Commit 44e7092c authored by stephenwu's avatar stephenwu
Browse files

Merge branch 'master' of https://github.com/tensorflow/models into AXg

parents 431a9ca3 59434199
...@@ -34,6 +34,7 @@ class DataConfig(cfg.DataConfig): ...@@ -34,6 +34,7 @@ class DataConfig(cfg.DataConfig):
feature_shape: Tuple[int, ...] = (64, 224, 224, 3) feature_shape: Tuple[int, ...] = (64, 224, 224, 3)
temporal_stride: int = 1 temporal_stride: int = 1
num_test_clips: int = 1 num_test_clips: int = 1
num_test_crops: int = 1
num_classes: int = -1 num_classes: int = -1
num_channels: int = 3 num_channels: int = 3
num_examples: int = -1 num_examples: int = -1
...@@ -53,6 +54,10 @@ class DataConfig(cfg.DataConfig): ...@@ -53,6 +54,10 @@ class DataConfig(cfg.DataConfig):
output_audio: bool = False output_audio: bool = False
audio_feature: str = '' audio_feature: str = ''
audio_feature_shape: Tuple[int, ...] = (-1,) audio_feature_shape: Tuple[int, ...] = (-1,)
aug_min_aspect_ratio: float = 0.5
aug_max_aspect_ratio: float = 2.0
aug_min_area_ratio: float = 0.49
aug_max_area_ratio: float = 1.0
def kinetics400(is_training): def kinetics400(is_training):
......
...@@ -19,6 +19,7 @@ import io ...@@ -19,6 +19,7 @@ import io
import itertools import itertools
from absl import logging from absl import logging
import numpy as np
from PIL import Image from PIL import Image
import tensorflow as tf import tensorflow as tf
...@@ -45,10 +46,10 @@ def convert_to_feature(value, value_type=None): ...@@ -45,10 +46,10 @@ def convert_to_feature(value, value_type=None):
if isinstance(element, bytes): if isinstance(element, bytes):
value_type = 'bytes' value_type = 'bytes'
elif isinstance(element, int): elif isinstance(element, (int, np.integer)):
value_type = 'int64' value_type = 'int64'
elif isinstance(element, float): elif isinstance(element, (float, np.floating)):
value_type = 'float' value_type = 'float'
else: else:
...@@ -104,8 +105,9 @@ def encode_binary_mask_as_png(binary_mask): ...@@ -104,8 +105,9 @@ def encode_binary_mask_as_png(binary_mask):
return output_io.getvalue() return output_io.getvalue()
def write_tf_record_dataset(output_path, annotation_iterator, process_func, def write_tf_record_dataset(output_path, annotation_iterator,
num_shards, use_multiprocessing=True): process_func, num_shards,
use_multiprocessing=True, unpack_arguments=True):
"""Iterates over annotations, processes them and writes into TFRecords. """Iterates over annotations, processes them and writes into TFRecords.
Args: Args:
...@@ -118,6 +120,9 @@ def write_tf_record_dataset(output_path, annotation_iterator, process_func, ...@@ -118,6 +120,9 @@ def write_tf_record_dataset(output_path, annotation_iterator, process_func,
num_shards: int, the number of shards to write for the dataset. num_shards: int, the number of shards to write for the dataset.
use_multiprocessing: use_multiprocessing:
Whether or not to use multiple processes to write TF Records. Whether or not to use multiple processes to write TF Records.
unpack_arguments:
Whether to unpack the tuples from annotation_iterator as individual
arguments to the process func or to pass the returned value as it is.
Returns: Returns:
num_skipped: The total number of skipped annotations. num_skipped: The total number of skipped annotations.
...@@ -133,9 +138,15 @@ def write_tf_record_dataset(output_path, annotation_iterator, process_func, ...@@ -133,9 +138,15 @@ def write_tf_record_dataset(output_path, annotation_iterator, process_func,
if use_multiprocessing: if use_multiprocessing:
pool = mp.Pool() pool = mp.Pool()
tf_example_iterator = pool.starmap(process_func, annotation_iterator) if unpack_arguments:
tf_example_iterator = pool.starmap(process_func, annotation_iterator)
else:
tf_example_iterator = pool.imap(process_func, annotation_iterator)
else: else:
tf_example_iterator = itertools.starmap(process_func, annotation_iterator) if unpack_arguments:
tf_example_iterator = itertools.starmap(process_func, annotation_iterator)
else:
tf_example_iterator = map(process_func, annotation_iterator)
for idx, (tf_example, num_annotations_skipped) in enumerate( for idx, (tf_example, num_annotations_skipped) in enumerate(
tf_example_iterator): tf_example_iterator):
...@@ -155,3 +166,10 @@ def write_tf_record_dataset(output_path, annotation_iterator, process_func, ...@@ -155,3 +166,10 @@ def write_tf_record_dataset(output_path, annotation_iterator, process_func,
logging.info('Finished writing, skipped %d annotations.', logging.info('Finished writing, skipped %d annotations.',
total_num_annotations_skipped) total_num_annotations_skipped)
return total_num_annotations_skipped return total_num_annotations_skipped
def check_and_make_dir(directory):
"""Creates the directory if it doesn't exist."""
if not tf.io.gfile.isdir(directory):
tf.io.gfile.makedirs(directory)
...@@ -22,7 +22,7 @@ PossibleDatasetType = Union[Type[tf.data.Dataset], Callable[[tf.Tensor], Any]] ...@@ -22,7 +22,7 @@ PossibleDatasetType = Union[Type[tf.data.Dataset], Callable[[tf.Tensor], Any]]
def pick_dataset_fn(file_type: str) -> PossibleDatasetType: def pick_dataset_fn(file_type: str) -> PossibleDatasetType:
if file_type == 'tf_record': if file_type == 'tfrecord':
return tf.data.TFRecordDataset return tf.data.TFRecordDataset
raise ValueError('Unrecognized file_type: {}'.format(file_type)) raise ValueError('Unrecognized file_type: {}'.format(file_type))
...@@ -17,8 +17,6 @@ ...@@ -17,8 +17,6 @@
A decoder to decode string tensors containing serialized tensorflow.Example A decoder to decode string tensors containing serialized tensorflow.Example
protos for object detection. protos for object detection.
""" """
import csv
# Import libraries
import tensorflow as tf import tensorflow as tf
from official.vision.beta.dataloaders import decoder from official.vision.beta.dataloaders import decoder
...@@ -34,7 +32,8 @@ class TfExampleDecoder(decoder.Decoder): ...@@ -34,7 +32,8 @@ class TfExampleDecoder(decoder.Decoder):
def __init__(self, def __init__(self,
include_mask=False, include_mask=False,
regenerate_source_id=False): regenerate_source_id=False,
mask_binarize_threshold=None):
self._include_mask = include_mask self._include_mask = include_mask
self._regenerate_source_id = regenerate_source_id self._regenerate_source_id = regenerate_source_id
self._keys_to_features = { self._keys_to_features = {
...@@ -50,6 +49,7 @@ class TfExampleDecoder(decoder.Decoder): ...@@ -50,6 +49,7 @@ class TfExampleDecoder(decoder.Decoder):
'image/object/area': tf.io.VarLenFeature(tf.float32), 'image/object/area': tf.io.VarLenFeature(tf.float32),
'image/object/is_crowd': tf.io.VarLenFeature(tf.int64), 'image/object/is_crowd': tf.io.VarLenFeature(tf.int64),
} }
self._mask_binarize_threshold = mask_binarize_threshold
if include_mask: if include_mask:
self._keys_to_features.update({ self._keys_to_features.update({
'image/object/mask': tf.io.VarLenFeature(tf.string), 'image/object/mask': tf.io.VarLenFeature(tf.string),
...@@ -151,6 +151,9 @@ class TfExampleDecoder(decoder.Decoder): ...@@ -151,6 +151,9 @@ class TfExampleDecoder(decoder.Decoder):
if self._include_mask: if self._include_mask:
masks = self._decode_masks(parsed_tensors) masks = self._decode_masks(parsed_tensors)
if self._mask_binarize_threshold is not None:
masks = tf.cast(masks > self._mask_binarize_threshold, tf.float32)
decoded_tensors = { decoded_tensors = {
'source_id': source_id, 'source_id': source_id,
'image': image, 'image': image,
...@@ -167,44 +170,3 @@ class TfExampleDecoder(decoder.Decoder): ...@@ -167,44 +170,3 @@ class TfExampleDecoder(decoder.Decoder):
'groundtruth_instance_masks_png': parsed_tensors['image/object/mask'], 'groundtruth_instance_masks_png': parsed_tensors['image/object/mask'],
}) })
return decoded_tensors return decoded_tensors
class TfExampleDecoderLabelMap(TfExampleDecoder):
"""Tensorflow Example proto decoder."""
def __init__(self, label_map, include_mask=False, regenerate_source_id=False):
super(TfExampleDecoderLabelMap, self).__init__(
include_mask=include_mask, regenerate_source_id=regenerate_source_id)
self._keys_to_features.update({
'image/object/class/text': tf.io.VarLenFeature(tf.string),
})
name_to_id = self._process_label_map(label_map)
self._name_to_id_table = tf.lookup.StaticHashTable(
tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(name_to_id.keys()), dtype=tf.string),
values=tf.constant(list(name_to_id.values()), dtype=tf.int64)),
default_value=-1)
def _process_label_map(self, label_map):
if label_map.endswith('.csv'):
name_to_id = self._process_csv(label_map)
else:
raise ValueError('The label map file is in incorrect format.')
return name_to_id
def _process_csv(self, label_map):
name_to_id = {}
with tf.io.gfile.GFile(label_map, 'r') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
if len(row) != 2:
raise ValueError('Each row of the csv label map file must be in '
'`id,name` format. length = {}'.format(len(row)))
id_index = int(row[0])
name = row[1]
name_to_id[name] = id_index
return name_to_id
def _decode_classes(self, parsed_tensors):
return self._name_to_id_table.lookup(
parsed_tensors['image/object/class/text'])
...@@ -27,9 +27,11 @@ from official.vision.beta.dataloaders import tf_example_decoder ...@@ -27,9 +27,11 @@ from official.vision.beta.dataloaders import tf_example_decoder
class TfExampleDecoderLabelMap(tf_example_decoder.TfExampleDecoder): class TfExampleDecoderLabelMap(tf_example_decoder.TfExampleDecoder):
"""Tensorflow Example proto decoder.""" """Tensorflow Example proto decoder."""
def __init__(self, label_map, include_mask=False, regenerate_source_id=False): def __init__(self, label_map, include_mask=False, regenerate_source_id=False,
mask_binarize_threshold=None):
super(TfExampleDecoderLabelMap, self).__init__( super(TfExampleDecoderLabelMap, self).__init__(
include_mask=include_mask, regenerate_source_id=regenerate_source_id) include_mask=include_mask, regenerate_source_id=regenerate_source_id,
mask_binarize_threshold=mask_binarize_threshold)
self._keys_to_features.update({ self._keys_to_features.update({
'image/object/class/text': tf.io.VarLenFeature(tf.string), 'image/object/class/text': tf.io.VarLenFeature(tf.string),
}) })
......
...@@ -34,9 +34,14 @@ def _process_image(image: tf.Tensor, ...@@ -34,9 +34,14 @@ def _process_image(image: tf.Tensor,
num_frames: int = 32, num_frames: int = 32,
stride: int = 1, stride: int = 1,
num_test_clips: int = 1, num_test_clips: int = 1,
min_resize: int = 224, min_resize: int = 256,
crop_size: int = 200, crop_size: int = 224,
num_crops: int = 1,
zero_centering_image: bool = False, zero_centering_image: bool = False,
min_aspect_ratio: float = 0.5,
max_aspect_ratio: float = 2,
min_area_ratio: float = 0.49,
max_area_ratio: float = 1.0,
seed: Optional[int] = None) -> tf.Tensor: seed: Optional[int] = None) -> tf.Tensor:
"""Processes a serialized image tensor. """Processes a serialized image tensor.
...@@ -54,8 +59,13 @@ def _process_image(image: tf.Tensor, ...@@ -54,8 +59,13 @@ def _process_image(image: tf.Tensor,
min_resize: Frames are resized so that min(height, width) is min_resize. min_resize: Frames are resized so that min(height, width) is min_resize.
crop_size: Final size of the frame after cropping the resized frames. Both crop_size: Final size of the frame after cropping the resized frames. Both
height and width are the same. height and width are the same.
num_crops: Number of crops to perform on the resized frames.
zero_centering_image: If True, frames are normalized to values in [-1, 1]. zero_centering_image: If True, frames are normalized to values in [-1, 1].
If False, values in [0, 1]. If False, values in [0, 1].
min_aspect_ratio: The minimum aspect range for cropping.
max_aspect_ratio: The maximum aspect range for cropping.
min_area_ratio: The minimum area range for cropping.
max_area_ratio: The maximum area range for cropping.
seed: A deterministic seed to use when sampling. seed: A deterministic seed to use when sampling.
Returns: Returns:
...@@ -84,17 +94,19 @@ def _process_image(image: tf.Tensor, ...@@ -84,17 +94,19 @@ def _process_image(image: tf.Tensor,
# Decode JPEG string to tf.uint8. # Decode JPEG string to tf.uint8.
image = preprocess_ops_3d.decode_jpeg(image, 3) image = preprocess_ops_3d.decode_jpeg(image, 3)
# Resize images (resize happens only if necessary to save compute).
image = preprocess_ops_3d.resize_smallest(image, min_resize)
if is_training: if is_training:
# Standard image data augmentation: random crop and random flip. # Standard image data augmentation: random resized crop and random flip.
image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, True, image = preprocess_ops_3d.random_crop_resize(
seed) image, crop_size, crop_size, num_frames, 3,
(min_aspect_ratio, max_aspect_ratio),
(min_area_ratio, max_area_ratio))
image = preprocess_ops_3d.random_flip_left_right(image, seed) image = preprocess_ops_3d.random_flip_left_right(image, seed)
else: else:
# Central crop of the frames. # Resize images (resize happens only if necessary to save compute).
image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, False) image = preprocess_ops_3d.resize_smallest(image, min_resize)
# Crop of the frames.
image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, False,
num_crops)
# Cast the frames in float32, normalizing according to zero_centering_image. # Cast the frames in float32, normalizing according to zero_centering_image.
return preprocess_ops_3d.normalize_image(image, zero_centering_image) return preprocess_ops_3d.normalize_image(image, zero_centering_image)
...@@ -103,7 +115,8 @@ def _process_image(image: tf.Tensor, ...@@ -103,7 +115,8 @@ def _process_image(image: tf.Tensor,
def _postprocess_image(image: tf.Tensor, def _postprocess_image(image: tf.Tensor,
is_training: bool = True, is_training: bool = True,
num_frames: int = 32, num_frames: int = 32,
num_test_clips: int = 1) -> tf.Tensor: num_test_clips: int = 1,
num_test_crops: int = 1) -> tf.Tensor:
"""Processes a batched Tensor of frames. """Processes a batched Tensor of frames.
The same parameters used in process should be used here. The same parameters used in process should be used here.
...@@ -117,15 +130,19 @@ def _postprocess_image(image: tf.Tensor, ...@@ -117,15 +130,19 @@ def _postprocess_image(image: tf.Tensor,
will sample multiple linearly spaced clips within each video at test time. will sample multiple linearly spaced clips within each video at test time.
If 1, then a single clip in the middle of the video is sampled. The clips If 1, then a single clip in the middle of the video is sampled. The clips
are aggreagated in the batch dimension. are aggreagated in the batch dimension.
num_test_crops: Number of test crops (1 by default). If more than 1, there
are multiple crops for each clip at test time. If 1, there is a single
central crop. The crops are aggreagated in the batch dimension.
Returns: Returns:
Processed frames. Tensor of shape Processed frames. Tensor of shape
[batch * num_test_clips, num_frames, height, width, 3]. [batch * num_test_clips * num_test_crops, num_frames, height, width, 3].
""" """
if num_test_clips > 1 and not is_training: num_views = num_test_clips * num_test_crops
# In this case, multiple clips are merged together in batch dimenstion which if num_views > 1 and not is_training:
# will be B * num_test_clips. # In this case, multiple views are merged together in batch dimenstion which
image = tf.reshape(image, (-1, num_frames) + image.shape[2:]) # will be batch * num_views.
image = tf.reshape(image, [-1, num_frames] + image.shape[2:].as_list())
return image return image
...@@ -207,12 +224,17 @@ class Parser(parser.Parser): ...@@ -207,12 +224,17 @@ class Parser(parser.Parser):
self._num_test_clips = input_params.num_test_clips self._num_test_clips = input_params.num_test_clips
self._min_resize = input_params.min_image_size self._min_resize = input_params.min_image_size
self._crop_size = input_params.feature_shape[1] self._crop_size = input_params.feature_shape[1]
self._num_crops = input_params.num_test_crops
self._one_hot_label = input_params.one_hot self._one_hot_label = input_params.one_hot
self._num_classes = input_params.num_classes self._num_classes = input_params.num_classes
self._image_key = image_key self._image_key = image_key
self._label_key = label_key self._label_key = label_key
self._dtype = tf.dtypes.as_dtype(input_params.dtype) self._dtype = tf.dtypes.as_dtype(input_params.dtype)
self._output_audio = input_params.output_audio self._output_audio = input_params.output_audio
self._min_aspect_ratio = input_params.aug_min_aspect_ratio
self._max_aspect_ratio = input_params.aug_max_aspect_ratio
self._min_area_ratio = input_params.aug_min_area_ratio
self._max_area_ratio = input_params.aug_max_area_ratio
if self._output_audio: if self._output_audio:
self._audio_feature = input_params.audio_feature self._audio_feature = input_params.audio_feature
self._audio_shape = input_params.audio_feature_shape self._audio_shape = input_params.audio_feature_shape
...@@ -230,7 +252,11 @@ class Parser(parser.Parser): ...@@ -230,7 +252,11 @@ class Parser(parser.Parser):
stride=self._stride, stride=self._stride,
num_test_clips=self._num_test_clips, num_test_clips=self._num_test_clips,
min_resize=self._min_resize, min_resize=self._min_resize,
crop_size=self._crop_size) crop_size=self._crop_size,
min_aspect_ratio=self._min_aspect_ratio,
max_aspect_ratio=self._max_aspect_ratio,
min_area_ratio=self._min_area_ratio,
max_area_ratio=self._max_area_ratio)
image = tf.cast(image, dtype=self._dtype) image = tf.cast(image, dtype=self._dtype)
features = {'image': image} features = {'image': image}
...@@ -260,7 +286,8 @@ class Parser(parser.Parser): ...@@ -260,7 +286,8 @@ class Parser(parser.Parser):
stride=self._stride, stride=self._stride,
num_test_clips=self._num_test_clips, num_test_clips=self._num_test_clips,
min_resize=self._min_resize, min_resize=self._min_resize,
crop_size=self._crop_size) crop_size=self._crop_size,
num_crops=self._num_crops)
image = tf.cast(image, dtype=self._dtype) image = tf.cast(image, dtype=self._dtype)
features = {'image': image} features = {'image': image}
...@@ -286,6 +313,7 @@ class PostBatchProcessor(object): ...@@ -286,6 +313,7 @@ class PostBatchProcessor(object):
self._num_frames = input_params.feature_shape[0] self._num_frames = input_params.feature_shape[0]
self._num_test_clips = input_params.num_test_clips self._num_test_clips = input_params.num_test_clips
self._num_test_crops = input_params.num_test_crops
def __call__(self, features: Dict[str, tf.Tensor], def __call__(self, features: Dict[str, tf.Tensor],
label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]: label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
...@@ -296,6 +324,7 @@ class PostBatchProcessor(object): ...@@ -296,6 +324,7 @@ class PostBatchProcessor(object):
image=features[key], image=features[key],
is_training=self._is_training, is_training=self._is_training,
num_frames=self._num_frames, num_frames=self._num_frames,
num_test_clips=self._num_test_clips) num_test_clips=self._num_test_clips,
num_test_crops=self._num_test_crops)
return features, label return features, label
...@@ -150,7 +150,6 @@ class SqueezeExcitation(tf.keras.layers.Layer): ...@@ -150,7 +150,6 @@ class SqueezeExcitation(tf.keras.layers.Layer):
'out_filters': self._out_filters, 'out_filters': self._out_filters,
'se_ratio': self._se_ratio, 'se_ratio': self._se_ratio,
'divisible_by': self._divisible_by, 'divisible_by': self._divisible_by,
'strides': self._strides,
'kernel_initializer': self._kernel_initializer, 'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer, 'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer, 'bias_regularizer': self._bias_regularizer,
......
...@@ -203,7 +203,8 @@ class RpnAnchorLabeler(AnchorLabeler): ...@@ -203,7 +203,8 @@ class RpnAnchorLabeler(AnchorLabeler):
unmatched_threshold=0.3, unmatched_threshold=0.3,
rpn_batch_size_per_im=256, rpn_batch_size_per_im=256,
rpn_fg_fraction=0.5): rpn_fg_fraction=0.5):
AnchorLabeler.__init__(self, match_threshold=0.7, unmatched_threshold=0.3) AnchorLabeler.__init__(self, match_threshold=match_threshold,
unmatched_threshold=unmatched_threshold)
self._rpn_batch_size_per_im = rpn_batch_size_per_im self._rpn_batch_size_per_im = rpn_batch_size_per_im
self._rpn_fg_fraction = rpn_fg_fraction self._rpn_fg_fraction = rpn_fg_fraction
......
...@@ -151,19 +151,19 @@ def crop_image(frames: tf.Tensor, ...@@ -151,19 +151,19 @@ def crop_image(frames: tf.Tensor,
target_height: int, target_height: int,
target_width: int, target_width: int,
random: bool = False, random: bool = False,
num_views: int = 1, num_crops: int = 1,
seed: Optional[int] = None) -> tf.Tensor: seed: Optional[int] = None) -> tf.Tensor:
"""Crops the image sequence of images. """Crops the image sequence of images.
If requested size is bigger than image size, image is padded with 0. If not If requested size is bigger than image size, image is padded with 0. If not
random cropping, a central crop is performed. random cropping, a central crop is performed if num_crops is 1.
Args: Args:
frames: A Tensor of dimension [timesteps, in_height, in_width, channels]. frames: A Tensor of dimension [timesteps, in_height, in_width, channels].
target_height: Target cropped image height. target_height: Target cropped image height.
target_width: Target cropped image width. target_width: Target cropped image width.
random: A boolean indicating if crop should be randomized. random: A boolean indicating if crop should be randomized.
num_views: Number of views to crop in evaluation. num_crops: Number of crops (support 1 for central crop and 3 for 3-crop).
seed: A deterministic seed to use when random cropping. seed: A deterministic seed to use when random cropping.
Returns: Returns:
...@@ -181,13 +181,13 @@ def crop_image(frames: tf.Tensor, ...@@ -181,13 +181,13 @@ def crop_image(frames: tf.Tensor,
frames = tf.image.random_crop( frames = tf.image.random_crop(
frames, (seq_len, target_height, target_width, channels), seed) frames, (seq_len, target_height, target_width, channels), seed)
else: else:
if num_views == 1: if num_crops == 1:
# Central crop or pad. # Central crop or pad.
frames = tf.image.resize_with_crop_or_pad(frames, target_height, frames = tf.image.resize_with_crop_or_pad(frames, target_height,
target_width) target_width)
elif num_views == 3: elif num_crops == 3:
# Three-view evaluation. # Three-crop evaluation.
shape = tf.shape(frames) shape = tf.shape(frames)
static_shape = frames.shape.as_list() static_shape = frames.shape.as_list()
seq_len = shape[0] if static_shape[0] is None else static_shape[0] seq_len = shape[0] if static_shape[0] is None else static_shape[0]
...@@ -224,7 +224,7 @@ def crop_image(frames: tf.Tensor, ...@@ -224,7 +224,7 @@ def crop_image(frames: tf.Tensor,
else: else:
raise NotImplementedError( raise NotImplementedError(
f"Only 1 crop and 3 crop are supported. Found {num_views!r}.") f"Only 1-crop and 3-crop are supported. Found {num_crops!r}.")
return frames return frames
......
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configs package definition."""
from official.vision.beta.projects.video_ssl.configs import video_ssl
# Lint as: python3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Video classification configuration definition."""
import dataclasses
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.vision.beta.configs import video_classification
Losses = video_classification.Losses
VideoClassificationModel = video_classification.VideoClassificationModel
VideoClassificationTask = video_classification.VideoClassificationTask
@dataclasses.dataclass
class DataConfig(video_classification.DataConfig):
"""The base configuration for building datasets."""
is_ssl: bool = False
@exp_factory.register_config_factory('video_ssl_pretrain_kinetics400')
def video_ssl_pretrain_kinetics400() -> cfg.ExperimentConfig:
"""Pretrain SSL Video classification on Kinectics 400 with resnet."""
exp = video_classification.video_classification_kinetics400()
exp.task.train_data = DataConfig(is_ssl=True, **exp.task.train_data.as_dict())
exp.task.train_data.feature_shape = (16, 224, 224, 3)
exp.task.train_data.temporal_stride = 2
return exp
@exp_factory.register_config_factory('video_ssl_linear_eval_kinetics400')
def video_ssl_linear_eval_kinetics400() -> cfg.ExperimentConfig:
"""Pretrain SSL Video classification on Kinectics 400 with resnet."""
exp = video_classification.video_classification_kinetics400()
exp.task.train_data = DataConfig(is_ssl=False,
**exp.task.train_data.as_dict())
exp.task.train_data.feature_shape = (32, 224, 224, 3)
exp.task.train_data.temporal_stride = 2
exp.task.validation_data.feature_shape = (32, 256, 256, 3)
exp.task.validation_data.temporal_stride = 2
exp.task.validation_data = DataConfig(is_ssl=False,
**exp.task.validation_data.as_dict())
exp.task.validation_data.min_image_size = 256
exp.task.validation_data.num_test_clips = 10
return exp
@exp_factory.register_config_factory('video_ssl_pretrain_kinetics600')
def video_ssl_pretrain_kinetics600() -> cfg.ExperimentConfig:
"""Pretrain SSL Video classification on Kinectics 400 with resnet."""
exp = video_classification.video_classification_kinetics600()
exp.task.train_data = DataConfig(is_ssl=True, **exp.task.train_data.as_dict())
exp.task.train_data.feature_shape = (16, 224, 224, 3)
exp.task.train_data.temporal_stride = 2
return exp
@exp_factory.register_config_factory('video_ssl_linear_eval_kinetics600')
def video_ssl_linear_eval_kinetics600() -> cfg.ExperimentConfig:
"""Pretrain SSL Video classification on Kinectics 400 with resnet."""
exp = video_classification.video_classification_kinetics600()
exp.task.train_data = DataConfig(is_ssl=False,
**exp.task.train_data.as_dict())
exp.task.train_data.feature_shape = (32, 224, 224, 3)
exp.task.train_data.temporal_stride = 2
exp.task.validation_data = DataConfig(is_ssl=False,
**exp.task.validation_data.as_dict())
exp.task.validation_data.feature_shape = (32, 256, 256, 3)
exp.task.validation_data.temporal_stride = 2
exp.task.validation_data.min_image_size = 256
exp.task.validation_data.num_test_clips = 10
return exp
# Lint as: python3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=unused-import
from absl.testing import parameterized
import tensorflow as tf
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.vision import beta
from official.vision.beta.projects.video_ssl.configs import video_ssl as exp_cfg
class VideoClassificationConfigTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.parameters(('video_ssl_pretrain_kinetics400',),
('video_ssl_linear_eval_kinetics400',),
('video_ssl_pretrain_kinetics600',),
('video_ssl_linear_eval_kinetics600',))
def test_video_classification_configs(self, config_name):
config = exp_factory.get_exp_config(config_name)
self.assertIsInstance(config, cfg.ExperimentConfig)
self.assertIsInstance(config.task, exp_cfg.VideoClassificationTask)
self.assertIsInstance(config.task.model, exp_cfg.VideoClassificationModel)
self.assertIsInstance(config.task.train_data, exp_cfg.DataConfig)
config.task.train_data.is_training = None
with self.assertRaises(KeyError):
config.validate()
if __name__ == '__main__':
tf.test.main()
# Lint as: python3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Parser for video and label datasets."""
from typing import Dict, Optional, Tuple
from absl import logging
import tensorflow as tf
from official.vision.beta.dataloaders import video_input
from official.vision.beta.ops import preprocess_ops_3d
from official.vision.beta.projects.video_ssl.configs import video_ssl as exp_cfg
from official.vision.beta.projects.video_ssl.ops import video_ssl_preprocess_ops
IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'
Decoder = video_input.Decoder
def _process_image(image: tf.Tensor,
is_training: bool = True,
is_ssl: bool = False,
num_frames: int = 32,
stride: int = 1,
num_test_clips: int = 1,
min_resize: int = 224,
crop_size: int = 200,
zero_centering_image: bool = False,
seed: Optional[int] = None) -> tf.Tensor:
"""Processes a serialized image tensor.
Args:
image: Input Tensor of shape [timesteps] and type tf.string of serialized
frames.
is_training: Whether or not in training mode. If True, random sample, crop
and left right flip is used.
is_ssl: Whether or not in self-supervised pre-training mode.
num_frames: Number of frames per subclip.
stride: Temporal stride to sample frames.
num_test_clips: Number of test clips (1 by default). If more than 1, this
will sample multiple linearly spaced clips within each video at test time.
If 1, then a single clip in the middle of the video is sampled. The clips
are aggreagated in the batch dimension.
min_resize: Frames are resized so that min(height, width) is min_resize.
crop_size: Final size of the frame after cropping the resized frames. Both
height and width are the same.
zero_centering_image: If True, frames are normalized to values in [-1, 1].
If False, values in [0, 1].
seed: A deterministic seed to use when sampling.
Returns:
Processed frames. Tensor of shape
[num_frames * num_test_clips, crop_size, crop_size, 3].
"""
# Validate parameters.
if is_training and num_test_clips != 1:
logging.warning(
'`num_test_clips` %d is ignored since `is_training` is `True`.',
num_test_clips)
# Temporal sampler.
if is_training:
# Sampler for training.
if is_ssl:
# Sample two clips from linear decreasing distribution.
image = video_ssl_preprocess_ops.sample_ssl_sequence(
image, num_frames, True, stride)
else:
# Sample random clip.
image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride)
else:
# Sampler for evaluation.
if num_test_clips > 1:
# Sample linspace clips.
image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
num_frames, stride)
else:
# Sample middle clip.
image = preprocess_ops_3d.sample_sequence(image, num_frames, False,
stride)
# Decode JPEG string to tf.uint8.
image = preprocess_ops_3d.decode_jpeg(image, 3)
if is_training:
# Standard image data augmentation: random resized crop and random flip.
if is_ssl:
image_1, image_2 = tf.split(image, num_or_size_splits=2, axis=0)
image_1 = preprocess_ops_3d.random_crop_resize(
image_1, crop_size, crop_size, num_frames, 3, (0.5, 2), (0.3, 1))
image_1 = preprocess_ops_3d.random_flip_left_right(image_1, seed)
image_2 = preprocess_ops_3d.random_crop_resize(
image_2, crop_size, crop_size, num_frames, 3, (0.5, 2), (0.3, 1))
image_2 = preprocess_ops_3d.random_flip_left_right(image_2, seed)
else:
image = preprocess_ops_3d.random_crop_resize(
image, crop_size, crop_size, num_frames, 3, (0.5, 2), (0.3, 1))
image = preprocess_ops_3d.random_flip_left_right(image, seed)
else:
# Resize images (resize happens only if necessary to save compute).
image = preprocess_ops_3d.resize_smallest(image, min_resize)
# Three-crop of the frames.
image = preprocess_ops_3d.crop_image(image, min_resize, min_resize, False,
3)
# Cast the frames in float32, normalizing according to zero_centering_image.
if is_training and is_ssl:
image_1 = preprocess_ops_3d.normalize_image(image_1, zero_centering_image)
image_2 = preprocess_ops_3d.normalize_image(image_2, zero_centering_image)
else:
image = preprocess_ops_3d.normalize_image(image, zero_centering_image)
# Self-supervised pre-training augmentations.
if is_training and is_ssl:
# Temporally consistent color jittering.
image_1 = video_ssl_preprocess_ops.random_color_jitter_3d(image_1)
image_2 = video_ssl_preprocess_ops.random_color_jitter_3d(image_2)
# Temporally consistent gaussian blurring.
image_1 = video_ssl_preprocess_ops.random_blur_3d(image_1, num_frames,
crop_size, crop_size)
image_2 = video_ssl_preprocess_ops.random_blur_3d(image_2, num_frames,
crop_size, crop_size)
image = tf.concat([image_1, image_2], axis=0)
return image
def _postprocess_image(image: tf.Tensor,
is_training: bool = True,
is_ssl: bool = False,
num_frames: int = 32,
num_test_clips: int = 1) -> tf.Tensor:
"""Processes a batched Tensor of frames.
The same parameters used in process should be used here.
Args:
image: Input Tensor of shape [batch, timesteps, height, width, 3].
is_training: Whether or not in training mode. If True, random sample, crop
and left right flip is used.
is_ssl: Whether or not in self-supervised pre-training mode.
num_frames: Number of frames per subclip.
num_test_clips: Number of test clips (1 by default). If more than 1, this
will sample multiple linearly spaced clips within each video at test time.
If 1, then a single clip in the middle of the video is sampled. The clips
are aggreagated in the batch dimension.
Returns:
Processed frames. Tensor of shape
[batch * num_test_clips, num_frames, height, width, 3].
"""
if is_ssl and is_training:
# In this case, two clips of self-supervised pre-training are merged
# together in batch dimenstion which will be 2 * batch.
image = tf.concat(tf.split(image, num_or_size_splits=2, axis=1), axis=0)
if num_test_clips > 1 and not is_training:
# In this case, multiple clips are merged together in batch dimenstion which
# will be B * num_test_clips.
image = tf.reshape(image, (-1, num_frames) + image.shape[2:])
return image
def _process_label(label: tf.Tensor,
one_hot_label: bool = True,
num_classes: Optional[int] = None) -> tf.Tensor:
"""Processes label Tensor."""
# Validate parameters.
if one_hot_label and not num_classes:
raise ValueError(
'`num_classes` should be given when requesting one hot label.')
# Cast to tf.int32.
label = tf.cast(label, dtype=tf.int32)
if one_hot_label:
# Replace label index by one hot representation.
label = tf.one_hot(label, num_classes)
if len(label.shape.as_list()) > 1:
label = tf.reduce_sum(label, axis=0)
if num_classes == 1:
# The trick for single label.
label = 1 - label
return label
class Parser(video_input.Parser):
"""Parses a video and label dataset."""
def __init__(self,
input_params: exp_cfg.DataConfig,
image_key: str = IMAGE_KEY,
label_key: str = LABEL_KEY):
super(Parser, self).__init__(input_params, image_key, label_key)
self._is_ssl = input_params.is_ssl
def _parse_train_data(
self, decoded_tensors: Dict[str, tf.Tensor]
) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
"""Parses data for training."""
# Process image and label.
image = decoded_tensors[self._image_key]
image = _process_image(
image=image,
is_training=True,
is_ssl=self._is_ssl,
num_frames=self._num_frames,
stride=self._stride,
num_test_clips=self._num_test_clips,
min_resize=self._min_resize,
crop_size=self._crop_size)
image = tf.cast(image, dtype=self._dtype)
features = {'image': image}
label = decoded_tensors[self._label_key]
label = _process_label(label, self._one_hot_label, self._num_classes)
return features, label
def _parse_eval_data(
self, decoded_tensors: Dict[str, tf.Tensor]
) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
"""Parses data for evaluation."""
image = decoded_tensors[self._image_key]
image = _process_image(
image=image,
is_training=False,
num_frames=self._num_frames,
stride=self._stride,
num_test_clips=self._num_test_clips,
min_resize=self._min_resize,
crop_size=self._crop_size)
image = tf.cast(image, dtype=self._dtype)
features = {'image': image}
label = decoded_tensors[self._label_key]
label = _process_label(label, self._one_hot_label, self._num_classes)
if self._output_audio:
audio = decoded_tensors[self._audio_feature]
audio = tf.cast(audio, dtype=self._dtype)
audio = preprocess_ops_3d.sample_sequence(
audio, 20, random=False, stride=1)
audio = tf.ensure_shape(audio, [20, 2048])
features['audio'] = audio
return features, label
def parse_fn(self, is_training):
"""Returns a parse fn that reads and parses raw tensors from the decoder.
Args:
is_training: a `bool` to indicate whether it is in training mode.
Returns:
parse: a `callable` that takes the serialized examle and generate the
images, labels tuple where labels is a dict of Tensors that contains
labels.
"""
def parse(decoded_tensors):
"""Parses the serialized example data."""
if is_training:
return self._parse_train_data(decoded_tensors)
else:
return self._parse_eval_data(decoded_tensors)
return parse
class PostBatchProcessor(object):
"""Processes a video and label dataset which is batched."""
def __init__(self, input_params: exp_cfg.DataConfig):
self._is_training = input_params.is_training
self._is_ssl = input_params.is_ssl
self._num_frames = input_params.feature_shape[0]
self._num_test_clips = input_params.num_test_clips
def __call__(self, features: Dict[str, tf.Tensor],
label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
"""Parses a single tf.Example into image and label tensors."""
for key in ['image', 'audio']:
if key in features:
features[key] = _postprocess_image(
image=features[key],
is_training=self._is_training,
is_ssl=self._is_ssl,
num_frames=self._num_frames,
num_test_clips=self._num_test_clips)
return features, label
# Lint as: python3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import io
# Import libraries
import numpy as np
from PIL import Image
import tensorflow as tf
from official.vision.beta.projects.video_ssl.configs import video_ssl as exp_cfg
from official.vision.beta.projects.video_ssl.dataloaders import video_ssl_input
AUDIO_KEY = 'features/audio'
def fake_seq_example():
# Create fake data.
random_image = np.random.randint(0, 256, size=(263, 320, 3), dtype=np.uint8)
random_image = Image.fromarray(random_image)
label = 42
with io.BytesIO() as buffer:
random_image.save(buffer, format='JPEG')
raw_image_bytes = buffer.getvalue()
seq_example = tf.train.SequenceExample()
seq_example.feature_lists.feature_list.get_or_create(
video_ssl_input.IMAGE_KEY).feature.add().bytes_list.value[:] = [
raw_image_bytes
]
seq_example.feature_lists.feature_list.get_or_create(
video_ssl_input.IMAGE_KEY).feature.add().bytes_list.value[:] = [
raw_image_bytes
]
seq_example.context.feature[video_ssl_input.LABEL_KEY].int64_list.value[:] = [
label
]
random_audio = np.random.normal(size=(10, 256)).tolist()
for s in random_audio:
seq_example.feature_lists.feature_list.get_or_create(
AUDIO_KEY).feature.add().float_list.value[:] = s
return seq_example, label
class VideoAndLabelParserTest(tf.test.TestCase):
def test_video_ssl_input_pretrain(self):
params = exp_cfg.video_ssl_pretrain_kinetics600().task.train_data
decoder = video_ssl_input.Decoder()
parser = video_ssl_input.Parser(params).parse_fn(params.is_training)
seq_example, _ = fake_seq_example()
input_tensor = tf.constant(seq_example.SerializeToString())
decoded_tensors = decoder.decode(input_tensor)
output_tensor = parser(decoded_tensors)
image_features, _ = output_tensor
image = image_features['image']
self.assertAllEqual(image.shape, (32, 224, 224, 3))
def test_video_ssl_input_linear_train(self):
params = exp_cfg.video_ssl_linear_eval_kinetics600().task.train_data
decoder = video_ssl_input.Decoder()
parser = video_ssl_input.Parser(params).parse_fn(params.is_training)
seq_example, label = fake_seq_example()
input_tensor = tf.constant(seq_example.SerializeToString())
decoded_tensors = decoder.decode(input_tensor)
output_tensor = parser(decoded_tensors)
image_features, label = output_tensor
image = image_features['image']
self.assertAllEqual(image.shape, (32, 224, 224, 3))
self.assertAllEqual(label.shape, (600,))
def test_video_ssl_input_linear_eval(self):
params = exp_cfg.video_ssl_linear_eval_kinetics600().task.validation_data
print('!!!', params)
decoder = video_ssl_input.Decoder()
parser = video_ssl_input.Parser(params).parse_fn(params.is_training)
seq_example, label = fake_seq_example()
input_tensor = tf.constant(seq_example.SerializeToString())
decoded_tensors = decoder.decode(input_tensor)
output_tensor = parser(decoded_tensors)
image_features, label = output_tensor
image = image_features['image']
self.assertAllEqual(image.shape, (960, 256, 256, 3))
self.assertAllEqual(label.shape, (600,))
if __name__ == '__main__':
tf.test.main()
# Lint as: python3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils for customed ops for video ssl."""
import functools
from typing import Optional
import tensorflow as tf
def random_apply(func, p, x):
"""Randomly apply function func to x with probability p."""
return tf.cond(
tf.less(tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32),
tf.cast(p, tf.float32)),
lambda: func(x),
lambda: x)
def random_brightness(image, max_delta):
"""Distort brightness of image (SimCLRv2 style)."""
factor = tf.random.uniform(
[], tf.maximum(1.0 - max_delta, 0), 1.0 + max_delta)
image = image * factor
return image
def to_grayscale(image, keep_channels=True):
"""Turn the input image to gray scale.
Args:
image: The input image tensor.
keep_channels: Whether maintaining the channel number for the image.
If true, the transformed image will repeat three times in channel.
If false, the transformed image will only have one channel.
Returns:
The distorted image tensor.
"""
image = tf.image.rgb_to_grayscale(image)
if keep_channels:
image = tf.tile(image, [1, 1, 3])
return image
def color_jitter(image, strength, random_order=True):
"""Distorts the color of the image (SimCLRv2 style).
Args:
image: The input image tensor.
strength: The floating number for the strength of the color augmentation.
random_order: A bool, specifying whether to randomize the jittering order.
Returns:
The distorted image tensor.
"""
brightness = 0.8 * strength
contrast = 0.8 * strength
saturation = 0.8 * strength
hue = 0.2 * strength
if random_order:
return color_jitter_rand(
image, brightness, contrast, saturation, hue)
else:
return color_jitter_nonrand(
image, brightness, contrast, saturation, hue)
def color_jitter_nonrand(image,
brightness=0,
contrast=0,
saturation=0,
hue=0):
"""Distorts the color of the image (jittering order is fixed, SimCLRv2 style).
Args:
image: The input image tensor.
brightness: A float, specifying the brightness for color jitter.
contrast: A float, specifying the contrast for color jitter.
saturation: A float, specifying the saturation for color jitter.
hue: A float, specifying the hue for color jitter.
Returns:
The distorted image tensor.
"""
with tf.name_scope('distort_color'):
def apply_transform(i, x, brightness, contrast, saturation, hue):
"""Apply the i-th transformation."""
if brightness != 0 and i == 0:
x = random_brightness(x, max_delta=brightness)
elif contrast != 0 and i == 1:
x = tf.image.random_contrast(
x, lower=1-contrast, upper=1+contrast)
elif saturation != 0 and i == 2:
x = tf.image.random_saturation(
x, lower=1-saturation, upper=1+saturation)
elif hue != 0:
x = tf.image.random_hue(x, max_delta=hue)
return x
for i in range(4):
image = apply_transform(i, image, brightness, contrast, saturation, hue)
image = tf.clip_by_value(image, 0., 1.)
return image
def color_jitter_rand(image,
brightness=0,
contrast=0,
saturation=0,
hue=0):
"""Distorts the color of the image (jittering order is random, SimCLRv2 style).
Args:
image: The input image tensor.
brightness: A float, specifying the brightness for color jitter.
contrast: A float, specifying the contrast for color jitter.
saturation: A float, specifying the saturation for color jitter.
hue: A float, specifying the hue for color jitter.
Returns:
The distorted image tensor.
"""
with tf.name_scope('distort_color'):
def apply_transform(i, x):
"""Apply the i-th transformation."""
def brightness_transform():
if brightness == 0:
return x
else:
return random_brightness(x, max_delta=brightness)
def contrast_transform():
if contrast == 0:
return x
else:
return tf.image.random_contrast(x, lower=1-contrast, upper=1+contrast)
def saturation_transform():
if saturation == 0:
return x
else:
return tf.image.random_saturation(
x, lower=1-saturation, upper=1+saturation)
def hue_transform():
if hue == 0:
return x
else:
return tf.image.random_hue(x, max_delta=hue)
# pylint:disable=g-long-lambda
x = tf.cond(
tf.less(i, 2), lambda: tf.cond(
tf.less(i, 1), brightness_transform, contrast_transform),
lambda: tf.cond(tf.less(i, 3), saturation_transform, hue_transform))
# pylint:disable=g-long-lambda
return x
perm = tf.random.shuffle(tf.range(4))
for i in range(4):
image = apply_transform(perm[i], image)
image = tf.clip_by_value(image, 0., 1.)
return image
def random_color_jitter_3d(frames):
"""Applies temporally consistent color jittering to one video clip.
Args:
frames: `Tensor` of shape [num_frames, height, width, channels].
Returns:
A Tensor of shape [num_frames, height, width, channels] being color jittered
with the same operation.
"""
def random_color_jitter(image, p=1.0):
def _transform(image):
color_jitter_t = functools.partial(
color_jitter, strength=1.0)
image = random_apply(color_jitter_t, p=0.8, x=image)
return random_apply(to_grayscale, p=0.2, x=image)
return random_apply(_transform, p=p, x=image)
num_frames, width, height, channels = tf.shape(frames)
big_image = tf.reshape(frames, [num_frames*width, height, channels])
big_image = random_color_jitter(big_image)
return tf.reshape(big_image, [num_frames, width, height, channels])
def gaussian_blur(image, kernel_size, sigma, padding='SAME'):
"""Blurs the given image with separable convolution.
Args:
image: Tensor of shape [height, width, channels] and dtype float to blur.
kernel_size: Integer Tensor for the size of the blur kernel. This is should
be an odd number. If it is an even number, the actual kernel size will be
size + 1.
sigma: Sigma value for gaussian operator.
padding: Padding to use for the convolution. Typically 'SAME' or 'VALID'.
Returns:
A Tensor representing the blurred image.
"""
radius = tf.cast(kernel_size / 2, dtype=tf.int32)
kernel_size = radius * 2 + 1
x = tf.cast(tf.range(-radius, radius + 1), dtype=tf.float32)
blur_filter = tf.exp(
-tf.pow(x, 2.0) / (2.0 * tf.pow(tf.cast(sigma, dtype=tf.float32), 2.0)))
blur_filter /= tf.reduce_sum(blur_filter)
# One vertical and one horizontal filter.
blur_v = tf.reshape(blur_filter, [kernel_size, 1, 1, 1])
blur_h = tf.reshape(blur_filter, [1, kernel_size, 1, 1])
num_channels = tf.shape(image)[-1]
blur_h = tf.tile(blur_h, [1, 1, num_channels, 1])
blur_v = tf.tile(blur_v, [1, 1, num_channels, 1])
expand_batch_dim = image.shape.ndims == 3
if expand_batch_dim:
# Tensorflow requires batched input to convolutions, which we can fake with
# an extra dimension.
image = tf.expand_dims(image, axis=0)
blurred = tf.nn.depthwise_conv2d(
image, blur_h, strides=[1, 1, 1, 1], padding=padding)
blurred = tf.nn.depthwise_conv2d(
blurred, blur_v, strides=[1, 1, 1, 1], padding=padding)
if expand_batch_dim:
blurred = tf.squeeze(blurred, axis=0)
return blurred
def random_blur(image, height, width, p=1.0):
"""Randomly blur an image.
Args:
image: `Tensor` representing an image of arbitrary size.
height: Height of output image.
width: Width of output image.
p: probability of applying this transformation.
Returns:
A preprocessed image `Tensor`.
"""
del width
def _transform(image):
sigma = tf.random.uniform([], 0.1, 2.0, dtype=tf.float32)
return gaussian_blur(
image, kernel_size=height//10, sigma=sigma, padding='SAME')
return random_apply(_transform, p=p, x=image)
def random_blur_3d(frames, height, width, blur_probability=0.5):
"""Apply efficient batch data transformations.
Args:
frames: `Tensor` of shape [timesteps, height, width, 3].
height: the height of image.
width: the width of image.
blur_probability: the probaility to apply the blur operator.
Returns:
Preprocessed feature list.
"""
def generate_selector(p, bsz):
shape = [bsz, 1, 1, 1]
selector = tf.cast(
tf.less(tf.random.uniform(shape, 0, 1, dtype=tf.float32), p),
tf.float32)
return selector
frames_new = random_blur(frames, height, width, p=1.)
selector = generate_selector(blur_probability, 1)
frames = frames_new * selector + frames * (1 - selector)
frames = tf.clip_by_value(frames, 0., 1.)
return frames
def _sample_or_pad_sequence_indices(sequence: tf.Tensor,
num_steps: int,
stride: int,
offset: tf.Tensor) -> tf.Tensor:
"""Returns indices to take for sampling or padding sequences to fixed size."""
sequence_length = tf.shape(sequence)[0]
sel_idx = tf.range(sequence_length)
# Repeats sequence until num_steps are available in total.
max_length = num_steps * stride + offset
num_repeats = tf.math.floordiv(
max_length + sequence_length - 1, sequence_length)
sel_idx = tf.tile(sel_idx, [num_repeats])
steps = tf.range(offset, offset + num_steps * stride, stride)
return tf.gather(sel_idx, steps)
def sample_ssl_sequence(sequence: tf.Tensor,
num_steps: int,
random: bool,
stride: int = 1,
num_windows: Optional[int] = 2) -> tf.Tensor:
"""Samples two segments of size num_steps randomly from a given sequence.
Currently it only supports images, and specically designed for video self-
supervised learning.
Args:
sequence: Any tensor where the first dimension is timesteps.
num_steps: Number of steps (e.g. frames) to take.
random: A boolean indicating whether to random sample the single window. If
True, the offset is randomized. Only True is supported.
stride: Distance to sample between timesteps.
num_windows: Number of sequence sampled.
Returns:
A single Tensor with first dimension num_steps with the sampled segment.
"""
sequence_length = tf.shape(sequence)[0]
sequence_length = tf.cast(sequence_length, tf.float32)
if random:
max_offset = tf.cond(
tf.greater(sequence_length, (num_steps - 1) * stride),
lambda: sequence_length - (num_steps - 1) * stride,
lambda: sequence_length)
max_offset = tf.cast(max_offset, dtype=tf.float32)
def cdf(k, power=1.0):
"""Cumulative distribution function for x^power."""
p = -tf.math.pow(k, power + 1) / (
power * tf.math.pow(max_offset, power + 1)) + k * (power + 1) / (
power * max_offset)
return p
u = tf.random.uniform(())
k_low = tf.constant(0, dtype=tf.float32)
k_up = max_offset
k = tf.math.floordiv(max_offset, 2.0)
c = lambda k_low, k_up, k: tf.greater(tf.math.abs(k_up - k_low), 1.0)
# pylint:disable=g-long-lambda
b = lambda k_low, k_up, k: tf.cond(
tf.greater(cdf(k), u),
lambda: [k_low, k, tf.math.floordiv(k + k_low, 2.0)],
lambda: [k, k_up, tf.math.floordiv(k_up + k, 2.0)])
_, _, k = tf.while_loop(c, b, [k_low, k_up, k])
delta = tf.cast(k, tf.int32)
max_offset = tf.cast(max_offset, tf.int32)
sequence_length = tf.cast(sequence_length, tf.int32)
choice_1 = tf.cond(
tf.equal(max_offset, sequence_length),
lambda: tf.random.uniform((),
maxval=tf.cast(max_offset, dtype=tf.int32),
dtype=tf.int32),
lambda: tf.random.uniform((),
maxval=tf.cast(max_offset - delta,
dtype=tf.int32),
dtype=tf.int32))
choice_2 = tf.cond(
tf.equal(max_offset, sequence_length),
lambda: tf.random.uniform((),
maxval=tf.cast(max_offset, dtype=tf.int32),
dtype=tf.int32),
lambda: choice_1 + delta)
# pylint:disable=g-long-lambda
shuffle_choice = tf.random.shuffle((choice_1, choice_2))
offset_1 = shuffle_choice[0]
offset_2 = shuffle_choice[1]
else:
raise NotImplementedError
indices_1 = _sample_or_pad_sequence_indices(
sequence=sequence,
num_steps=num_steps,
stride=stride,
offset=offset_1)
indices_2 = _sample_or_pad_sequence_indices(
sequence=sequence,
num_steps=num_steps,
stride=stride,
offset=offset_2)
indices = tf.concat([indices_1, indices_2], axis=0)
indices.set_shape((num_windows * num_steps,))
output = tf.gather(sequence, indices)
return output
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
from official.vision.beta.ops import preprocess_ops_3d
from official.vision.beta.projects.video_ssl.ops import video_ssl_preprocess_ops
class VideoSslPreprocessOpsTest(tf.test.TestCase):
def setUp(self):
super().setUp()
self._raw_frames = tf.random.uniform((250, 256, 256, 3), minval=0,
maxval=255, dtype=tf.dtypes.int32)
self._sampled_frames = self._raw_frames[:16]
self._frames = preprocess_ops_3d.normalize_image(
self._sampled_frames, False, tf.float32)
def test_sample_ssl_sequence(self):
sampled_seq = video_ssl_preprocess_ops.sample_ssl_sequence(
self._raw_frames, 16, True, 2)
self.assertAllEqual(sampled_seq.shape, (32, 256, 256, 3))
def test_random_color_jitter_3d(self):
jittered_clip = video_ssl_preprocess_ops.random_color_jitter_3d(
self._frames)
self.assertAllEqual(jittered_clip.shape, (16, 256, 256, 3))
def test_random_blur_3d(self):
blurred_clip = video_ssl_preprocess_ops.random_blur_3d(
self._frames, 256, 256)
self.assertAllEqual(blurred_clip.shape, (16, 256, 256, 3))
if __name__ == '__main__':
tf.test.main()
...@@ -67,6 +67,8 @@ def main(_): ...@@ -67,6 +67,8 @@ def main(_):
params=params, params=params,
model_dir=model_dir) model_dir=model_dir)
train_utils.save_gin_config(FLAGS.mode, model_dir)
if __name__ == '__main__': if __name__ == '__main__':
tfm_flags.define_flags() tfm_flags.define_flags()
app.run(main) app.run(main)
...@@ -17,7 +17,7 @@ r"""Vision models export utility function for serving/inference.""" ...@@ -17,7 +17,7 @@ r"""Vision models export utility function for serving/inference."""
import os import os
import tensorflow.compat.v2 as tf import tensorflow as tf
from official.core import train_utils from official.core import train_utils
from official.vision.beta import configs from official.vision.beta import configs
......
...@@ -23,6 +23,7 @@ from official.core import task_factory ...@@ -23,6 +23,7 @@ from official.core import task_factory
from official.vision.beta.configs import maskrcnn as exp_cfg from official.vision.beta.configs import maskrcnn as exp_cfg
from official.vision.beta.dataloaders import maskrcnn_input from official.vision.beta.dataloaders import maskrcnn_input
from official.vision.beta.dataloaders import tf_example_decoder from official.vision.beta.dataloaders import tf_example_decoder
from official.vision.beta.dataloaders import dataset_fn
from official.vision.beta.dataloaders import tf_example_label_map_decoder from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator from official.vision.beta.evaluation import coco_evaluator
from official.vision.beta.losses import maskrcnn_losses from official.vision.beta.losses import maskrcnn_losses
...@@ -110,12 +111,14 @@ class MaskRCNNTask(base_task.Task): ...@@ -110,12 +111,14 @@ class MaskRCNNTask(base_task.Task):
if params.decoder.type == 'simple_decoder': if params.decoder.type == 'simple_decoder':
decoder = tf_example_decoder.TfExampleDecoder( decoder = tf_example_decoder.TfExampleDecoder(
include_mask=self._task_config.model.include_mask, include_mask=self._task_config.model.include_mask,
regenerate_source_id=decoder_cfg.regenerate_source_id) regenerate_source_id=decoder_cfg.regenerate_source_id,
mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
elif params.decoder.type == 'label_map_decoder': elif params.decoder.type == 'label_map_decoder':
decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap( decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
label_map=decoder_cfg.label_map, label_map=decoder_cfg.label_map,
include_mask=self._task_config.model.include_mask, include_mask=self._task_config.model.include_mask,
regenerate_source_id=decoder_cfg.regenerate_source_id) regenerate_source_id=decoder_cfg.regenerate_source_id,
mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
else: else:
raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type)) raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
...@@ -141,7 +144,7 @@ class MaskRCNNTask(base_task.Task): ...@@ -141,7 +144,7 @@ class MaskRCNNTask(base_task.Task):
reader = input_reader.InputReader( reader = input_reader.InputReader(
params, params,
dataset_fn=tf.data.TFRecordDataset, dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
decoder_fn=decoder.decode, decoder_fn=decoder.decode,
parser_fn=parser.parse_fn(params.is_training)) parser_fn=parser.parse_fn(params.is_training))
dataset = reader.read(input_context=input_context) dataset = reader.read(input_context=input_context)
......
...@@ -24,6 +24,7 @@ from official.vision import keras_cv ...@@ -24,6 +24,7 @@ from official.vision import keras_cv
from official.vision.beta.configs import retinanet as exp_cfg from official.vision.beta.configs import retinanet as exp_cfg
from official.vision.beta.dataloaders import retinanet_input from official.vision.beta.dataloaders import retinanet_input
from official.vision.beta.dataloaders import tf_example_decoder from official.vision.beta.dataloaders import tf_example_decoder
from official.vision.beta.dataloaders import dataset_fn
from official.vision.beta.dataloaders import tf_example_label_map_decoder from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator from official.vision.beta.evaluation import coco_evaluator
from official.vision.beta.modeling import factory from official.vision.beta.modeling import factory
...@@ -93,16 +94,7 @@ class RetinaNetTask(base_task.Task): ...@@ -93,16 +94,7 @@ class RetinaNetTask(base_task.Task):
regenerate_source_id=decoder_cfg.regenerate_source_id) regenerate_source_id=decoder_cfg.regenerate_source_id)
else: else:
raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type)) raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
decoder_cfg = params.decoder.get()
if params.decoder.type == 'simple_decoder':
decoder = tf_example_decoder.TfExampleDecoder(
regenerate_source_id=decoder_cfg.regenerate_source_id)
elif params.decoder.type == 'label_map_decoder':
decoder = tf_example_decoder.TfExampleDecoderLabelMap(
label_map=decoder_cfg.label_map,
regenerate_source_id=decoder_cfg.regenerate_source_id)
else:
raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
parser = retinanet_input.Parser( parser = retinanet_input.Parser(
output_size=self.task_config.model.input_size[:2], output_size=self.task_config.model.input_size[:2],
min_level=self.task_config.model.min_level, min_level=self.task_config.model.min_level,
...@@ -121,7 +113,7 @@ class RetinaNetTask(base_task.Task): ...@@ -121,7 +113,7 @@ class RetinaNetTask(base_task.Task):
reader = input_reader.InputReader( reader = input_reader.InputReader(
params, params,
dataset_fn=tf.data.TFRecordDataset, dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
decoder_fn=decoder.decode, decoder_fn=decoder.decode,
parser_fn=parser.parse_fn(params.is_training)) parser_fn=parser.parse_fn(params.is_training))
dataset = reader.read(input_context=input_context) dataset = reader.read(input_context=input_context)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment