Commit 454f8be7 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 362548055
parent fd90a65f
...@@ -148,22 +148,23 @@ Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam ...@@ -148,22 +148,23 @@ Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
""" """
MNV1_BLOCK_SPECS = { MNV1_BLOCK_SPECS = {
'spec_name': 'MobileNetV1', 'spec_name': 'MobileNetV1',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters'], 'block_spec_schema': ['block_fn', 'kernel_size', 'strides',
'filters', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 32), ('convbn', 3, 2, 32, False),
('depsepconv', 3, 1, 64), ('depsepconv', 3, 1, 64, False),
('depsepconv', 3, 2, 128), ('depsepconv', 3, 2, 128, False),
('depsepconv', 3, 1, 128), ('depsepconv', 3, 1, 128, True),
('depsepconv', 3, 2, 256), ('depsepconv', 3, 2, 256, False),
('depsepconv', 3, 1, 256), ('depsepconv', 3, 1, 256, True),
('depsepconv', 3, 2, 512), ('depsepconv', 3, 2, 512, False),
('depsepconv', 3, 1, 512), ('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512), ('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512), ('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512), ('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512), ('depsepconv', 3, 1, 512, True),
('depsepconv', 3, 2, 1024), ('depsepconv', 3, 2, 1024, False),
('depsepconv', 3, 1, 1024), ('depsepconv', 3, 1, 1024, True),
] ]
} }
...@@ -176,27 +177,27 @@ Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen ...@@ -176,27 +177,27 @@ Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
MNV2_BLOCK_SPECS = { MNV2_BLOCK_SPECS = {
'spec_name': 'MobileNetV2', 'spec_name': 'MobileNetV2',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters', 'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'expand_ratio'], 'expand_ratio', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 32, None), ('convbn', 3, 2, 32, None, False),
('invertedbottleneck', 3, 1, 16, 1.), ('invertedbottleneck', 3, 1, 16, 1., False),
('invertedbottleneck', 3, 2, 24, 6.), ('invertedbottleneck', 3, 2, 24, 6., False),
('invertedbottleneck', 3, 1, 24, 6.), ('invertedbottleneck', 3, 1, 24, 6., True),
('invertedbottleneck', 3, 2, 32, 6.), ('invertedbottleneck', 3, 2, 32, 6., False),
('invertedbottleneck', 3, 1, 32, 6.), ('invertedbottleneck', 3, 1, 32, 6., False),
('invertedbottleneck', 3, 1, 32, 6.), ('invertedbottleneck', 3, 1, 32, 6., True),
('invertedbottleneck', 3, 2, 64, 6.), ('invertedbottleneck', 3, 2, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6.), ('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6.), ('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6.), ('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 96, 6.), ('invertedbottleneck', 3, 1, 96, 6., False),
('invertedbottleneck', 3, 1, 96, 6.), ('invertedbottleneck', 3, 1, 96, 6., False),
('invertedbottleneck', 3, 1, 96, 6.), ('invertedbottleneck', 3, 1, 96, 6., True),
('invertedbottleneck', 3, 2, 160, 6.), ('invertedbottleneck', 3, 2, 160, 6., False),
('invertedbottleneck', 3, 1, 160, 6.), ('invertedbottleneck', 3, 1, 160, 6., False),
('invertedbottleneck', 3, 1, 160, 6.), ('invertedbottleneck', 3, 1, 160, 6., False),
('invertedbottleneck', 3, 1, 320, 6.), ('invertedbottleneck', 3, 1, 320, 6., True),
('convbn', 1, 1, 1280, None), ('convbn', 1, 1, 1280, None, False),
] ]
} }
...@@ -211,27 +212,46 @@ MNV3Large_BLOCK_SPECS = { ...@@ -211,27 +212,46 @@ MNV3Large_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Large', 'spec_name': 'MobileNetV3Large',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters', 'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio', 'activation', 'se_ratio', 'expand_ratio',
'use_normalization', 'use_bias'], 'use_normalization', 'use_bias', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 16, 'hard_swish', None, None, True, False), ('convbn', 3, 2, 16,
('invertedbottleneck', 3, 1, 16, 'relu', None, 1., None, False), 'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 2, 24, 'relu', None, 4., None, False), ('invertedbottleneck', 3, 1, 16,
('invertedbottleneck', 3, 1, 24, 'relu', None, 3., None, False), 'relu', None, 1., None, False, False),
('invertedbottleneck', 5, 2, 40, 'relu', 0.25, 3., None, False), ('invertedbottleneck', 3, 2, 24,
('invertedbottleneck', 5, 1, 40, 'relu', 0.25, 3., None, False), 'relu', None, 4., None, False, False),
('invertedbottleneck', 5, 1, 40, 'relu', 0.25, 3., None, False), ('invertedbottleneck', 3, 1, 24,
('invertedbottleneck', 3, 2, 80, 'hard_swish', None, 6., None, False), 'relu', None, 3., None, False, True),
('invertedbottleneck', 3, 1, 80, 'hard_swish', None, 2.5, None, False), ('invertedbottleneck', 5, 2, 40,
('invertedbottleneck', 3, 1, 80, 'hard_swish', None, 2.3, None, False), 'relu', 0.25, 3., None, False, False),
('invertedbottleneck', 3, 1, 80, 'hard_swish', None, 2.3, None, False), ('invertedbottleneck', 5, 1, 40,
('invertedbottleneck', 3, 1, 112, 'hard_swish', 0.25, 6., None, False), 'relu', 0.25, 3., None, False, False),
('invertedbottleneck', 3, 1, 112, 'hard_swish', 0.25, 6., None, False), ('invertedbottleneck', 5, 1, 40,
('invertedbottleneck', 5, 2, 160, 'hard_swish', 0.25, 6., None, False), 'relu', 0.25, 3., None, False, True),
('invertedbottleneck', 5, 1, 160, 'hard_swish', 0.25, 6., None, False), ('invertedbottleneck', 3, 2, 80,
('invertedbottleneck', 5, 1, 160, 'hard_swish', 0.25, 6., None, False), 'hard_swish', None, 6., None, False, False),
('convbn', 1, 1, 960, 'hard_swish', None, None, True, False), ('invertedbottleneck', 3, 1, 80,
('gpooling', None, None, None, None, None, None, None, None), 'hard_swish', None, 2.5, None, False, False),
('convbn', 1, 1, 1280, 'hard_swish', None, None, False, True), ('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.3, None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.3, None, False, False),
('invertedbottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., None, False, True),
('invertedbottleneck', 5, 2, 160,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., None, False, True),
('convbn', 1, 1, 960,
'hard_swish', None, None, True, False, False),
('gpooling', None, None, None,
None, None, None, None, None, False),
('convbn', 1, 1, 1280,
'hard_swish', None, None, False, True, False),
] ]
} }
...@@ -239,23 +259,38 @@ MNV3Small_BLOCK_SPECS = { ...@@ -239,23 +259,38 @@ MNV3Small_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Small', 'spec_name': 'MobileNetV3Small',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters', 'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio', 'activation', 'se_ratio', 'expand_ratio',
'use_normalization', 'use_bias'], 'use_normalization', 'use_bias', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 16, 'hard_swish', None, None, True, False), ('convbn', 3, 2, 16,
('invertedbottleneck', 3, 2, 16, 'relu', 0.25, 1, None, False), 'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 2, 24, 'relu', None, 72. / 16, None, False), ('invertedbottleneck', 3, 2, 16,
('invertedbottleneck', 3, 1, 24, 'relu', None, 88. / 24, None, False), 'relu', 0.25, 1, None, False, True),
('invertedbottleneck', 5, 2, 40, 'hard_swish', 0.25, 4., None, False), ('invertedbottleneck', 3, 2, 24,
('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6., None, False), 'relu', None, 72. / 16, None, False, False),
('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6., None, False), ('invertedbottleneck', 3, 1, 24,
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3., None, False), 'relu', None, 88. / 24, None, False, True),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3., None, False), ('invertedbottleneck', 5, 2, 40,
('invertedbottleneck', 5, 2, 96, 'hard_swish', 0.25, 6., None, False), 'hard_swish', 0.25, 4., None, False, False),
('invertedbottleneck', 5, 1, 96, 'hard_swish', 0.25, 6., None, False), ('invertedbottleneck', 5, 1, 40,
('invertedbottleneck', 5, 1, 96, 'hard_swish', 0.25, 6., None, False), 'hard_swish', 0.25, 6., None, False, False),
('convbn', 1, 1, 576, 'hard_swish', None, None, True, False), ('invertedbottleneck', 5, 1, 40,
('gpooling', None, None, None, None, None, None, None, None), 'hard_swish', 0.25, 6., None, False, False),
('convbn', 1, 1, 1024, 'hard_swish', None, None, False, True), ('invertedbottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., None, False, True),
('invertedbottleneck', 5, 2, 96,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., None, False, True),
('convbn', 1, 1, 576,
'hard_swish', None, None, True, False, False),
('gpooling', None, None, None,
None, None, None, None, None, False),
('convbn', 1, 1, 1024,
'hard_swish', None, None, False, True, False),
] ]
} }
...@@ -267,32 +302,32 @@ MNV3EdgeTPU_BLOCK_SPECS = { ...@@ -267,32 +302,32 @@ MNV3EdgeTPU_BLOCK_SPECS = {
'spec_name': 'MobileNetV3EdgeTPU', 'spec_name': 'MobileNetV3EdgeTPU',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters', 'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio', 'activation', 'se_ratio', 'expand_ratio',
'use_residual', 'use_depthwise'], 'use_residual', 'use_depthwise', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 32, 'relu', None, None, None, None), ('convbn', 3, 2, 32, 'relu', None, None, None, None, False),
('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False), ('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False), ('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False), ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False), ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False), ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, True),
('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False), ('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False), ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False), ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False), ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, True),
('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True), ('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True), ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, True),
('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True), ('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True), ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True), ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True), ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True), ('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True, True),
('convbn', 1, 1, 1280, 'relu', None, None, None, None), ('convbn', 1, 1, 1280, 'relu', None, None, None, None, False),
] ]
} }
...@@ -308,26 +343,26 @@ MNMultiMAX_BLOCK_SPECS = { ...@@ -308,26 +343,26 @@ MNMultiMAX_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiMAX', 'spec_name': 'MobileNetMultiMAX',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters', 'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'expand_ratio', 'activation', 'expand_ratio',
'use_normalization', 'use_bias'], 'use_normalization', 'use_bias', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False), ('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False), ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False), ('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False), ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False), ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False), ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, True),
('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False), ('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False), ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False), ('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False), ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, True),
('convbn', 1, 1, 960, 'relu', None, True, False), ('convbn', 1, 1, 960, 'relu', None, True, False, False),
('gpooling', None, None, None, None, None, None, None), ('gpooling', None, None, None, None, None, None, None, False),
('convbn', 1, 1, 1280, 'relu', None, False, True), ('convbn', 1, 1, 1280, 'relu', None, False, True, False),
] ]
} }
...@@ -335,28 +370,28 @@ MNMultiAVG_BLOCK_SPECS = { ...@@ -335,28 +370,28 @@ MNMultiAVG_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiAVG', 'spec_name': 'MobileNetMultiAVG',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters', 'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'expand_ratio', 'activation', 'expand_ratio',
'use_normalization', 'use_bias'], 'use_normalization', 'use_bias', 'is_output'],
'block_specs': [ 'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False), ('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False), ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False), ('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False), ('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False), ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False), ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False), ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False), ('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False), ('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False, True),
('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False), ('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False), ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False), ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False), ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, True),
('convbn', 1, 1, 960, 'relu', None, True, False), ('convbn', 1, 1, 960, 'relu', None, True, False, False),
('gpooling', None, None, None, None, None, None, None), ('gpooling', None, None, None, None, None, None, None, False),
('convbn', 1, 1, 1280, 'relu', None, False, True), ('convbn', 1, 1, 1280, 'relu', None, False, True, False),
] ]
} }
...@@ -388,6 +423,7 @@ class BlockSpec(hyperparams.Config): ...@@ -388,6 +423,7 @@ class BlockSpec(hyperparams.Config):
se_ratio: Optional[float] = None se_ratio: Optional[float] = None
use_depthwise: bool = True use_depthwise: bool = True
use_residual: bool = True use_residual: bool = True
is_output: bool = True
def block_spec_decoder(specs: Dict[Any, Any], def block_spec_decoder(specs: Dict[Any, Any],
...@@ -552,9 +588,9 @@ class MobileNet(tf.keras.Model): ...@@ -552,9 +588,9 @@ class MobileNet(tf.keras.Model):
divisible_by=self._get_divisible_by(), divisible_by=self._get_divisible_by(),
finegrain_classification_mode=self._finegrain_classification_mode) finegrain_classification_mode=self._finegrain_classification_mode)
x, endpoints = self._mobilenet_base(inputs=inputs) x, endpoints, next_endpoint_level = self._mobilenet_base(inputs=inputs)
endpoints[max(endpoints.keys()) + 1] = x endpoints[str(next_endpoint_level)] = x
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints} self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
super(MobileNet, self).__init__( super(MobileNet, self).__init__(
...@@ -568,7 +604,7 @@ class MobileNet(tf.keras.Model): ...@@ -568,7 +604,7 @@ class MobileNet(tf.keras.Model):
def _mobilenet_base(self, def _mobilenet_base(self,
inputs: tf.Tensor inputs: tf.Tensor
) -> Tuple[tf.Tensor, Dict[int, tf.Tensor]]: ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
"""Builds the base MobileNet architecture. """Builds the base MobileNet architecture.
Args: Args:
...@@ -594,7 +630,7 @@ class MobileNet(tf.keras.Model): ...@@ -594,7 +630,7 @@ class MobileNet(tf.keras.Model):
net = inputs net = inputs
endpoints = {} endpoints = {}
endpoint_level = 1 endpoint_level = 2
for i, block_def in enumerate(self._decoded_specs): for i, block_def in enumerate(self._decoded_specs):
block_name = 'block_group_{}_{}'.format(block_def.block_fn, i) block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
# A small catch for gpooling block with None strides # A small catch for gpooling block with None strides
...@@ -688,10 +724,13 @@ class MobileNet(tf.keras.Model): ...@@ -688,10 +724,13 @@ class MobileNet(tf.keras.Model):
raise ValueError('Unknown block type {} for layer {}'.format( raise ValueError('Unknown block type {} for layer {}'.format(
block_def.block_fn, i)) block_def.block_fn, i))
endpoints[endpoint_level] = net
endpoint_level += 1
net = tf.identity(net, name=block_name) net = tf.identity(net, name=block_name)
return net, endpoints
if block_def.is_output:
endpoints[str(endpoint_level)] = net
endpoint_level += 1
return net, endpoints, endpoint_level
def get_config(self): def get_config(self):
config_dict = { config_dict = {
......
...@@ -109,27 +109,27 @@ class MobileNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -109,27 +109,27 @@ class MobileNetTest(parameterized.TestCase, tf.test.TestCase):
tf.keras.backend.set_image_data_format('channels_last') tf.keras.backend.set_image_data_format('channels_last')
mobilenet_layers = { mobilenet_layers = {
# The stride (relative to input) and number of filters # The number of filters of layers having outputs been collected
# of first few layers for filter_size_scale = 0.75 # for filter_size_scale = 1.0
'MobileNetV1': [(1, 24), (1, 48), (2, 96), (2, 96)], 'MobileNetV1': [128, 256, 512, 1024],
'MobileNetV2': [(1, 24), (1, 16), (2, 24), (2, 24)], 'MobileNetV2': [24, 32, 96, 320],
'MobileNetV3Small': [(1, 16), (2, 16), (3, 24), (3, 24)], 'MobileNetV3Small': [16, 24, 48, 96],
'MobileNetV3Large': [(1, 16), (1, 16), (2, 24), (2, 24)], 'MobileNetV3Large': [24, 40, 112, 160],
'MobileNetV3EdgeTPU': [(1, 24), (1, 16), (2, 24), (2, 24)], 'MobileNetV3EdgeTPU': [32, 48, 96, 192],
'MobileNetMultiMAX': [(1, 24), (2, 24), (3, 48), (3, 48)], 'MobileNetMultiMAX': [32, 64, 128, 160],
'MobileNetMultiAVG': [(1, 24), (2, 24), (2, 24), (3, 48)], 'MobileNetMultiAVG': [32, 64, 160, 192],
} }
network = mobilenet.MobileNet(model_id=model_id, network = mobilenet.MobileNet(model_id=model_id,
filter_size_scale=0.75) filter_size_scale=1.0)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1) inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs) endpoints = network(inputs)
for idx, (stride, num_filter) in enumerate(mobilenet_layers[model_id]): for idx, num_filter in enumerate(mobilenet_layers[model_id]):
self.assertAllEqual( self.assertAllEqual(
[1, input_size / 2 ** stride, input_size / 2 ** stride, num_filter], [1, input_size / 2 ** (idx+2), input_size / 2 ** (idx+2), num_filter],
endpoints[idx+1].shape.as_list()) endpoints[str(idx+2)].shape.as_list())
@parameterized.parameters( @parameterized.parameters(
itertools.product( itertools.product(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment