Commit 4437d7b4 authored by Jonathan Huang's avatar Jonathan Huang Committed by TF Object Detection Team
Browse files

Add support for LVIS metrics.

PiperOrigin-RevId: 339190667
parent b1809d94
......@@ -70,6 +70,9 @@ class InputDataFields(object):
groundtruth_keypoint_visibilities: ground truth keypoint visibilities.
groundtruth_keypoint_weights: groundtruth weight factor for keypoints.
groundtruth_label_weights: groundtruth label weights.
groundtruth_verified_negative_classes: groundtruth verified negative classes
groundtruth_not_exhaustive_classes: groundtruth not-exhaustively labeled
classes.
groundtruth_weights: groundtruth weight factor for bounding boxes.
groundtruth_dp_num_points: The number of DensePose sampled points for each
instance.
......@@ -120,6 +123,8 @@ class InputDataFields(object):
groundtruth_keypoint_visibilities = 'groundtruth_keypoint_visibilities'
groundtruth_keypoint_weights = 'groundtruth_keypoint_weights'
groundtruth_label_weights = 'groundtruth_label_weights'
groundtruth_verified_neg_classes = 'groundtruth_verified_neg_classes'
groundtruth_not_exhaustive_classes = 'groundtruth_not_exhaustive_classes'
groundtruth_weights = 'groundtruth_weights'
groundtruth_dp_num_points = 'groundtruth_dp_num_points'
groundtruth_dp_part_ids = 'groundtruth_dp_part_ids'
......
......@@ -85,6 +85,8 @@ class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
groundtruth_classes = tf.constant([1])
groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
original_image_spatial_shapes = tf.constant([[20, 20]], dtype=tf.int32)
groundtruth_keypoints = tf.constant([[0.0, 0.0], [0.5, 0.5], [1.0, 1.0]])
if resized_groundtruth_masks:
groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
......@@ -100,6 +102,8 @@ class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
groundtruth_keypoints = tf.tile(
tf.expand_dims(groundtruth_keypoints, 0),
multiples=[batch_size, 1, 1])
original_image_spatial_shapes = tf.tile(original_image_spatial_shapes,
multiples=[batch_size, 1])
detections = {
detection_fields.detection_boxes: detection_boxes,
......@@ -112,7 +116,10 @@ class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_keypoints: groundtruth_keypoints,
input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
input_data_fields.groundtruth_instance_masks:
groundtruth_instance_masks,
input_data_fields.original_image_spatial_shape:
original_image_spatial_shapes
}
if batch_size > 1:
return eval_util.result_dict_for_batched_example(
......
......@@ -1191,18 +1191,20 @@ class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
groundtruth_instance_masks_batched,
groundtruth_is_crowd_batched, num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image):
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
"""Update op for metrics."""
for (image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_is_crowd, num_gt_box,
detection_scores, detection_classes,
detection_masks, num_det_box) in zip(
detection_masks, num_det_box, original_image_shape) in zip(
image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_instance_masks_batched,
groundtruth_is_crowd_batched, num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image):
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
self.add_single_ground_truth_image_info(
image_id, {
'groundtruth_boxes':
......@@ -1210,7 +1212,8 @@ class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
'groundtruth_classes':
groundtruth_classes[:num_gt_box],
'groundtruth_instance_masks':
groundtruth_instance_masks[:num_gt_box],
groundtruth_instance_masks[:num_gt_box][
:original_image_shape[0], :original_image_shape[1]],
'groundtruth_is_crowd':
groundtruth_is_crowd[:num_gt_box]
})
......@@ -1218,13 +1221,16 @@ class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
image_id, {
'detection_scores': detection_scores[:num_det_box],
'detection_classes': detection_classes[:num_det_box],
'detection_masks': detection_masks[:num_det_box]
'detection_masks': detection_masks[:num_det_box][
:original_image_shape[0], :original_image_shape[1]]
})
# Unpack items from the evaluation dictionary.
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
original_image_spatial_shape = eval_dict[
input_data_fields.original_image_spatial_shape]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_instance_masks = eval_dict[
......@@ -1276,7 +1282,7 @@ class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_is_crowd,
num_gt_boxes_per_image, detection_scores, detection_classes,
detection_masks, num_det_boxes_per_image
detection_masks, num_det_boxes_per_image, original_image_spatial_shape
], [])
def get_estimator_eval_metric_ops(self, eval_dict):
......
......@@ -1601,6 +1601,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
groundtruth_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
original_image_spatial_shape = tf.placeholder(tf.int32, shape=(None, 2))
detection_scores = tf.placeholder(tf.float32, shape=(None))
detection_classes = tf.placeholder(tf.float32, shape=(None))
detection_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
......@@ -1612,6 +1613,8 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_masks,
input_data_fields.original_image_spatial_shape:
original_image_spatial_shape,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
......@@ -1637,6 +1640,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
mode='constant')
]),
original_image_spatial_shape: np.array([[120, 120]]),
detection_scores:
np.array([.9, .8]),
detection_classes:
......@@ -1661,6 +1665,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
groundtruth_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
original_image_spatial_shape = tf.placeholder(tf.int32, shape=(None, 2))
detection_scores = tf.placeholder(tf.float32, shape=(None))
detection_classes = tf.placeholder(tf.float32, shape=(None))
detection_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
......@@ -1672,6 +1677,8 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_masks,
input_data_fields.original_image_spatial_shape:
original_image_spatial_shape,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
......@@ -1701,6 +1708,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
mode='constant')
]),
original_image_spatial_shape: np.array([[120, 120], [120, 120]]),
detection_scores:
np.array([.9, .8]),
detection_classes:
......@@ -1725,6 +1733,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
dtype=np.uint8),
((0, 0), (10, 10), (10, 10)),
mode='constant'),
original_image_spatial_shape: np.array([[70, 70]]),
detection_scores: np.array([.8]),
detection_classes: np.array([1]),
detection_masks: np.pad(np.ones([1, 50, 50], dtype=np.uint8),
......@@ -1740,6 +1749,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
dtype=np.uint8),
((0, 0), (10, 10), (10, 10)),
mode='constant'),
original_image_spatial_shape: np.array([[45, 45]]),
detection_scores: np.array([.8]),
detection_classes: np.array([1]),
detection_masks: np.pad(np.ones([1, 25, 25],
......@@ -1778,6 +1788,7 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
groundtruth_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
groundtruth_masks = tf.placeholder(
tf.uint8, shape=(batch_size, None, None, None))
original_image_spatial_shape = tf.placeholder(tf.int32, shape=(None, 2))
detection_scores = tf.placeholder(tf.float32, shape=(batch_size, None))
detection_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
detection_masks = tf.placeholder(
......@@ -1790,6 +1801,8 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_masks,
input_data_fields.original_image_spatial_shape:
original_image_spatial_shape,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
......@@ -1826,6 +1839,8 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
mode='constant')
],
axis=0),
original_image_spatial_shape: np.array(
[[100, 100], [100, 100], [100, 100]]),
detection_scores:
np.array([[.8], [.8], [.8]]),
detection_classes:
......
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Class for evaluating object detections with LVIS metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import re
from lvis import results as lvis_results
import numpy as np
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields as fields
from object_detection.metrics import lvis_tools
from object_detection.utils import object_detection_evaluation
def convert_masks_to_binary(masks):
"""Converts masks to 0 or 1 and uint8 type."""
return (masks > 0).astype(np.uint8)
class LVISMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate LVIS mask metrics."""
def __init__(self,
categories):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
"""
super(LVISMaskEvaluator, self).__init__(categories)
self._image_ids_with_detections = set([])
self._groundtruth_list = []
self._detection_masks_list = []
self._category_id_set = set([cat['id'] for cat in self._categories])
self._annotation_id = 1
self._image_id_to_mask_shape_map = {}
self._image_id_to_verified_neg_classes = {}
self._image_id_to_not_exhaustive_classes = {}
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._image_id_to_mask_shape_map.clear()
self._image_ids_with_detections.clear()
self._image_id_to_verified_neg_classes.clear()
self._image_id_to_not_exhaustive_classes.clear()
self._groundtruth_list = []
self._detection_masks_list = []
def add_single_ground_truth_image_info(self,
image_id,
groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
If the image has already been added, a warning is logged, and groundtruth is
ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_boxes] containing 1-indexed groundtruth classes for the boxes.
InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
[num_masks, image_height, image_width] containing groundtruth masks.
The elements of the array must be in {0, 1}.
InputDataFields.groundtruth_verified_neg_classes: [num_classes]
float indicator vector with values in {0, 1}.
InputDataFields.groundtruth_not_exhaustive_classes: [num_classes]
float indicator vector with values in {0, 1}.
InputDataFields.groundtruth_area (optional): float numpy array of
shape [num_boxes] containing the area (in the original absolute
coordinates) of the annotated object.
Raises:
ValueError: if groundtruth_dict is missing a required field
"""
if image_id in self._image_id_to_mask_shape_map:
tf.logging.warning('Ignoring ground truth with image id %s since it was '
'previously added', image_id)
return
for key in [fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
fields.InputDataFields.groundtruth_instance_masks,
fields.InputDataFields.groundtruth_verified_neg_classes,
fields.InputDataFields.groundtruth_not_exhaustive_classes]:
if key not in groundtruth_dict.keys():
raise ValueError('groundtruth_dict missing entry: {}'.format(key))
groundtruth_instance_masks = groundtruth_dict[
fields.InputDataFields.groundtruth_instance_masks]
groundtruth_instance_masks = convert_masks_to_binary(
groundtruth_instance_masks)
verified_neg_classes_shape = groundtruth_dict[
fields.InputDataFields.groundtruth_verified_neg_classes].shape
not_exhaustive_classes_shape = groundtruth_dict[
fields.InputDataFields.groundtruth_not_exhaustive_classes].shape
if verified_neg_classes_shape != (len(self._category_id_set),):
raise ValueError('Invalid shape for verified_neg_classes_shape.')
if not_exhaustive_classes_shape != (len(self._category_id_set),):
raise ValueError('Invalid shape for not_exhaustive_classes_shape.')
self._image_id_to_verified_neg_classes[image_id] = np.flatnonzero(
groundtruth_dict[
fields.InputDataFields.groundtruth_verified_neg_classes]
== 1).tolist()
self._image_id_to_not_exhaustive_classes[image_id] = np.flatnonzero(
groundtruth_dict[
fields.InputDataFields.groundtruth_not_exhaustive_classes]
== 1).tolist()
# Drop optional fields if empty tensor.
groundtruth_area = groundtruth_dict.get(
fields.InputDataFields.groundtruth_area)
if groundtruth_area is not None and not groundtruth_area.shape[0]:
groundtruth_area = None
self._groundtruth_list.extend(
lvis_tools.ExportSingleImageGroundtruthToLVIS(
image_id=image_id,
next_annotation_id=self._annotation_id,
category_id_set=self._category_id_set,
groundtruth_boxes=groundtruth_dict[
fields.InputDataFields.groundtruth_boxes],
groundtruth_classes=groundtruth_dict[
fields.InputDataFields.groundtruth_classes],
groundtruth_masks=groundtruth_instance_masks,
groundtruth_area=groundtruth_area)
)
self._annotation_id += groundtruth_dict[fields.InputDataFields.
groundtruth_boxes].shape[0]
self._image_id_to_mask_shape_map[image_id] = groundtruth_dict[
fields.InputDataFields.groundtruth_instance_masks].shape
def add_single_detected_image_info(self,
image_id,
detections_dict):
"""Adds detections for a single image to be used for evaluation.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_scores: float32 numpy array of shape
[num_boxes] containing detection scores for the boxes.
DetectionResultFields.detection_classes: integer numpy array of shape
[num_boxes] containing 1-indexed detection classes for the boxes.
DetectionResultFields.detection_masks: optional uint8 numpy array of
shape [num_boxes, image_height, image_width] containing instance
masks corresponding to the boxes. The elements of the array must be
in {0, 1}.
Raises:
ValueError: If groundtruth for the image_id is not available.
"""
if image_id not in self._image_id_to_mask_shape_map:
raise ValueError('Missing groundtruth for image id: {}'.format(image_id))
if image_id in self._image_ids_with_detections:
tf.logging.warning('Ignoring detection with image id %s since it was '
'previously added', image_id)
return
groundtruth_masks_shape = self._image_id_to_mask_shape_map[image_id]
detection_masks = detections_dict[fields.DetectionResultFields.
detection_masks]
if groundtruth_masks_shape[1:] != detection_masks.shape[1:]:
raise ValueError('Spatial shape of groundtruth masks and detection masks '
'are incompatible: {} vs {}'.format(
groundtruth_masks_shape,
detection_masks.shape))
detection_masks = convert_masks_to_binary(detection_masks)
self._detection_masks_list.extend(
lvis_tools.ExportSingleImageDetectionMasksToLVIS(
image_id=image_id,
category_id_set=self._category_id_set,
detection_masks=detection_masks,
detection_scores=detections_dict[
fields.DetectionResultFields.detection_scores],
detection_classes=detections_dict[
fields.DetectionResultFields.detection_classes]))
self._image_ids_with_detections.update([image_id])
def evaluate(self):
"""Evaluates the detection boxes and returns a dictionary of coco metrics.
Returns:
A dictionary holding
"""
tf.logging.info('Performing evaluation on %d images.',
len(self._image_id_to_mask_shape_map.keys()))
# pylint: disable=g-complex-comprehension
groundtruth_dict = {
'annotations': self._groundtruth_list,
'images': [
{
'id': image_id,
'height': shape[1],
'width': shape[2],
'neg_category_ids':
self._image_id_to_verified_neg_classes[image_id],
'not_exhaustive_category_ids':
self._image_id_to_not_exhaustive_classes[image_id]
} for image_id, shape in self._image_id_to_mask_shape_map.items()],
'categories': self._categories
}
# pylint: enable=g-complex-comprehension
lvis_wrapped_groundtruth = lvis_tools.LVISWrapper(groundtruth_dict)
detections = lvis_results.LVISResults(lvis_wrapped_groundtruth,
self._detection_masks_list)
mask_evaluator = lvis_tools.LVISEvalWrapper(
lvis_wrapped_groundtruth, detections, iou_type='segm')
mask_metrics = mask_evaluator.ComputeMetrics()
mask_metrics = {'DetectionMasks_'+ key: value
for key, value in iter(mask_metrics.items())}
return mask_metrics
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
def update_op(image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched,
groundtruth_instance_masks_batched,
groundtruth_verified_neg_classes_batched,
groundtruth_not_exhaustive_classes_batched,
num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
"""Update op for metrics."""
for (image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_verified_neg_classes,
groundtruth_not_exhaustive_classes, num_gt_box,
detection_scores, detection_classes,
detection_masks, num_det_box, original_image_shape) in zip(
image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_instance_masks_batched,
groundtruth_verified_neg_classes_batched,
groundtruth_not_exhaustive_classes_batched,
num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
self.add_single_ground_truth_image_info(
image_id, {
input_data_fields.groundtruth_boxes:
groundtruth_boxes[:num_gt_box],
input_data_fields.groundtruth_classes:
groundtruth_classes[:num_gt_box],
input_data_fields.groundtruth_instance_masks:
groundtruth_instance_masks[:num_gt_box][
:original_image_shape[0], :original_image_shape[1]],
input_data_fields.groundtruth_verified_neg_classes:
groundtruth_verified_neg_classes,
input_data_fields.groundtruth_not_exhaustive_classes:
groundtruth_not_exhaustive_classes
})
self.add_single_detected_image_info(
image_id, {
'detection_scores': detection_scores[:num_det_box],
'detection_classes': detection_classes[:num_det_box],
'detection_masks': detection_masks[:num_det_box][
:original_image_shape[0], :original_image_shape[1]]
})
# Unpack items from the evaluation dictionary.
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
original_image_spatial_shape = eval_dict[
input_data_fields.original_image_spatial_shape]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_instance_masks = eval_dict[
input_data_fields.groundtruth_instance_masks]
groundtruth_verified_neg_classes = eval_dict[
input_data_fields.groundtruth_verified_neg_classes]
groundtruth_not_exhaustive_classes = eval_dict[
input_data_fields.groundtruth_not_exhaustive_classes]
num_gt_boxes_per_image = eval_dict.get(
input_data_fields.num_groundtruth_boxes, None)
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
detection_masks = eval_dict[detection_fields.detection_masks]
num_det_boxes_per_image = eval_dict.get(detection_fields.num_detections,
None)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
groundtruth_instance_masks = tf.expand_dims(groundtruth_instance_masks, 0)
groundtruth_verified_neg_classes = tf.expand_dims(
groundtruth_verified_neg_classes, 0)
groundtruth_not_exhaustive_classes = tf.expand_dims(
groundtruth_not_exhaustive_classes, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
detection_masks = tf.expand_dims(detection_masks, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_scores)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_scores)[1:2],
multiples=tf.shape(detection_scores)[0:1])
return tf.py_func(update_op, [
image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_verified_neg_classes,
groundtruth_not_exhaustive_classes,
num_gt_boxes_per_image, detection_scores, detection_classes,
detection_masks, num_det_boxes_per_image, original_image_spatial_shape
], [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
update_op = self.add_eval_dict(eval_dict)
metric_names = ['DetectionMasks_Precision/mAP',
'DetectionMasks_Precision/mAP@.50IOU',
'DetectionMasks_Precision/mAP@.75IOU',
'DetectionMasks_Precision/mAP (small)',
'DetectionMasks_Precision/mAP (medium)',
'DetectionMasks_Precision/mAP (large)',
'DetectionMasks_Recall/AR@1',
'DetectionMasks_Recall/AR@10',
'DetectionMasks_Recall/AR@100',
'DetectionMasks_Recall/AR@100 (small)',
'DetectionMasks_Recall/AR@100 (medium)',
'DetectionMasks_Recall/AR@100 (large)']
if self._include_metrics_per_category:
for category_dict in self._categories:
metric_names.append('DetectionMasks_PerformanceByCategory/mAP/' +
category_dict['name'])
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
def dump_detections_to_json_file(self, json_output_path):
"""Saves the detections into json_output_path in the format used by MS COCO.
Args:
json_output_path: String containing the output file's path. It can be also
None. In that case nothing will be written to the output file.
"""
if json_output_path and json_output_path is not None:
pattern = re.compile(r'\d+\.\d{8,}')
def mround(match):
return '{:.2f}'.format(float(match.group()))
with tf.io.gfile.GFile(json_output_path, 'w') as fid:
json_string = json.dumps(self._detection_masks_list)
fid.write(re.sub(pattern, mround, json_string))
tf.logging.info('Dumping detections to output json file: %s',
json_output_path)
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_models.object_detection.metrics.coco_evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields as fields
from object_detection.metrics import lvis_evaluation
from object_detection.utils import tf_version
def _get_categories_list():
return [{
'id': 1,
'name': 'person',
'frequency': 'f'
}, {
'id': 2,
'name': 'dog',
'frequency': 'c'
}, {
'id': 3,
'name': 'cat',
'frequency': 'r'
}]
class LvisMaskEvaluationTest(tf.test.TestCase):
def testGetOneMAPWithMatchingGroundtruthAndDetections(self):
"""Tests that mAP is calculated correctly on GT and Detections."""
masks1 = np.expand_dims(np.pad(
np.ones([100, 100], dtype=np.uint8),
((100, 56), (100, 56)), mode='constant'), axis=0)
masks2 = np.expand_dims(np.pad(
np.ones([50, 50], dtype=np.uint8),
((50, 156), (50, 156)), mode='constant'), axis=0)
masks3 = np.expand_dims(np.pad(
np.ones([25, 25], dtype=np.uint8),
((25, 206), (25, 206)), mode='constant'), axis=0)
lvis_evaluator = lvis_evaluation.LVISMaskEvaluator(
_get_categories_list())
lvis_evaluator.add_single_ground_truth_image_info(
image_id='image1',
groundtruth_dict={
fields.InputDataFields.groundtruth_boxes:
np.array([[100., 100., 200., 200.]]),
fields.InputDataFields.groundtruth_classes: np.array([1]),
fields.InputDataFields.groundtruth_instance_masks: masks1,
fields.InputDataFields.groundtruth_verified_neg_classes:
np.array([0, 0, 0]),
fields.InputDataFields.groundtruth_not_exhaustive_classes:
np.array([0, 0, 0])
})
lvis_evaluator.add_single_detected_image_info(
image_id='image1',
detections_dict={
fields.DetectionResultFields.detection_masks: masks1,
fields.DetectionResultFields.detection_scores:
np.array([.8]),
fields.DetectionResultFields.detection_classes:
np.array([1])
})
lvis_evaluator.add_single_ground_truth_image_info(
image_id='image2',
groundtruth_dict={
fields.InputDataFields.groundtruth_boxes:
np.array([[50., 50., 100., 100.]]),
fields.InputDataFields.groundtruth_classes: np.array([1]),
fields.InputDataFields.groundtruth_instance_masks: masks2,
fields.InputDataFields.groundtruth_verified_neg_classes:
np.array([0, 0, 0]),
fields.InputDataFields.groundtruth_not_exhaustive_classes:
np.array([0, 0, 0])
})
lvis_evaluator.add_single_detected_image_info(
image_id='image2',
detections_dict={
fields.DetectionResultFields.detection_masks: masks2,
fields.DetectionResultFields.detection_scores:
np.array([.8]),
fields.DetectionResultFields.detection_classes:
np.array([1])
})
lvis_evaluator.add_single_ground_truth_image_info(
image_id='image3',
groundtruth_dict={
fields.InputDataFields.groundtruth_boxes:
np.array([[25., 25., 50., 50.]]),
fields.InputDataFields.groundtruth_classes: np.array([1]),
fields.InputDataFields.groundtruth_instance_masks: masks3,
fields.InputDataFields.groundtruth_verified_neg_classes:
np.array([0, 0, 0]),
fields.InputDataFields.groundtruth_not_exhaustive_classes:
np.array([0, 0, 0])
})
lvis_evaluator.add_single_detected_image_info(
image_id='image3',
detections_dict={
fields.DetectionResultFields.detection_masks: masks3,
fields.DetectionResultFields.detection_scores:
np.array([.8]),
fields.DetectionResultFields.detection_classes:
np.array([1])
})
metrics = lvis_evaluator.evaluate()
self.assertAlmostEqual(metrics['DetectionMasks_AP'], 1.0)
@unittest.skipIf(tf_version.is_tf1(), 'Only Supported in TF2.X')
class LVISMaskEvaluationPyFuncTest(tf.test.TestCase):
def testAddEvalDict(self):
lvis_evaluator = lvis_evaluation.LVISMaskEvaluator(_get_categories_list())
image_id = tf.constant('image1', dtype=tf.string)
groundtruth_boxes = tf.constant(
np.array([[100., 100., 200., 200.], [50., 50., 100., 100.]]),
dtype=tf.float32)
groundtruth_classes = tf.constant(np.array([1, 2]), dtype=tf.float32)
groundtruth_masks = tf.constant(np.stack([
np.pad(np.ones([100, 100], dtype=np.uint8), ((10, 10), (10, 10)),
mode='constant'),
np.pad(np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
mode='constant')
]), dtype=tf.uint8)
original_image_spatial_shapes = tf.constant([[120, 120], [120, 120]],
dtype=tf.int32)
groundtruth_verified_neg_classes = tf.constant(np.array([0, 0, 0]),
dtype=tf.float32)
groundtruth_not_exhaustive_classes = tf.constant(np.array([0, 0, 0]),
dtype=tf.float32)
detection_scores = tf.constant(np.array([.9, .8]), dtype=tf.float32)
detection_classes = tf.constant(np.array([2, 1]), dtype=tf.float32)
detection_masks = tf.constant(np.stack([
np.pad(np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
mode='constant'),
np.pad(np.ones([100, 100], dtype=np.uint8), ((10, 10), (10, 10)),
mode='constant'),
]), dtype=tf.uint8)
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
eval_dict = {
input_data_fields.key: image_id,
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_masks,
input_data_fields.groundtruth_verified_neg_classes:
groundtruth_verified_neg_classes,
input_data_fields.groundtruth_not_exhaustive_classes:
groundtruth_not_exhaustive_classes,
input_data_fields.original_image_spatial_shape:
original_image_spatial_shapes,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks
}
lvis_evaluator.add_eval_dict(eval_dict)
self.assertLen(lvis_evaluator._groundtruth_list, 2)
self.assertLen(lvis_evaluator._detection_masks_list, 2)
if __name__ == '__main__':
tf.test.main()
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrappers for third party lvis to be used within object_detection.
Usage example: given a set of images with ids in the list image_ids
and corresponding lists of numpy arrays encoding groundtruth (boxes,
masks and classes) and detections (masks, scores and classes), where
elements of each list correspond to detections/annotations of a single image,
then evaluation can be invoked as follows:
groundtruth = lvis_tools.LVISWrapper(groundtruth_dict)
detections = lvis_results.LVISResults(groundtruth, detections_list)
evaluator = lvis_tools.LVISEvalWrapper(groundtruth, detections,
iou_type='segm')
summary_metrics = evaluator.ComputeMetrics()
TODO(jonathanhuang): Add support for exporting to JSON.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
from lvis import eval as lvis_eval
from lvis import lvis
import numpy as np
from pycocotools import mask
import six
from six.moves import range
def RleCompress(masks):
"""Compresses mask using Run-length encoding provided by pycocotools.
Args:
masks: uint8 numpy array of shape [mask_height, mask_width] with values in
{0, 1}.
Returns:
A pycocotools Run-length encoding of the mask.
"""
rle = mask.encode(np.asfortranarray(masks))
rle['counts'] = six.ensure_str(rle['counts'])
return rle
def _ConvertBoxToCOCOFormat(box):
"""Converts a box in [ymin, xmin, ymax, xmax] format to COCO format.
This is a utility function for converting from our internal
[ymin, xmin, ymax, xmax] convention to the convention used by the COCO API
i.e., [xmin, ymin, width, height].
Args:
box: a [ymin, xmin, ymax, xmax] numpy array
Returns:
a list of floats representing [xmin, ymin, width, height]
"""
return [float(box[1]), float(box[0]), float(box[3] - box[1]),
float(box[2] - box[0])]
class LVISWrapper(lvis.LVIS):
"""Wrapper for the lvis.LVIS class."""
def __init__(self, dataset, detection_type='bbox'):
"""LVISWrapper constructor.
See https://www.lvisdataset.org/dataset for a description of the format.
By default, the coco.COCO class constructor reads from a JSON file.
This function duplicates the same behavior but loads from a dictionary,
allowing us to perform evaluation without writing to external storage.
Args:
dataset: a dictionary holding bounding box annotations in the COCO format.
detection_type: type of detections being wrapped. Can be one of ['bbox',
'segmentation']
Raises:
ValueError: if detection_type is unsupported.
"""
self.logger = logging.getLogger(__name__)
self.logger.info('Loading annotations.')
self.dataset = dataset
self._create_index()
class LVISEvalWrapper(lvis_eval.LVISEval):
"""LVISEval wrapper."""
def __init__(self, groundtruth=None, detections=None, iou_type='bbox'):
lvis_eval.LVISEval.__init__(
self, groundtruth, detections, iou_type=iou_type)
self._iou_type = iou_type
def ComputeMetrics(self):
self.run()
summary_metrics = {}
summary_metrics = self.results
return summary_metrics
def ExportSingleImageGroundtruthToLVIS(image_id,
next_annotation_id,
category_id_set,
groundtruth_boxes,
groundtruth_classes,
groundtruth_masks=None,
groundtruth_area=None):
"""Export groundtruth of a single image to LVIS format.
This function converts groundtruth detection annotations represented as numpy
arrays to dictionaries that can be ingested by the LVIS evaluation API. Note
that the image_ids provided here must match the ones given to
ExportSingleImageDetectionMasksToLVIS. We assume that boxes, classes and masks
are in correspondence - that is, e.g., groundtruth_boxes[i, :], and
groundtruth_classes[i] are associated with the same groundtruth annotation.
In the exported result, "area" fields are always set to the area of the
groundtruth bounding box.
Args:
image_id: a unique image identifier either of type integer or string.
next_annotation_id: integer specifying the first id to use for the
groundtruth annotations. All annotations are assigned a continuous integer
id starting from this value.
category_id_set: A set of valid class ids. Groundtruth with classes not in
category_id_set are dropped.
groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4]
groundtruth_classes: numpy array (int) with shape [num_gt_boxes]
groundtruth_masks: optional uint8 numpy array of shape [num_detections,
image_height, image_width] containing detection_masks.
groundtruth_area: numpy array (float32) with shape [num_gt_boxes]. If
provided, then the area values (in the original absolute coordinates) will
be populated instead of calculated from bounding box coordinates.
Returns:
a list of groundtruth annotations for a single image in the COCO format.
Raises:
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers
"""
if len(groundtruth_classes.shape) != 1:
raise ValueError('groundtruth_classes is '
'expected to be of rank 1.')
if len(groundtruth_boxes.shape) != 2:
raise ValueError('groundtruth_boxes is expected to be of '
'rank 2.')
if groundtruth_boxes.shape[1] != 4:
raise ValueError('groundtruth_boxes should have '
'shape[1] == 4.')
num_boxes = groundtruth_classes.shape[0]
if num_boxes != groundtruth_boxes.shape[0]:
raise ValueError('Corresponding entries in groundtruth_classes, '
'and groundtruth_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension).'
'Classes shape: %d. Boxes shape: %d. Image ID: %s' % (
groundtruth_classes.shape[0],
groundtruth_boxes.shape[0], image_id))
groundtruth_list = []
for i in range(num_boxes):
if groundtruth_classes[i] in category_id_set:
if groundtruth_area is not None and groundtruth_area[i] > 0:
area = float(groundtruth_area[i])
else:
area = float((groundtruth_boxes[i, 2] - groundtruth_boxes[i, 0]) *
(groundtruth_boxes[i, 3] - groundtruth_boxes[i, 1]))
export_dict = {
'id':
next_annotation_id + i,
'image_id':
image_id,
'category_id':
int(groundtruth_classes[i]),
'bbox':
list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])),
'area': area,
}
if groundtruth_masks is not None:
export_dict['segmentation'] = RleCompress(groundtruth_masks[i])
groundtruth_list.append(export_dict)
return groundtruth_list
def ExportSingleImageDetectionMasksToLVIS(image_id,
category_id_set,
detection_masks,
detection_scores,
detection_classes):
"""Export detection masks of a single image to LVIS format.
This function converts detections represented as numpy arrays to dictionaries
that can be ingested by the LVIS evaluation API. We assume that
detection_masks, detection_scores, and detection_classes are in correspondence
- that is: detection_masks[i, :], detection_classes[i] and detection_scores[i]
are associated with the same annotation.
Args:
image_id: unique image identifier either of type integer or string.
category_id_set: A set of valid class ids. Detections with classes not in
category_id_set are dropped.
detection_masks: uint8 numpy array of shape [num_detections, image_height,
image_width] containing detection_masks.
detection_scores: float numpy array of shape [num_detections] containing
scores for detection masks.
detection_classes: integer numpy array of shape [num_detections] containing
the classes for detection masks.
Returns:
a list of detection mask annotations for a single image in the COCO format.
Raises:
ValueError: if (1) detection_masks, detection_scores and detection_classes
do not have the right lengths or (2) if each of the elements inside these
lists do not have the correct shapes or (3) if image_ids are not integers.
"""
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
num_boxes = detection_classes.shape[0]
if not num_boxes == len(detection_masks) == detection_scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_scores and detection_masks should have '
'compatible lengths and shapes '
'Classes length: %d. Masks length: %d. '
'Scores length: %d' % (
detection_classes.shape[0], len(detection_masks),
detection_scores.shape[0]
))
detections_list = []
for i in range(num_boxes):
if detection_classes[i] in category_id_set:
detections_list.append({
'image_id': image_id,
'category_id': int(detection_classes[i]),
'segmentation': RleCompress(detection_masks[i]),
'score': float(detection_scores[i])
})
return detections_list
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_model.object_detection.metrics.lvis_tools."""
from lvis import results as lvis_results
import numpy as np
from pycocotools import mask
import tensorflow.compat.v1 as tf
from object_detection.metrics import lvis_tools
class LVISToolsTest(tf.test.TestCase):
def setUp(self):
super(LVISToolsTest, self).setUp()
mask1 = np.pad(
np.ones([100, 100], dtype=np.uint8),
((100, 56), (100, 56)), mode='constant')
mask2 = np.pad(
np.ones([50, 50], dtype=np.uint8),
((50, 156), (50, 156)), mode='constant')
mask1_rle = lvis_tools.RleCompress(mask1)
mask2_rle = lvis_tools.RleCompress(mask2)
groundtruth_annotations_list = [
{
'id': 1,
'image_id': 'first',
'category_id': 1,
'bbox': [100., 100., 100., 100.],
'area': 100.**2,
'segmentation': mask1_rle
},
{
'id': 2,
'image_id': 'second',
'category_id': 1,
'bbox': [50., 50., 50., 50.],
'area': 50.**2,
'segmentation': mask2_rle
},
]
image_list = [
{
'id': 'first',
'neg_category_ids': [],
'not_exhaustive_category_ids': [],
'height': 256,
'width': 256
},
{
'id': 'second',
'neg_category_ids': [],
'not_exhaustive_category_ids': [],
'height': 256,
'width': 256
}
]
category_list = [{'id': 0, 'name': 'person', 'frequency': 'f'},
{'id': 1, 'name': 'cat', 'frequency': 'c'},
{'id': 2, 'name': 'dog', 'frequency': 'r'}]
self._groundtruth_dict = {
'annotations': groundtruth_annotations_list,
'images': image_list,
'categories': category_list
}
self._detections_list = [
{
'image_id': 'first',
'category_id': 1,
'segmentation': mask1_rle,
'score': .8
},
{
'image_id': 'second',
'category_id': 1,
'segmentation': mask2_rle,
'score': .7
},
]
def testLVISWrappers(self):
groundtruth = lvis_tools.LVISWrapper(self._groundtruth_dict)
detections = lvis_results.LVISResults(groundtruth, self._detections_list)
evaluator = lvis_tools.LVISEvalWrapper(groundtruth, detections,
iou_type='segm')
summary_metrics = evaluator.ComputeMetrics()
self.assertAlmostEqual(1.0, summary_metrics['AP'])
def testSingleImageDetectionMaskExport(self):
masks = np.array(
[[[1, 1,], [1, 1]],
[[0, 0], [0, 1]],
[[0, 0], [0, 0]]], dtype=np.uint8)
classes = np.array([1, 2, 3], dtype=np.int32)
scores = np.array([0.8, 0.2, 0.7], dtype=np.float32)
lvis_annotations = lvis_tools.ExportSingleImageDetectionMasksToLVIS(
image_id='first_image',
category_id_set=set([1, 2, 3]),
detection_classes=classes,
detection_scores=scores,
detection_masks=masks)
expected_counts = ['04', '31', '4']
for i, mask_annotation in enumerate(lvis_annotations):
self.assertEqual(mask_annotation['segmentation']['counts'],
expected_counts[i])
self.assertTrue(np.all(np.equal(mask.decode(
mask_annotation['segmentation']), masks[i])))
self.assertEqual(mask_annotation['image_id'], 'first_image')
self.assertEqual(mask_annotation['category_id'], classes[i])
self.assertAlmostEqual(mask_annotation['score'], scores[i])
def testSingleImageGroundtruthExport(self):
masks = np.array(
[[[1, 1,], [1, 1]],
[[0, 0], [0, 1]],
[[0, 0], [0, 0]]], dtype=np.uint8)
boxes = np.array([[0, 0, 1, 1],
[0, 0, .5, .5],
[.5, .5, 1, 1]], dtype=np.float32)
lvis_boxes = np.array([[0, 0, 1, 1],
[0, 0, .5, .5],
[.5, .5, .5, .5]], dtype=np.float32)
classes = np.array([1, 2, 3], dtype=np.int32)
next_annotation_id = 1
expected_counts = ['04', '31', '4']
lvis_annotations = lvis_tools.ExportSingleImageGroundtruthToLVIS(
image_id='first_image',
category_id_set=set([1, 2, 3]),
next_annotation_id=next_annotation_id,
groundtruth_boxes=boxes,
groundtruth_classes=classes,
groundtruth_masks=masks)
for i, annotation in enumerate(lvis_annotations):
self.assertEqual(annotation['segmentation']['counts'],
expected_counts[i])
self.assertTrue(np.all(np.equal(mask.decode(
annotation['segmentation']), masks[i])))
self.assertTrue(np.all(np.isclose(annotation['bbox'], lvis_boxes[i])))
self.assertEqual(annotation['image_id'], 'first_image')
self.assertEqual(annotation['category_id'], classes[i])
self.assertEqual(annotation['id'], i + next_annotation_id)
if __name__ == '__main__':
tf.test.main()
......@@ -4,8 +4,8 @@ from setuptools import find_packages
from setuptools import setup
REQUIRED_PACKAGES = ['pillow', 'lxml', 'matplotlib', 'Cython',
'contextlib2', 'tf-slim', 'six', 'pycocotools', 'scipy',
'pandas']
'contextlib2', 'tf-slim', 'six', 'pycocotools', 'lvis',
'scipy', 'pandas']
setup(
name='object_detection',
......
......@@ -18,6 +18,7 @@ REQUIRED_PACKAGES = [
'tf-slim',
'six',
'pycocotools',
'lvis',
'scipy',
'pandas',
'tf-models-official'
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment