeTPU'
:
[
32
,
48
,
96
,
192
],
'MobileNetMultiMAX'
:
[
32
,
64
,
128
,
160
],
'MobileNetMultiAVG'
:
[
32
,
64
,
160
,
192
],
}
network
=
mobilenet
.
MobileNet
(
model_id
=
model_id
,
filter_size_scale
=
0.75
)
filter_size_scale
=
1.0
)
inputs
=
tf
.
keras
.
Input
(
shape
=
(
input_size
,
input_size
,
3
),
batch_size
=
1
)
endpoints
=
network
(
inputs
)
for
idx
,
(
stride
,
num_filter
)
in
enumerate
(
mobilenet_layers
[
model_id
]):
for
idx
,
num_filter
in
enumerate
(
mobilenet_layers
[
model_id
]):
self
.
assertAllEqual
(
[
1
,
input_size
/
2
**
stride
,
input_size
/
2
**
stride
,
num_filter
],
endpoints
[
idx
+
1
].
shape
.
as_list
())
[
1
,
input_size
/
2
**
(
idx
+
2
)
,
input_size
/
2
**
(
idx
+
2
)
,
num_filter
],
endpoints
[
str
(
idx
+
2
)
].
shape
.
as_list
())
@
parameterized
.
parameters
(
itertools
.
product
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment