Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
42da7864
Commit
42da7864
authored
Dec 04, 2018
by
Christopher Shallue
Browse files
Move tensorflow_models/research/astronet to google-research/exoplanet-ml
parent
17c2f0cc
Changes
130
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
0 additions
and
2613 deletions
+0
-2613
research/astronet/astrowavenet/data/__init__.py
research/astronet/astrowavenet/data/__init__.py
+0
-14
research/astronet/astrowavenet/data/base.py
research/astronet/astrowavenet/data/base.py
+0
-240
research/astronet/astrowavenet/data/base_test.py
research/astronet/astrowavenet/data/base_test.py
+0
-778
research/astronet/astrowavenet/data/kepler_light_curves.py
research/astronet/astrowavenet/data/kepler_light_curves.py
+0
-50
research/astronet/astrowavenet/data/synthetic_transit_maker.py
...rch/astronet/astrowavenet/data/synthetic_transit_maker.py
+0
-138
research/astronet/astrowavenet/data/synthetic_transit_maker_test.py
...stronet/astrowavenet/data/synthetic_transit_maker_test.py
+0
-110
research/astronet/astrowavenet/data/synthetic_transits.py
research/astronet/astrowavenet/data/synthetic_transits.py
+0
-72
research/astronet/astrowavenet/data/test_data/test-dataset.tfrecord
...stronet/astrowavenet/data/test_data/test-dataset.tfrecord
+0
-0
research/astronet/astrowavenet/trainer.py
research/astronet/astrowavenet/trainer.py
+0
-271
research/astronet/astrowavenet/util/BUILD
research/astronet/astrowavenet/util/BUILD
+0
-10
research/astronet/astrowavenet/util/estimator_util.py
research/astronet/astrowavenet/util/estimator_util.py
+0
-178
research/astronet/light_curve/BUILD
research/astronet/light_curve/BUILD
+0
-66
research/astronet/light_curve/README.md
research/astronet/light_curve/README.md
+0
-19
research/astronet/light_curve/__init__.py
research/astronet/light_curve/__init__.py
+0
-14
research/astronet/light_curve/fast_ops/BUILD
research/astronet/light_curve/fast_ops/BUILD
+0
-119
research/astronet/light_curve/fast_ops/median.h
research/astronet/light_curve/fast_ops/median.h
+0
-73
research/astronet/light_curve/fast_ops/median_filter.cc
research/astronet/light_curve/fast_ops/median_filter.cc
+0
-142
research/astronet/light_curve/fast_ops/median_filter.h
research/astronet/light_curve/fast_ops/median_filter.h
+0
-59
research/astronet/light_curve/fast_ops/median_filter_test.cc
research/astronet/light_curve/fast_ops/median_filter_test.cc
+0
-160
research/astronet/light_curve/fast_ops/median_test.cc
research/astronet/light_curve/fast_ops/median_test.cc
+0
-100
No files found.
research/astronet/astrowavenet/data/__init__.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
research/astronet/astrowavenet/data/base.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base dataset builder classes for AstroWaveNet input pipelines."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
abc
import
six
import
tensorflow
as
tf
from
tf_util
import
configdict
from
astronet.ops
import
dataset_ops
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
class
DatasetBuilder
(
object
):
"""Base class for building a dataset input pipeline for AstroWaveNet."""
def
__init__
(
self
,
config_overrides
=
None
):
"""Initializes the dataset builder.
Args:
config_overrides: Dict or ConfigDict containing overrides to the default
configuration.
"""
self
.
config
=
configdict
.
ConfigDict
(
self
.
default_config
())
if
config_overrides
is
not
None
:
self
.
config
.
update
(
config_overrides
)
@
staticmethod
def
default_config
():
"""Returns the default configuration as a ConfigDict or Python dict."""
return
{}
@
abc
.
abstractmethod
def
build
(
self
,
batch_size
):
"""Builds the dataset input pipeline.
Args:
batch_size: The number of input examples in each batch.
Returns:
A tf.data.Dataset object.
"""
raise
NotImplementedError
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
class
_ShardedDatasetBuilder
(
DatasetBuilder
):
"""Abstract base class for a dataset consisting of sharded files."""
def
__init__
(
self
,
file_pattern
,
mode
,
config_overrides
=
None
,
use_tpu
=
False
):
"""Initializes the dataset builder.
Args:
file_pattern: File pattern matching input file shards, e.g.
"/tmp/train-?????-of-00100". May also be a comma-separated list of file
patterns.
mode: A tf.estimator.ModeKeys.
config_overrides: Dict or ConfigDict containing overrides to the default
configuration.
use_tpu: Whether to build the dataset for TPU.
"""
super
(
_ShardedDatasetBuilder
,
self
).
__init__
(
config_overrides
)
self
.
file_pattern
=
file_pattern
self
.
mode
=
mode
self
.
use_tpu
=
use_tpu
@
staticmethod
def
default_config
():
config
=
super
(
_ShardedDatasetBuilder
,
_ShardedDatasetBuilder
).
default_config
()
config
.
update
({
"max_length"
:
1024
,
"shuffle_values_buffer"
:
1000
,
"num_parallel_parser_calls"
:
4
,
"batches_buffer_size"
:
None
,
# Defaults to max(1, 256 / batch_size).
})
return
config
@
abc
.
abstractmethod
def
file_reader
(
self
):
"""Returns a function that reads a single sharded file."""
raise
NotImplementedError
@
abc
.
abstractmethod
def
create_example_parser
(
self
):
"""Returns a function that parses a single tf.Example proto."""
raise
NotImplementedError
def
_batch_and_pad
(
self
,
dataset
,
batch_size
):
"""Combines elements into batches of the same length, padding if needed."""
if
self
.
use_tpu
:
padded_length
=
self
.
config
.
max_length
if
not
padded_length
:
raise
ValueError
(
"config.max_length is required when using TPU"
)
# Pad with zeros up to padded_length. Note that this will pad the
# "weights" Tensor with zeros as well, which ensures that padded elements
# do not contribute to the loss.
padded_shapes
=
{}
for
name
,
shape
in
dataset
.
output_shapes
.
iteritems
():
shape
.
assert_is_compatible_with
([
None
,
None
])
# Expect a 2D sequence.
dims
=
shape
.
as_list
()
dims
[
0
]
=
padded_length
shape
=
tf
.
TensorShape
(
dims
)
shape
.
assert_is_fully_defined
()
padded_shapes
[
name
]
=
shape
else
:
# Pad each batch up to the maximum size of each dimension in the batch.
padded_shapes
=
dataset
.
output_shapes
return
dataset
.
padded_batch
(
batch_size
,
padded_shapes
)
def
build
(
self
,
batch_size
):
"""Builds the dataset input pipeline.
Args:
batch_size:
Returns:
A tf.data.Dataset.
Raises:
ValueError: If no files match self.file_pattern.
"""
file_patterns
=
self
.
file_pattern
.
split
(
","
)
filenames
=
[]
for
p
in
file_patterns
:
matches
=
tf
.
gfile
.
Glob
(
p
)
if
not
matches
:
raise
ValueError
(
"Found no input files matching {}"
.
format
(
p
))
filenames
.
extend
(
matches
)
tf
.
logging
.
info
(
"Building input pipeline from %d files matching patterns: %s"
,
len
(
filenames
),
file_patterns
)
is_training
=
self
.
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
# Create a string dataset of filenames, and possibly shuffle.
filename_dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
filenames
)
if
is_training
and
len
(
filenames
)
>
1
:
filename_dataset
=
filename_dataset
.
shuffle
(
len
(
filenames
))
# Read serialized Example protos.
dataset
=
filename_dataset
.
apply
(
tf
.
contrib
.
data
.
parallel_interleave
(
self
.
file_reader
(),
cycle_length
=
8
,
block_length
=
8
,
sloppy
=
True
))
if
is_training
:
# Shuffle and repeat. Note that shuffle() is before repeat(), so elements
# are shuffled among each epoch of data, and not between epochs of data.
if
self
.
config
.
shuffle_values_buffer
>
0
:
dataset
=
dataset
.
shuffle
(
self
.
config
.
shuffle_values_buffer
)
dataset
=
dataset
.
repeat
()
# Map the parser over the dataset.
dataset
=
dataset
.
map
(
self
.
create_example_parser
(),
num_parallel_calls
=
self
.
config
.
num_parallel_parser_calls
)
def
_prepare_wavenet_inputs
(
features
):
"""Validates features, and clips lengths and adds weights if needed."""
# Validate feature names.
required_features
=
{
"autoregressive_input"
,
"conditioning_stack"
}
allowed_features
=
required_features
|
{
"weights"
}
feature_names
=
features
.
keys
()
if
not
required_features
.
issubset
(
feature_names
):
raise
ValueError
(
"Features must contain all of: {}. Got: {}"
.
format
(
required_features
,
feature_names
))
if
not
allowed_features
.
issuperset
(
feature_names
):
raise
ValueError
(
"Features can only contain: {}. Got: {}"
.
format
(
allowed_features
,
feature_names
))
output
=
{}
for
name
,
value
in
features
.
items
():
# Validate shapes. The output dimension is [num_samples, dim].
ndims
=
len
(
value
.
shape
)
if
ndims
==
1
:
# Add an extra dimension: [num_samples] -> [num_samples, 1].
value
=
tf
.
expand_dims
(
value
,
-
1
)
elif
ndims
!=
2
:
raise
ValueError
(
"Features should be 1D or 2D sequences. Got '{}' = {}"
.
format
(
name
,
value
))
if
self
.
config
.
max_length
:
value
=
value
[:
self
.
config
.
max_length
]
output
[
name
]
=
value
if
"weights"
not
in
output
:
output
[
"weights"
]
=
tf
.
ones_like
(
output
[
"autoregressive_input"
])
return
output
dataset
=
dataset
.
map
(
_prepare_wavenet_inputs
)
# Batch results by up to batch_size.
dataset
=
self
.
_batch_and_pad
(
dataset
,
batch_size
)
if
is_training
:
# The dataset repeats infinitely before batching, so each batch has the
# maximum number of elements.
dataset
=
dataset_ops
.
set_batch_size
(
dataset
,
batch_size
)
elif
self
.
use_tpu
and
self
.
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
# Pad to ensure that each batch has the same number of elements.
dataset
=
dataset_ops
.
pad_dataset_to_batch_size
(
dataset
,
batch_size
)
# Prefetch batches.
buffer_size
=
(
self
.
config
.
batches_buffer_size
or
max
(
1
,
int
(
256
/
batch_size
)))
dataset
=
dataset
.
prefetch
(
buffer_size
)
return
dataset
def
tfrecord_reader
(
filename
):
"""Returns a tf.data.Dataset that reads a single TFRecord file shard."""
return
tf
.
data
.
TFRecordDataset
(
filename
,
buffer_size
=
16
*
1000
*
1000
)
class
TFRecordDataset
(
_ShardedDatasetBuilder
):
"""Builder for a dataset consisting of TFRecord files."""
def
file_reader
(
self
):
"""Returns a function that reads a single file shard."""
return
tfrecord_reader
research/astronet/astrowavenet/data/base_test.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for base.py."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os.path
from
absl
import
flags
import
numpy
as
np
import
tensorflow
as
tf
from
astrowavenet.data
import
base
FLAGS
=
flags
.
FLAGS
flags
.
DEFINE_string
(
"test_srcdir"
,
""
,
"Test source directory."
)
_TEST_TFRECORD_FILE
=
"astrowavenet/data/test_data/test-dataset.tfrecord"
class
TFRecordDataset
(
base
.
TFRecordDataset
):
"""Concrete subclass of TFRecordDataset for testing."""
@
staticmethod
def
default_config
():
config
=
super
(
TFRecordDataset
,
TFRecordDataset
).
default_config
()
config
.
update
({
"shuffle_values_buffer"
:
0
,
# Ensure deterministic output.
"input_dim"
:
1
,
"conditioning_dim"
:
1
,
"include_weights"
:
False
,
})
return
config
def
create_example_parser
(
self
):
"""Returns a function that parses a single tf.Example proto."""
def
_example_parser
(
serialized_example
):
"""Parses a single tf.Example into feature and label Tensors."""
features
=
tf
.
parse_single_example
(
serialized_example
,
features
=
{
"feature_1"
:
tf
.
VarLenFeature
(
tf
.
float32
),
"feature_2"
:
tf
.
VarLenFeature
(
tf
.
float32
),
"feature_3"
:
tf
.
VarLenFeature
(
tf
.
float32
),
"feature_4"
:
tf
.
VarLenFeature
(
tf
.
float32
),
"weights"
:
tf
.
VarLenFeature
(
tf
.
float32
),
})
output
=
{}
if
self
.
config
.
input_dim
==
1
:
# Shape = [num_samples].
output
[
"autoregressive_input"
]
=
features
[
"feature_1"
].
values
elif
self
.
config
.
input_dim
==
2
:
# Shape = [num_samples, 2].
output
[
"autoregressive_input"
]
=
tf
.
stack
(
[
features
[
"feature_1"
].
values
,
features
[
"feature_2"
].
values
],
axis
=-
1
)
else
:
raise
ValueError
(
"Unexpected input_dim: {}"
.
format
(
self
.
config
.
input_dim
))
if
self
.
config
.
conditioning_dim
==
1
:
# Shape = [num_samples].
output
[
"conditioning_stack"
]
=
features
[
"feature_3"
].
values
elif
self
.
config
.
conditioning_dim
==
2
:
# Shape = [num_samples, 2].
output
[
"conditioning_stack"
]
=
tf
.
stack
(
[
features
[
"feature_3"
].
values
,
features
[
"feature_4"
].
values
],
axis
=-
1
)
else
:
raise
ValueError
(
"Unexpected conditioning_dim: {}"
.
format
(
self
.
config
.
conditioning_dim
))
if
self
.
config
.
include_weights
:
output
[
"weights"
]
=
features
[
"weights"
].
values
return
output
return
_example_parser
class
TFRecordDatasetTest
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
super
(
TFRecordDatasetTest
,
self
).
setUp
()
# The test dataset contains 8 tensorflow.Example protocol buffers. The i-th
# Example contains the following features:
# feature_1 = range(10, 10 + i + 1)
# feature_2 = range(20, 20 + i + 1)
# feature_3 = range(30, 30 + i + 1)
# feature_4 = range(40, 40 + i + 1)
# weights = [0] * i + [1]
self
.
_file_pattern
=
os
.
path
.
join
(
FLAGS
.
test_srcdir
,
_TEST_TFRECORD_FILE
)
def
testTrainMode
(
self
):
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
TRAIN
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have dynamic length but fixed batch size and input dimension.
next_features
[
"autoregressive_input"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"conditioning_stack"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"weights"
].
shape
.
assert_is_compatible_with
([
5
,
1
,
None
])
# Dataset repeats indefinitely.
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
17
]],
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
37
]],
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
def
testTrainModeReadWeights
(
self
):
config_overrides
=
{
"include_weights"
:
True
}
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
=
config_overrides
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have dynamic length but fixed batch size and input dimension.
next_features
[
"autoregressive_input"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"conditioning_stack"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"weights"
].
shape
.
assert_is_compatible_with
([
5
,
None
,
1
])
# Dataset repeats indefinitely.
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
1
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
1
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
1
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
17
]],
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
37
]],
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
1
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
1
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
1
]],
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
0
],
[
0
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
1
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
1
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
1
]],
],
features
[
"weights"
])
def
testTrainMode2DInput
(
self
):
config_overrides
=
{
"input_dim"
:
2
}
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
=
config_overrides
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have dynamic length but fixed batch size and input dimension.
next_features
[
"autoregressive_input"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
2
])
next_features
[
"conditioning_stack"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"weights"
].
shape
.
assert_is_compatible_with
([
5
,
1
,
None
])
# Dataset repeats indefinitely.
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
,
20
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
],
[
15
,
25
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
],
[
15
,
25
],
[
16
,
26
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
],
[
15
,
25
],
[
16
,
26
],
[
17
,
27
]],
[[
10
,
20
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
37
]],
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
]],
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
],
[
0
,
0
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
],
[
15
,
25
],
[
0
,
0
]],
[[
10
,
20
],
[
11
,
21
],
[
12
,
22
],
[
13
,
23
],
[
14
,
24
],
[
15
,
25
],
[
16
,
26
]
],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
]],
],
features
[
"weights"
])
def
testTrainMode2DConditioning
(
self
):
config_overrides
=
{
"conditioning_dim"
:
2
}
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
=
config_overrides
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have dynamic length but fixed batch size and input dimension.
next_features
[
"autoregressive_input"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"conditioning_stack"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
2
])
next_features
[
"weights"
].
shape
.
assert_is_compatible_with
([
5
,
1
,
None
])
# Dataset repeats indefinitely.
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
,
40
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
17
]],
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
],
[
35
,
45
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
],
[
35
,
45
],
[
36
,
46
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
],
[
35
,
45
],
[
36
,
46
],
[
37
,
47
]],
[[
30
,
40
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
0
,
0
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
],
[
0
,
0
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
],
[
35
,
45
],
[
0
,
0
]],
[[
30
,
40
],
[
31
,
41
],
[
32
,
42
],
[
33
,
43
],
[
34
,
44
],
[
35
,
45
],
[
36
,
46
]
],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
def
testTrainModeMaxLength
(
self
):
config_overrides
=
{
"max_length"
:
6
}
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
=
config_overrides
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have dynamic length but fixed batch size and input dimension.
next_features
[
"autoregressive_input"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"conditioning_stack"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"weights"
].
shape
.
assert_is_compatible_with
([
5
,
1
,
None
])
# Dataset repeats indefinitely.
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
def
testTrainModeTPU
(
self
):
config_overrides
=
{
"max_length"
:
6
}
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
=
config_overrides
,
use_tpu
=
True
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have fixed shape.
self
.
assertEqual
([
5
,
6
,
1
],
next_features
[
"autoregressive_input"
].
shape
)
self
.
assertEqual
([
5
,
6
,
1
],
next_features
[
"conditioning_stack"
].
shape
)
self
.
assertEqual
([
5
,
6
,
1
],
next_features
[
"weights"
].
shape
)
# Dataset repeats indefinitely.
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"weights"
])
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
def
testEvalMode
(
self
):
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
EVAL
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have dynamic length but fixed batch size and input dimension.
next_features
[
"autoregressive_input"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"conditioning_stack"
].
shape
.
assert_is_compatible_with
(
[
5
,
None
,
1
])
next_features
[
"weights"
].
shape
.
assert_is_compatible_with
([
5
,
1
,
None
])
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
# Partial batch.
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
],
[
16
],
[
17
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
],
[
36
],
[
37
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
],
features
[
"weights"
])
with
self
.
assertRaises
(
tf
.
errors
.
OutOfRangeError
):
sess
.
run
(
next_features
)
def
testEvalModeTPU
(
self
):
config_overrides
=
{
"max_length"
:
6
}
builder
=
TFRecordDataset
(
self
.
_file_pattern
,
tf
.
estimator
.
ModeKeys
.
EVAL
,
config_overrides
=
config_overrides
,
use_tpu
=
True
)
next_features
=
builder
.
build
(
5
).
make_one_shot_iterator
().
get_next
()
self
.
assertItemsEqual
(
[
"autoregressive_input"
,
"conditioning_stack"
,
"weights"
],
next_features
.
keys
())
# Features have fixed shape.
self
.
assertEqual
([
5
,
6
,
1
],
next_features
[
"autoregressive_input"
].
shape
)
self
.
assertEqual
([
5
,
6
,
1
],
next_features
[
"conditioning_stack"
].
shape
)
self
.
assertEqual
([
5
,
6
,
1
],
next_features
[
"weights"
].
shape
)
with
self
.
test_session
()
as
sess
:
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
0
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
0
],
[
0
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
0
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
0
],
[
0
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
0
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
0
],
[
0
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
0
]],
],
features
[
"weights"
])
# Partial batch, padded.
features
=
sess
.
run
(
next_features
)
np
.
testing
.
assert_almost_equal
([
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
10
],
[
11
],
[
12
],
[
13
],
[
14
],
[
15
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"autoregressive_input"
])
np
.
testing
.
assert_almost_equal
([
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
30
],
[
31
],
[
32
],
[
33
],
[
34
],
[
35
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"conditioning_stack"
])
np
.
testing
.
assert_almost_equal
([
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
],
[
1
],
[
1
],
[
1
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
[[
0
],
[
0
],
[
0
],
[
0
],
[
0
],
[
0
]],
],
features
[
"weights"
])
with
self
.
assertRaises
(
tf
.
errors
.
OutOfRangeError
):
sess
.
run
(
next_features
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
research/astronet/astrowavenet/data/kepler_light_curves.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Kepler light curve inputs to the AstroWaveNet model."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow
as
tf
from
astrowavenet.data
import
base
COND_INPUT_KEY
=
"mask"
AR_INPUT_KEY
=
"flux"
class
KeplerLightCurves
(
base
.
TFRecordDataset
):
"""Kepler light curve inputs to the AstroWaveNet model."""
def
create_example_parser
(
self
):
def
_example_parser
(
serialized
):
"""Parses a single tf.Example proto."""
features
=
tf
.
parse_single_example
(
serialized
,
features
=
{
AR_INPUT_KEY
:
tf
.
VarLenFeature
(
tf
.
float32
),
COND_INPUT_KEY
:
tf
.
VarLenFeature
(
tf
.
int64
),
})
# Extract values from SparseTensor objects.
autoregressive_input
=
features
[
AR_INPUT_KEY
].
values
conditioning_stack
=
tf
.
to_float
(
features
[
COND_INPUT_KEY
].
values
)
return
{
"autoregressive_input"
:
autoregressive_input
,
"conditioning_stack"
:
conditioning_stack
,
}
return
_example_parser
research/astronet/astrowavenet/data/synthetic_transit_maker.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generates synthetic light curves with periodic transit-like dips.
See class docstring below for more information.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
class
SyntheticTransitMaker
(
object
):
"""Generates synthetic light curves with periodic transit-like dips.
These light curves are generated by thresholding noisy sine waves. Each time
random_light_curve is called, a thresholded sine wave is generated by sampling
parameters uniformly from the ranges specified below.
Attributes:
period_range: A tuple of positive values specifying the range of periods the
sine waves may take.
amplitude_range: A tuple of positive values specifying the range of
amplitudes the sine waves may take.
threshold_ratio_range: A tuple of values in [0, 1) specifying the range of
thresholds as a ratio of the sine wave amplitude.
phase_range: Tuple of values specifying the range of phases the sine wave
may take as a ratio of the sampled period. E.g. a sampled phase of 0.5
would translate the sine wave by half of the period. The most common
reason to override this would be to generate light curves
deterministically (with e.g. (0,0)).
noise_sd_range: A tuple of values in [0, 1) specifying the range of standard
deviations for the Gaussian noise applied to the sine wave.
"""
def
__init__
(
self
,
period_range
=
(
0.5
,
4
),
amplitude_range
=
(
1
,
1
),
threshold_ratio_range
=
(
0
,
0.99
),
phase_range
=
(
0
,
1
),
noise_sd_range
=
(
0.1
,
0.1
)):
if
threshold_ratio_range
[
0
]
<
0
or
threshold_ratio_range
[
1
]
>=
1
:
raise
ValueError
(
"Threshold ratio range must be in [0, 1). Got: {}."
.
format
(
threshold_ratio_range
))
if
amplitude_range
[
0
]
<=
0
:
raise
ValueError
(
"Amplitude range must only contain positive numbers. Got: {}."
.
format
(
amplitude_range
))
if
period_range
[
0
]
<=
0
:
raise
ValueError
(
"Period range must only contain positive numbers. Got: {}."
.
format
(
period_range
))
if
noise_sd_range
[
0
]
<
0
:
raise
ValueError
(
"Noise standard deviation range must be nonnegative. Got: {}."
.
format
(
noise_sd_range
))
for
(
start
,
end
),
name
in
[(
period_range
,
"period"
),
(
amplitude_range
,
"amplitude"
),
(
threshold_ratio_range
,
"threshold ratio"
),
(
phase_range
,
"phase range"
),
(
noise_sd_range
,
"noise standard deviation"
)]:
if
end
<
start
:
raise
ValueError
(
"End of {} range may not be less than start. Got: ({}, {})"
.
format
(
name
,
start
,
end
))
self
.
period_range
=
period_range
self
.
amplitude_range
=
amplitude_range
self
.
threshold_ratio_range
=
threshold_ratio_range
self
.
phase_range
=
phase_range
self
.
noise_sd_range
=
noise_sd_range
def
random_light_curve
(
self
,
time
,
mask_prob
=
0
):
"""Samples parameters and generates a light curve.
Args:
time: np.array, x-values to sample from the thresholded sine wave.
mask_prob: value in [0,1], probability an individual datapoint is set to
zero
Returns:
flux: np.array, values of the masked sampled light curve corresponding to
the provided time array.
mask: np.array of ones and zeros, with zeros indicating masking at the
respective position on the flux array.
"""
period
=
np
.
random
.
uniform
(
*
self
.
period_range
)
phase
=
np
.
random
.
uniform
(
*
self
.
phase_range
)
*
period
amplitude
=
np
.
random
.
uniform
(
*
self
.
amplitude_range
)
threshold
=
np
.
random
.
uniform
(
*
self
.
threshold_ratio_range
)
*
amplitude
sin_wave
=
np
.
sin
(
time
/
period
-
phase
)
*
amplitude
flux
=
np
.
minimum
(
sin_wave
,
-
threshold
)
+
threshold
noise_sd
=
np
.
random
.
uniform
(
*
self
.
noise_sd_range
)
noise
=
np
.
random
.
normal
(
scale
=
noise_sd
,
size
=
(
len
(
time
),))
flux
+=
noise
# Array of ones and zeros, where zeros indicate masking.
mask
=
np
.
random
.
random
(
len
(
time
))
>
mask_prob
mask
=
mask
.
astype
(
np
.
float
)
return
flux
*
mask
,
mask
def
random_light_curve_generator
(
self
,
time
,
mask_prob
=
0
):
"""Returns a generator function yielding random light curves.
Args:
time: An np.array of x-values to sample from the thresholded sine wave.
mask_prob: Value in [0,1], probability an individual datapoint is set to
zero.
Returns:
A generator yielding random light curves.
"""
def
generator_fn
():
while
True
:
yield
self
.
random_light_curve
(
time
,
mask_prob
)
return
generator_fn
research/astronet/astrowavenet/data/synthetic_transit_maker_test.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for synthetic_transit_maker."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
absl.testing
import
absltest
import
numpy
as
np
from
astrowavenet.data
import
synthetic_transit_maker
class
SyntheticTransitMakerTest
(
absltest
.
TestCase
):
def
testBadRangesRaiseExceptions
(
self
):
# Period range cannot contain negative values.
with
self
.
assertRaisesRegexp
(
ValueError
,
"Period"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
period_range
=
(
-
1
,
10
))
# Amplitude range cannot contain negative values.
with
self
.
assertRaisesRegexp
(
ValueError
,
"Amplitude"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
amplitude_range
=
(
-
10
,
-
1
))
# Threshold ratio range must be contained in the half-open interval [0, 1).
with
self
.
assertRaisesRegexp
(
ValueError
,
"Threshold ratio"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
threshold_ratio_range
=
(
0
,
1
))
# Noise standard deviation range must only contain nonnegative values.
with
self
.
assertRaisesRegexp
(
ValueError
,
"Noise standard deviation"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
noise_sd_range
=
(
-
1
,
1
))
# End of range may not be less than start.
invalid_range
=
(
0.2
,
0.1
)
range_args
=
[
"period_range"
,
"threshold_ratio_range"
,
"amplitude_range"
,
"noise_sd_range"
,
"phase_range"
]
for
range_arg
in
range_args
:
with
self
.
assertRaisesRegexp
(
ValueError
,
"may not be less"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
**
{
range_arg
:
invalid_range
})
def
testStochasticLightCurveGeneration
(
self
):
transit_maker
=
synthetic_transit_maker
.
SyntheticTransitMaker
()
time
=
np
.
arange
(
100
)
flux
,
mask
=
transit_maker
.
random_light_curve
(
time
,
mask_prob
=
0.4
)
self
.
assertEqual
(
len
(
flux
),
100
)
self
.
assertEqual
(
len
(
mask
),
100
)
def
testDeterministicLightCurveGeneration
(
self
):
gold_flux
=
np
.
array
([
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
0.85099258
,
-
2.04776251
,
-
2.65829632
,
-
2.53014378
,
-
1.69530454
,
-
0.36223792
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
0.2110405
,
-
1.57757635
,
-
2.47528153
,
-
2.67999913
,
-
2.14061117
,
-
0.9918028
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
1.01475559
,
-
2.15534176
,
-
2.68282928
,
-
2.46550457
,
-
1.55763357
,
-
0.18591162
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
0.3870683
,
-
1.71426199
,
-
2.53849461
,
-
2.65395535
,
-
2.03181367
,
-
0.82741829
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
1.17380391
,
-
2.2541162
,
-
2.69666588
,
-
2.39094831
,
-
1.41330116
,
-
0.00784284
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
0.56063229
,
-
1.84372452
,
-
2.59152891
,
-
2.61731875
,
-
1.91465433
,
-
0.65899089
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
1.3275672
,
-
2.34373163
,
-
2.69975648
,
-
2.30674237
,
-
1.26282489
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
0.
,
-
0.73111006
,
-
1.9654997
,
-
2.63419424
,
-
2.5702207
,
-
1.78955328
,
-
0.48712456
])
# Use ranges containing one value for determinism.
transit_maker
=
synthetic_transit_maker
.
SyntheticTransitMaker
(
period_range
=
(
2
,
2
),
amplitude_range
=
(
3
,
3
),
threshold_ratio_range
=
(.
1
,
.
1
),
phase_range
=
(
0
,
0
),
noise_sd_range
=
(
0
,
0
))
time
=
np
.
linspace
(
0
,
100
,
100
)
flux
,
mask
=
transit_maker
.
random_light_curve
(
time
)
np
.
testing
.
assert_array_almost_equal
(
flux
,
gold_flux
)
np
.
testing
.
assert_array_almost_equal
(
mask
,
np
.
ones
(
100
))
def
testRandomLightCurveGenerator
(
self
):
transit_maker
=
synthetic_transit_maker
.
SyntheticTransitMaker
()
time
=
np
.
linspace
(
0
,
100
,
100
)
generator
=
transit_maker
.
random_light_curve_generator
(
time
,
mask_prob
=
0.3
)()
for
_
in
range
(
5
):
flux
,
mask
=
next
(
generator
)
self
.
assertEqual
(
len
(
flux
),
100
)
self
.
assertEqual
(
len
(
mask
),
100
)
if
__name__
==
"__main__"
:
absltest
.
main
()
research/astronet/astrowavenet/data/synthetic_transits.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Synthetic transit inputs to the AstroWaveNet model."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
tensorflow
as
tf
from
tf_util
import
configdict
from
astrowavenet.data
import
base
from
astrowavenet.data
import
synthetic_transit_maker
def
_prepare_wavenet_inputs
(
light_curve
,
mask
):
"""Gathers synthetic transits into the format expected by AstroWaveNet."""
return
{
"autoregressive_input"
:
tf
.
expand_dims
(
light_curve
,
-
1
),
"conditioning_stack"
:
tf
.
expand_dims
(
mask
,
-
1
),
}
class
SyntheticTransits
(
base
.
DatasetBuilder
):
"""Synthetic transit inputs to the AstroWaveNet model."""
@
staticmethod
def
default_config
():
return
configdict
.
ConfigDict
({
"period_range"
:
(
0.5
,
4
),
"amplitude_range"
:
(
1
,
1
),
"threshold_ratio_range"
:
(
0
,
0.99
),
"phase_range"
:
(
0
,
1
),
"noise_sd_range"
:
(
0.1
,
0.1
),
"mask_probability"
:
0.1
,
"light_curve_time_range"
:
(
0
,
100
),
"light_curve_num_points"
:
1000
})
def
build
(
self
,
batch_size
):
transit_maker
=
synthetic_transit_maker
.
SyntheticTransitMaker
(
period_range
=
self
.
config
.
period_range
,
amplitude_range
=
self
.
config
.
amplitude_range
,
threshold_ratio_range
=
self
.
config
.
threshold_ratio_range
,
phase_range
=
self
.
config
.
phase_range
,
noise_sd_range
=
self
.
config
.
noise_sd_range
)
t_start
,
t_end
=
self
.
config
.
light_curve_time_range
time
=
np
.
linspace
(
t_start
,
t_end
,
self
.
config
.
light_curve_num_points
)
dataset
=
tf
.
data
.
Dataset
.
from_generator
(
transit_maker
.
random_light_curve_generator
(
time
,
mask_prob
=
self
.
config
.
mask_probability
),
output_types
=
(
tf
.
float32
,
tf
.
float32
),
output_shapes
=
(
tf
.
TensorShape
((
self
.
config
.
light_curve_num_points
,)),
tf
.
TensorShape
((
self
.
config
.
light_curve_num_points
,))))
dataset
=
dataset
.
map
(
_prepare_wavenet_inputs
)
dataset
=
dataset
.
batch
(
batch_size
,
drop_remainder
=
True
)
dataset
=
dataset
.
prefetch
(
-
1
)
return
dataset
research/astronet/astrowavenet/data/test_data/test-dataset.tfrecord
deleted
100644 → 0
View file @
17c2f0cc
File deleted
research/astronet/astrowavenet/trainer.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for training and evaluating AstroWaveNet models."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
json
import
os.path
from
absl
import
flags
import
tensorflow
as
tf
from
astrowavenet
import
astrowavenet_model
from
astrowavenet
import
configurations
from
astrowavenet.data
import
kepler_light_curves
from
astrowavenet.data
import
synthetic_transits
from
astrowavenet.util
import
estimator_util
from
tf_util
import
config_util
from
tf_util
import
configdict
from
tf_util
import
estimator_runner
FLAGS
=
flags
.
FLAGS
flags
.
DEFINE_enum
(
"dataset"
,
None
,
[
"synthetic_transits"
,
"kepler_light_curves"
],
"Dataset for training and/or evaluation."
)
flags
.
DEFINE_string
(
"model_dir"
,
None
,
"Base output directory."
)
flags
.
DEFINE_string
(
"train_files"
,
None
,
"Comma-separated list of file patterns matching the TFRecord files in the "
"training dataset."
)
flags
.
DEFINE_string
(
"eval_files"
,
None
,
"Comma-separated list of file patterns matching the TFRecord files in the "
"evaluation dataset."
)
flags
.
DEFINE_string
(
"config_name"
,
"base"
,
"Name of the AstroWaveNet configuration."
)
flags
.
DEFINE_string
(
"config_overrides"
,
"{}"
,
"JSON string or JSON file containing overrides to the base configuration."
)
flags
.
DEFINE_enum
(
"schedule"
,
None
,
[
"train"
,
"train_and_eval"
,
"continuous_eval"
],
"Schedule for running the model."
)
flags
.
DEFINE_string
(
"eval_name"
,
"val"
,
"Name of the evaluation task."
)
flags
.
DEFINE_integer
(
"train_steps"
,
None
,
"Total number of steps for training."
)
flags
.
DEFINE_integer
(
"eval_steps"
,
None
,
"Number of steps for each evaluation."
)
flags
.
DEFINE_integer
(
"local_eval_frequency"
,
1000
,
"The number of training steps in between evaluation runs. Only applies "
"when schedule == 'train_and_eval'."
)
flags
.
DEFINE_integer
(
"save_summary_steps"
,
None
,
"The frequency at which to save model summaries."
)
flags
.
DEFINE_integer
(
"save_checkpoints_steps"
,
None
,
"The frequency at which to save model checkpoints."
)
flags
.
DEFINE_integer
(
"save_checkpoints_secs"
,
None
,
"The frequency at which to save model checkpoints."
)
flags
.
DEFINE_integer
(
"keep_checkpoint_max"
,
1
,
"The maximum number of model checkpoints to keep."
)
# ------------------------------------------------------------------------------
# TPU-only flags
# ------------------------------------------------------------------------------
flags
.
DEFINE_boolean
(
"use_tpu"
,
False
,
"Whether to execute on TPU."
)
flags
.
DEFINE_string
(
"master"
,
None
,
"Address of the TensorFlow TPU master."
)
flags
.
DEFINE_integer
(
"tpu_num_shards"
,
8
,
"Number of TPU shards."
)
flags
.
DEFINE_integer
(
"tpu_iterations_per_loop"
,
1000
,
"Number of iterations per TPU training loop."
)
flags
.
DEFINE_integer
(
"eval_batch_size"
,
None
,
"Batch size for TPU evaluation. Defaults to the training batch size."
)
def
_create_run_config
():
"""Creates a TPU RunConfig if FLAGS.use_tpu is True, else a RunConfig."""
session_config
=
tf
.
ConfigProto
(
allow_soft_placement
=
True
)
run_config_kwargs
=
{
"save_summary_steps"
:
FLAGS
.
save_summary_steps
,
"save_checkpoints_steps"
:
FLAGS
.
save_checkpoints_steps
,
"save_checkpoints_secs"
:
FLAGS
.
save_checkpoints_secs
,
"session_config"
:
session_config
,
"keep_checkpoint_max"
:
FLAGS
.
keep_checkpoint_max
}
if
FLAGS
.
use_tpu
:
if
not
FLAGS
.
master
:
raise
ValueError
(
"FLAGS.master must be set for TPUEstimator."
)
tpu_config
=
tf
.
contrib
.
tpu
.
TPUConfig
(
iterations_per_loop
=
FLAGS
.
tpu_iterations_per_loop
,
num_shards
=
FLAGS
.
tpu_num_shards
,
per_host_input_for_training
=
(
FLAGS
.
tpu_num_shards
<=
8
))
run_config
=
tf
.
contrib
.
tpu
.
RunConfig
(
tpu_config
=
tpu_config
,
master
=
FLAGS
.
master
,
**
run_config_kwargs
)
else
:
if
FLAGS
.
master
:
raise
ValueError
(
"FLAGS.master should only be set for TPUEstimator."
)
run_config
=
tf
.
estimator
.
RunConfig
(
**
run_config_kwargs
)
return
run_config
def
_get_file_pattern
(
mode
):
"""Gets the value of the file pattern flag for the specified mode."""
flag_name
=
(
"train_files"
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
else
"eval_files"
)
file_pattern
=
FLAGS
[
flag_name
].
value
if
file_pattern
is
None
:
raise
ValueError
(
"--{} is required for mode '{}'"
.
format
(
flag_name
,
mode
))
return
file_pattern
def
_create_dataset_builder
(
mode
,
config_overrides
=
None
):
"""Creates a dataset builder for the input pipeline."""
if
FLAGS
.
dataset
==
"synthetic_transits"
:
return
synthetic_transits
.
SyntheticTransits
(
config_overrides
)
file_pattern
=
_get_file_pattern
(
mode
)
if
FLAGS
.
dataset
==
"kepler_light_curves"
:
builder_class
=
kepler_light_curves
.
KeplerLightCurves
else
:
raise
ValueError
(
"Unsupported dataset: {}"
.
format
(
FLAGS
.
dataset
))
return
builder_class
(
file_pattern
,
mode
,
config_overrides
=
config_overrides
,
use_tpu
=
FLAGS
.
use_tpu
)
def
_create_input_fn
(
mode
,
config_overrides
=
None
):
"""Creates an Estimator input_fn."""
builder
=
_create_dataset_builder
(
mode
,
config_overrides
)
tf
.
logging
.
info
(
"Dataset config for mode '%s': %s"
,
mode
,
config_util
.
to_json
(
builder
.
config
))
return
estimator_util
.
create_input_fn
(
builder
)
def
_create_eval_args
(
config_overrides
=
None
):
"""Builds eval_args for estimator_runner.evaluate()."""
if
FLAGS
.
dataset
==
"synthetic_transits"
and
not
FLAGS
.
eval_steps
:
raise
ValueError
(
"Dataset '{}' requires --eval_steps for evaluation"
.
format
(
FLAGS
.
dataset
))
input_fn
=
_create_input_fn
(
tf
.
estimator
.
ModeKeys
.
EVAL
,
config_overrides
)
return
{
FLAGS
.
eval_name
:
(
input_fn
,
FLAGS
.
eval_steps
)}
def
main
(
argv
):
del
argv
# Unused.
config
=
configdict
.
ConfigDict
(
configurations
.
get_config
(
FLAGS
.
config_name
))
config_overrides
=
json
.
loads
(
FLAGS
.
config_overrides
)
for
key
in
config_overrides
:
if
key
not
in
[
"dataset"
,
"hparams"
]:
raise
ValueError
(
"Unrecognized config override: {}"
.
format
(
key
))
config
.
hparams
.
update
(
config_overrides
.
get
(
"hparams"
,
{}))
# Log configs.
configs_json
=
[
(
"config_overrides"
,
config_util
.
to_json
(
config_overrides
)),
(
"config"
,
config_util
.
to_json
(
config
)),
]
for
config_name
,
config_json
in
configs_json
:
tf
.
logging
.
info
(
"%s: %s"
,
config_name
,
config_json
)
# Create the estimator.
run_config
=
_create_run_config
()
estimator
=
estimator_util
.
create_estimator
(
astrowavenet_model
.
AstroWaveNet
,
config
.
hparams
,
run_config
,
FLAGS
.
model_dir
,
FLAGS
.
eval_batch_size
)
if
FLAGS
.
schedule
in
[
"train"
,
"train_and_eval"
]:
# Save configs.
tf
.
gfile
.
MakeDirs
(
FLAGS
.
model_dir
)
for
config_name
,
config_json
in
configs_json
:
filename
=
os
.
path
.
join
(
FLAGS
.
model_dir
,
"{}.json"
.
format
(
config_name
))
with
tf
.
gfile
.
Open
(
filename
,
"w"
)
as
f
:
f
.
write
(
config_json
)
train_input_fn
=
_create_input_fn
(
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
.
get
(
"dataset"
))
train_hooks
=
[]
if
FLAGS
.
schedule
==
"train"
:
estimator
.
train
(
train_input_fn
,
hooks
=
train_hooks
,
max_steps
=
FLAGS
.
train_steps
)
else
:
assert
FLAGS
.
schedule
==
"train_and_eval"
eval_args
=
_create_eval_args
(
config_overrides
.
get
(
"dataset"
))
for
_
in
estimator_runner
.
continuous_train_and_eval
(
estimator
=
estimator
,
train_input_fn
=
train_input_fn
,
eval_args
=
eval_args
,
local_eval_frequency
=
FLAGS
.
local_eval_frequency
,
train_hooks
=
train_hooks
,
train_steps
=
FLAGS
.
train_steps
):
# continuous_train_and_eval() yields evaluation metrics after each
# FLAGS.local_eval_frequency. It also saves and logs them, so we don't
# do anything here.
pass
else
:
assert
FLAGS
.
schedule
==
"continuous_eval"
eval_args
=
_create_eval_args
(
config_overrides
.
get
(
"dataset"
))
for
_
in
estimator_runner
.
continuous_eval
(
estimator
=
estimator
,
eval_args
=
eval_args
,
train_steps
=
FLAGS
.
train_steps
):
# continuous_train_and_eval() yields evaluation metrics after each
# checkpoint. It also saves and logs them, so we don't do anything here.
pass
if
__name__
==
"__main__"
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
flags
.
mark_flags_as_required
([
"dataset"
,
"model_dir"
,
"schedule"
])
def
_validate_schedule
(
flag_values
):
"""Validates the --schedule flag and the flags it interacts with."""
schedule
=
flag_values
[
"schedule"
]
save_checkpoints_steps
=
flag_values
[
"save_checkpoints_steps"
]
save_checkpoints_secs
=
flag_values
[
"save_checkpoints_secs"
]
if
schedule
in
[
"train"
,
"train_and_eval"
]:
if
not
(
save_checkpoints_steps
or
save_checkpoints_secs
):
raise
flags
.
ValidationError
(
"--schedule='%s' requires --save_checkpoints_steps or "
"--save_checkpoints_secs."
%
schedule
)
return
True
flags
.
register_multi_flags_validator
(
[
"schedule"
,
"save_checkpoints_steps"
,
"save_checkpoints_secs"
],
_validate_schedule
)
tf
.
app
.
run
()
research/astronet/astrowavenet/util/BUILD
deleted
100644 → 0
View file @
17c2f0cc
package
(
default_visibility
=
[
"//visibility:public"
])
licenses
([
"notice"
])
# Apache 2.0
py_library
(
name
=
"estimator_util"
,
srcs
=
[
"estimator_util.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
"//astronet/ops:training"
],
)
research/astronet/astrowavenet/util/estimator_util.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for creating a TensorFlow Estimator."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
copy
import
tensorflow
as
tf
from
astronet.ops
import
training
class
_InputFn
(
object
):
"""Class that acts as a callable input function for Estimator train / eval."""
def
__init__
(
self
,
dataset_builder
):
"""Initializes the input function.
Args:
dataset_builder: Instance of DatasetBuilder.
"""
self
.
_builder
=
dataset_builder
def
__call__
(
self
,
params
):
"""Builds the input pipeline."""
return
self
.
_builder
.
build
(
batch_size
=
params
[
"batch_size"
])
def
create_input_fn
(
dataset_builder
):
"""Creates an input_fn that that builds an input pipeline.
Args:
dataset_builder: Instance of DatasetBuilder.
Returns:
A callable that builds an input pipeline and returns a tf.data.Dataset
object.
"""
return
_InputFn
(
dataset_builder
)
class
_ModelFn
(
object
):
"""Class that acts as a callable model function for Estimator train / eval."""
def
__init__
(
self
,
model_class
,
hparams
,
use_tpu
=
False
):
"""Initializes the model function.
Args:
model_class: Model class.
hparams: A HParams object containing hyperparameters for building and
training the model.
use_tpu: If True, a TPUEstimator will be returned. Otherwise an Estimator
will be returned.
"""
self
.
_model_class
=
model_class
self
.
_base_hparams
=
hparams
self
.
_use_tpu
=
use_tpu
def
__call__
(
self
,
features
,
mode
,
params
):
"""Builds the model and returns an EstimatorSpec or TPUEstimatorSpec."""
hparams
=
copy
.
deepcopy
(
self
.
_base_hparams
)
if
"batch_size"
in
params
:
hparams
.
batch_size
=
params
[
"batch_size"
]
model
=
self
.
_model_class
(
features
,
hparams
,
mode
)
model
.
build
()
# Possibly create train_op.
use_tpu
=
self
.
_use_tpu
train_op
=
None
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
learning_rate
=
training
.
create_learning_rate
(
hparams
,
model
.
global_step
)
optimizer
=
training
.
create_optimizer
(
hparams
,
learning_rate
,
use_tpu
)
train_op
=
training
.
create_train_op
(
model
,
optimizer
)
if
use_tpu
:
estimator
=
tf
.
contrib
.
tpu
.
TPUEstimatorSpec
(
mode
=
mode
,
loss
=
model
.
total_loss
,
train_op
=
train_op
)
else
:
estimator
=
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
loss
=
model
.
total_loss
,
train_op
=
train_op
)
return
estimator
def
create_model_fn
(
model_class
,
hparams
,
use_tpu
=
False
):
"""Wraps model_class as an Estimator or TPUEstimator model_fn.
Args:
model_class: AstroModel or a subclass.
hparams: ConfigDict of configuration parameters for building the model.
use_tpu: If True, a TPUEstimator model_fn is returned. Otherwise an
Estimator model_fn is returned.
Returns:
model_fn: A callable that constructs the model and returns a
TPUEstimatorSpec if use_tpu is True, otherwise an EstimatorSpec.
"""
return
_ModelFn
(
model_class
,
hparams
,
use_tpu
)
def
create_estimator
(
model_class
,
hparams
,
run_config
=
None
,
model_dir
=
None
,
eval_batch_size
=
None
):
"""Wraps model_class as an Estimator or TPUEstimator.
If run_config is None or a tf.estimator.RunConfig, an Estimator is returned.
If run_config is a tf.contrib.tpu.RunConfig, a TPUEstimator is returned.
Args:
model_class: AstroWaveNet or a subclass.
hparams: ConfigDict of configuration parameters for building the model.
run_config: Optional tf.estimator.RunConfig or tf.contrib.tpu.RunConfig.
model_dir: Optional directory for saving the model. If not passed
explicitly, it must be specified in run_config.
eval_batch_size: Optional batch size for evaluation on TPU. Only applicable
if run_config is a tf.contrib.tpu.RunConfig. Defaults to
hparams.batch_size.
Returns:
An Estimator object if run_config is None or a tf.estimator.RunConfig, or a
TPUEstimator object if run_config is a tf.contrib.tpu.RunConfig.
Raises:
ValueError:
If model_dir is not passed explicitly or in run_config.model_dir, or if
eval_batch_size is specified and run_config is not a
tf.contrib.tpu.RunConfig.
"""
if
run_config
is
None
:
run_config
=
tf
.
estimator
.
RunConfig
()
else
:
run_config
=
copy
.
deepcopy
(
run_config
)
if
not
model_dir
and
not
run_config
.
model_dir
:
raise
ValueError
(
"model_dir must be passed explicitly or specified in run_config"
)
use_tpu
=
isinstance
(
run_config
,
tf
.
contrib
.
tpu
.
RunConfig
)
model_fn
=
create_model_fn
(
model_class
,
hparams
,
use_tpu
)
if
use_tpu
:
eval_batch_size
=
eval_batch_size
or
hparams
.
batch_size
estimator
=
tf
.
contrib
.
tpu
.
TPUEstimator
(
model_fn
=
model_fn
,
model_dir
=
model_dir
,
config
=
run_config
,
train_batch_size
=
hparams
.
batch_size
,
eval_batch_size
=
eval_batch_size
)
else
:
if
eval_batch_size
is
not
None
:
raise
ValueError
(
"eval_batch_size can only be specified for TPU."
)
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
,
model_dir
=
model_dir
,
config
=
run_config
,
params
=
{
"batch_size"
:
hparams
.
batch_size
})
return
estimator
research/astronet/light_curve/BUILD
deleted
100644 → 0
View file @
17c2f0cc
package
(
default_visibility
=
[
"//visibility:public"
])
licenses
([
"notice"
])
# Apache 2.0
py_library
(
name
=
"kepler_io"
,
srcs
=
[
"kepler_io.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":util"
],
)
py_test
(
name
=
"kepler_io_test"
,
size
=
"small"
,
srcs
=
[
"kepler_io_test.py"
],
data
=
glob
([
"test_data/0114/011442793/kplr*.fits"
,
]),
srcs_version
=
"PY2AND3"
,
deps
=
[
":kepler_io"
],
)
py_library
(
name
=
"median_filter"
,
srcs
=
[
"median_filter.py"
],
srcs_version
=
"PY2AND3"
,
)
py_test
(
name
=
"median_filter_test"
,
size
=
"small"
,
srcs
=
[
"median_filter_test.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":median_filter"
],
)
py_library
(
name
=
"periodic_event"
,
srcs
=
[
"periodic_event.py"
],
srcs_version
=
"PY2AND3"
,
)
py_test
(
name
=
"periodic_event_test"
,
size
=
"small"
,
srcs
=
[
"periodic_event_test.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":periodic_event"
],
)
py_library
(
name
=
"util"
,
srcs
=
[
"util.py"
],
srcs_version
=
"PY2AND3"
,
)
py_test
(
name
=
"util_test"
,
size
=
"small"
,
srcs
=
[
"util_test.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":periodic_event"
,
":util"
,
],
)
research/astronet/light_curve/README.md
deleted
100644 → 0
View file @
17c2f0cc
# Light Curve Operations
## Code Author
Chris Shallue:
[
@cshallue
](
https://github.com/cshallue
)
## Python modules
*
`kepler_io`
: Functions for reading Kepler data.
*
`median_filter`
: Utility for smoothing data using a median filter.
*
`periodic_event`
: Event class, which represents a periodic event in a light curve.
*
`util`
: Light curve utility functions.
## Fast ops
The
[
fast_ops
](
fast_ops/
)
subdirectory contains optimized C++ light curve
operations. These operations can be compiled for Python using
[
CLIF
](
https://github.com/google/clif
)
. The
[
fast_ops/python
](
fast_ops/python/
)
directory contains CLIF API description files.
research/astronet/light_curve/__init__.py
deleted
100644 → 0
View file @
17c2f0cc
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
research/astronet/light_curve/fast_ops/BUILD
deleted
100644 → 0
View file @
17c2f0cc
package
(
default_visibility
=
[
"//visibility:public"
])
licenses
([
"notice"
])
# Apache 2.0
cc_library
(
name
=
"median"
,
hdrs
=
[
"median.h"
],
)
cc_test
(
name
=
"median_test"
,
size
=
"small"
,
srcs
=
[
"median_test.cc"
,
],
deps
=
[
":median"
,
"@com_google_googletest//:gtest_main"
,
],
)
cc_library
(
name
=
"median_filter"
,
srcs
=
[
"median_filter.cc"
],
hdrs
=
[
"median_filter.h"
],
deps
=
[
":median"
,
"@com_google_absl//absl/strings"
,
],
)
cc_test
(
name
=
"median_filter_test"
,
size
=
"small"
,
srcs
=
[
"median_filter_test.cc"
,
],
deps
=
[
":median_filter"
,
":test_util"
,
"@com_google_googletest//:gtest_main"
,
],
)
cc_library
(
name
=
"phase_fold"
,
srcs
=
[
"phase_fold.cc"
],
hdrs
=
[
"phase_fold.h"
],
deps
=
[
"@com_google_absl//absl/strings"
],
)
cc_test
(
name
=
"phase_fold_test"
,
size
=
"small"
,
srcs
=
[
"phase_fold_test.cc"
,
],
deps
=
[
":phase_fold"
,
":test_util"
,
"@com_google_googletest//:gtest_main"
,
],
)
cc_library
(
name
=
"normalize"
,
srcs
=
[
"normalize.cc"
],
hdrs
=
[
"normalize.h"
],
deps
=
[
":median"
,
"@com_google_absl//absl/strings"
,
],
)
cc_test
(
name
=
"normalize_test"
,
size
=
"small"
,
srcs
=
[
"normalize_test.cc"
,
],
deps
=
[
":normalize"
,
":test_util"
,
"@com_google_googletest//:gtest_main"
,
],
)
cc_library
(
name
=
"view_generator"
,
srcs
=
[
"view_generator.cc"
],
hdrs
=
[
"view_generator.h"
],
deps
=
[
":median_filter"
,
":normalize"
,
":phase_fold"
,
"@com_google_absl//absl/memory"
,
],
)
cc_test
(
name
=
"view_generator_test"
,
size
=
"small"
,
srcs
=
[
"view_generator_test.cc"
,
],
deps
=
[
":test_util"
,
":view_generator"
,
"@com_google_googletest//:gtest_main"
,
],
)
cc_library
(
name
=
"test_util"
,
hdrs
=
[
"test_util.h"
],
deps
=
[
"@com_google_googletest//:gtest"
,
],
)
research/astronet/light_curve/fast_ops/median.h
deleted
100644 → 0
View file @
17c2f0cc
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_MODELS_ASTRONET_LIGHT_CURVE_FAST_OPS_MEDIAN_H_
#define TENSORFLOW_MODELS_ASTRONET_LIGHT_CURVE_FAST_OPS_MEDIAN_H_
#include <algorithm>
#include <iterator>
#include <vector>
namespace
astronet
{
// Computes the median value in the range [first, last).
//
// After calling this function, the elements in [first, last) will be rearranged
// such that, if middle = first + distance(first, last) / 2:
// 1. The element pointed at by middle is changed to whatever element would
// occur in that position if [first, last) was sorted.
// 2. All of the elements before this new middle element are less than or
// equal to the elements after the new nth element.
template
<
class
RandomIt
>
typename
std
::
iterator_traits
<
RandomIt
>::
value_type
InPlaceMedian
(
RandomIt
first
,
RandomIt
last
)
{
// If n is odd, 'middle' points to the middle element. If n is even, 'middle'
// points to the upper middle element.
const
auto
n
=
std
::
distance
(
first
,
last
);
const
auto
middle
=
first
+
(
n
/
2
);
// Partially sort such that 'middle' in its place.
std
::
nth_element
(
first
,
middle
,
last
);
// n is odd: the median is simply the middle element.
if
(
n
&
1
)
{
return
*
middle
;
}
// The maximum value lower than *middle is located in [first, middle) as a
// a post condition of nth_element.
const
auto
lower_middle
=
std
::
max_element
(
first
,
middle
);
// Prevent overflow. We know that *lower_middle <= *middle. If both are on
// opposite sides of zero, the sum won't overflow, otherwise the difference
// won't overflow.
if
(
*
lower_middle
<=
0
&&
*
middle
>=
0
)
{
return
(
*
lower_middle
+
*
middle
)
/
2
;
}
return
*
lower_middle
+
(
*
middle
-
*
lower_middle
)
/
2
;
}
// Computes the median value in the range [first, last) without modifying the
// input.
template
<
class
ForwardIterator
>
typename
std
::
iterator_traits
<
ForwardIterator
>::
value_type
Median
(
ForwardIterator
first
,
ForwardIterator
last
)
{
std
::
vector
<
typename
std
::
iterator_traits
<
ForwardIterator
>::
value_type
>
values
(
first
,
last
);
return
InPlaceMedian
(
values
.
begin
(),
values
.
end
());
}
}
// namespace astronet
#endif // TENSORFLOW_MODELS_ASTRONET_LIGHT_CURVE_FAST_OPS_MEDIAN_H_
research/astronet/light_curve/fast_ops/median_filter.cc
deleted
100644 → 0
View file @
17c2f0cc
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "light_curve/fast_ops/median_filter.h"
#include "absl/strings/substitute.h"
#include "light_curve/fast_ops/median.h"
using
absl
::
Substitute
;
using
std
::
min
;
using
std
::
vector
;
namespace
astronet
{
bool
MedianFilter
(
const
vector
<
double
>&
x
,
const
vector
<
double
>&
y
,
int
num_bins
,
double
bin_width
,
double
x_min
,
double
x_max
,
vector
<
double
>*
result
,
std
::
string
*
error
)
{
const
std
::
size_t
x_size
=
x
.
size
();
if
(
x_size
<
2
)
{
*
error
=
Substitute
(
"x.size() must be greater than 1. Got: $0"
,
x_size
);
return
false
;
}
if
(
x_size
!=
y
.
size
())
{
*
error
=
Substitute
(
"x.size() (got: $0) must equal y.size() (got: $1)"
,
x_size
,
y
.
size
());
return
false
;
}
const
double
x_first
=
x
[
0
];
const
double
x_last
=
x
[
x_size
-
1
];
if
(
x_first
>=
x_last
)
{
*
error
=
Substitute
(
"The first element of x (got: $0) must be less than the last "
"element (got: $1). Either x is not sorted or all elements are "
"equal."
,
x_first
,
x_last
);
return
false
;
}
if
(
x_min
>=
x_max
)
{
*
error
=
Substitute
(
"x_min (got: $0) must be less than x_max (got: $1)"
,
x_min
,
x_max
);
return
false
;
}
if
(
x_min
>
x_last
)
{
*
error
=
Substitute
(
"x_min (got: $0) must be less than or equal to the largest value of x "
"(got: $1)"
,
x_min
,
x_last
);
return
false
;
}
if
(
bin_width
<=
0
)
{
*
error
=
Substitute
(
"bin_width must be positive. Got: $0"
,
bin_width
);
return
false
;
}
if
(
bin_width
>=
x_max
-
x_min
)
{
*
error
=
Substitute
(
"bin_width (got: $0) must be less than x_max - x_min (got: $1)"
,
bin_width
,
x_max
-
x_min
);
return
false
;
}
if
(
num_bins
<
2
)
{
*
error
=
Substitute
(
"num_bins must be greater than 1. Got: $0"
,
num_bins
);
return
false
;
}
result
->
resize
(
num_bins
);
// Compute the spacing between midpoints of adjacent bins.
double
bin_spacing
=
(
x_max
-
x_min
-
bin_width
)
/
(
num_bins
-
1
);
// Create a vector to hold the values of the current bin on each iteration.
// Its initial size is twice the expected number of points per bin if x
// values are uniformly spaced. It will be expanded as necessary.
int
points_per_bin
=
1
+
static_cast
<
int
>
(
x_size
*
min
(
1.0
,
bin_width
/
(
x_last
-
x_first
)));
vector
<
double
>
bin_values
(
2
*
points_per_bin
);
// Create a vector to hold the indices of any empty bins.
vector
<
int
>
empty_bins
;
// Find the first element of x >= x_min. This loop is guaranteed to produce
// a valid index because we know that x_min <= x_last.
int
x_start
=
0
;
while
(
x
[
x_start
]
<
x_min
)
++
x_start
;
// The bin at index i is the median of all elements y[j] such that
// bin_min <= x[j] < bin_max, where bin_min and bin_max are the endpoints of
// bin i.
double
bin_min
=
x_min
;
// Left endpoint of the current bin.
double
bin_max
=
x_min
+
bin_width
;
// Right endpoint of the current bin.
int
j_start
=
x_start
;
// Index of the first element in the current bin.
int
j
=
x_start
;
// Index of the current element in the current bin.
for
(
int
i
=
0
;
i
<
num_bins
;
++
i
)
{
// Move j_start to the first index of x >= bin_min.
while
(
j_start
<
x_size
&&
x
[
j_start
]
<
bin_min
)
++
j_start
;
// Accumulate values y[j] such that bin_min <= x[j] < bin_max. After this
// loop, j is the exclusive end index of the current bin.
j
=
j_start
;
while
(
j
<
x_size
&&
x
[
j
]
<
bin_max
)
{
if
(
j
-
j_start
>=
bin_values
.
size
())
{
bin_values
.
resize
(
2
*
bin_values
.
size
());
// Expand if necessary.
}
bin_values
[
j
-
j_start
]
=
y
[
j
];
++
j
;
}
int
n
=
j
-
j_start
;
// Number of points in the bin.
if
(
n
==
0
)
{
empty_bins
.
push_back
(
i
);
// Empty bin.
}
else
{
// Compute and insert the median bin value.
(
*
result
)[
i
]
=
InPlaceMedian
(
bin_values
.
begin
(),
bin_values
.
begin
()
+
n
);
}
// Advance the bin.
bin_min
+=
bin_spacing
;
bin_max
+=
bin_spacing
;
}
// For empty bins, fall back to the median y value between x_min and x_max.
if
(
!
empty_bins
.
empty
())
{
double
median
=
Median
(
y
.
begin
()
+
x_start
,
y
.
begin
()
+
j
);
for
(
int
i
:
empty_bins
)
{
(
*
result
)[
i
]
=
median
;
}
}
return
true
;
}
}
// namespace astronet
research/astronet/light_curve/fast_ops/median_filter.h
deleted
100644 → 0
View file @
17c2f0cc
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_MODELS_ASTRONET_LIGHT_CURVE_FAST_OPS_MEDIAN_FILTER_H_
#define TENSORFLOW_MODELS_ASTRONET_LIGHT_CURVE_FAST_OPS_MEDIAN_FILTER_H_
#include <iostream>
#include <string>
#include <vector>
namespace
astronet
{
// Computes the median y-value in uniform intervals (bins) along the x-axis.
//
// The interval [x_min, x_max) is divided into num_bins uniformly spaced
// intervals of width bin_width. The value computed for each bin is the median
// of all y-values whose corresponding x-value is in the interval.
//
// NOTE: x must be sorted in ascending order or the results will be incorrect.
//
// Input args:
// x: Vector of x-coordinates sorted in ascending order. Must have at least 2
// elements, and all elements cannot be the same value.
// y: Vector of y-coordinates with the same size as x.
// num_bins: The number of intervals to divide the x-axis into. Must be at
// least 2.
// bin_width: The width of each bin on the x-axis. Must be positive, and less
// than x_max - x_min.
// x_min: The inclusive leftmost value to consider on the x-axis. Must be less
// than or equal to the largest value of x.
// x_max: The exclusive rightmost value to consider on the x-axis. Must be
// greater than x_min.
//
// Output args:
// result: Vector of size num_bins containing the median y-values of uniformly
// spaced bins on the x-axis.
// error: String indicating an error (e.g. an invalid argument).
//
// Returns:
// true if the algorithm succeeded. If false, see "error".
bool
MedianFilter
(
const
std
::
vector
<
double
>&
x
,
const
std
::
vector
<
double
>&
y
,
int
num_bins
,
double
bin_width
,
double
x_min
,
double
x_max
,
std
::
vector
<
double
>*
result
,
std
::
string
*
error
);
}
// namespace astronet
#endif // TENSORFLOW_MODELS_ASTRONET_LIGHT_CURVE_FAST_OPS_MEDIAN_FILTER_H_
research/astronet/light_curve/fast_ops/median_filter_test.cc
deleted
100644 → 0
View file @
17c2f0cc
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "light_curve/fast_ops/median_filter.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "light_curve/fast_ops/test_util.h"
using
std
::
vector
;
using
testing
::
Pointwise
;
namespace
astronet
{
namespace
{
TEST
(
MedianFilter
,
Errors
)
{
vector
<
double
>
x
;
vector
<
double
>
y
;
vector
<
double
>
result
;
std
::
string
error
;
// x size less than 2.
x
=
{
1
};
y
=
{
2
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
1
,
0
,
2
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"x.size() must be greater than 1. Got: 1"
);
// x and y not the same size.
x
=
{
1
,
2
};
y
=
{
4
,
5
,
6
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
1
,
0
,
2
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"x.size() (got: 2) must equal y.size() (got: 3)"
);
// x out of order.
x
=
{
2
,
0
,
1
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
1
,
0
,
2
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"The first element of x (got: 2) must be less than the last element"
" (got: 1). Either x is not sorted or all elements are equal."
);
// x all equal.
x
=
{
1
,
1
,
1
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
1
,
0
,
2
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"The first element of x (got: 1) must be less than the last element"
" (got: 1). Either x is not sorted or all elements are equal."
);
// x_min not less than x_max
x
=
{
1
,
2
,
3
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
1
,
-
1
,
-
1
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"x_min (got: -1) must be less than x_max (got: -1)"
);
// x_min greater than the last element of x.
x
=
{
1
,
2
,
3
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
0.25
,
3.5
,
4
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"x_min (got: 3.5) must be less than or equal to the largest value "
"of x (got: 3)"
);
// bin_width nonpositive.
x
=
{
1
,
2
,
3
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
0
,
1
,
3
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"bin_width must be positive. Got: 0"
);
// bin_width greater than or equal to x_max - x_min.
x
=
{
1
,
2
,
3
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
2
,
1
,
1.5
,
2.5
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"bin_width (got: 1) must be less than x_max - x_min (got: 1)"
);
// num_bins less than 2.
x
=
{
1
,
2
,
3
};
EXPECT_FALSE
(
MedianFilter
(
x
,
y
,
1
,
1
,
0
,
2
,
&
result
,
&
error
));
EXPECT_EQ
(
error
,
"num_bins must be greater than 1. Got: 1"
);
}
TEST
(
MedianFilter
,
BucketBoundaries
)
{
vector
<
double
>
x
=
{
-
6
,
-
5
,
-
4
,
-
3
,
-
2
,
-
1
,
0
,
1
,
2
,
3
,
4
,
5
,
6
};
vector
<
double
>
y
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
};
vector
<
double
>
result
;
std
::
string
error
;
EXPECT_TRUE
(
MedianFilter
(
x
,
y
,
5
,
2
,
-
5
,
5
,
&
result
,
&
error
));
EXPECT_TRUE
(
error
.
empty
());
vector
<
double
>
expected
=
{
2.5
,
4.5
,
6.5
,
8.5
,
10.5
};
EXPECT_THAT
(
result
,
Pointwise
(
DoubleNear
(),
expected
));
}
TEST
(
MedianFilter
,
MultiSizeBins
)
{
// Construct bins with size 0, 1, 2, 3, 4, 5, 10, respectively.
vector
<
double
>
x
=
{
1
,
2
,
2
,
3
,
3
,
3
,
4
,
4
,
4
,
4
,
5
,
5
,
5
,
5
,
5
,
6
,
6
,
6
,
6
,
6
,
6
,
6
,
6
,
6
,
6
};
vector
<
double
>
y
=
{
0
,
-
1
,
1
,
4
,
5
,
6
,
2
,
2
,
4
,
4
,
1
,
1
,
1
,
1
,
-
1
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
};
vector
<
double
>
result
;
std
::
string
error
;
EXPECT_TRUE
(
MedianFilter
(
x
,
y
,
7
,
1
,
0
,
7
,
&
result
,
&
error
));
EXPECT_TRUE
(
error
.
empty
());
// expected[0] = 3 is the median of y.
vector
<
double
>
expected
=
{
3
,
0
,
0
,
5
,
3
,
1
,
5.5
};
EXPECT_THAT
(
result
,
Pointwise
(
DoubleNear
(),
expected
));
}
TEST
(
MedianFilter
,
EmptyBins
)
{
vector
<
double
>
x
=
{
-
1
,
0
,
1
};
vector
<
double
>
y
=
{
2
,
3
,
1
};
vector
<
double
>
result
;
std
::
string
error
;
EXPECT_TRUE
(
MedianFilter
(
x
,
y
,
5
,
1
,
-
5
,
5
,
&
result
,
&
error
));
EXPECT_TRUE
(
error
.
empty
());
// The center bin is the only nonempty bin.
vector
<
double
>
expected
=
{
2
,
2
,
3
,
2
,
2
};
EXPECT_THAT
(
result
,
Pointwise
(
DoubleNear
(),
expected
));
}
TEST
(
MedianFilter
,
WideBins
)
{
vector
<
double
>
x
=
{
-
6
,
-
5
,
-
4
,
-
3
,
-
2
,
-
1
,
0
,
1
,
2
,
3
,
4
,
5
,
6
};
vector
<
double
>
y
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
};
vector
<
double
>
result
;
std
::
string
error
;
EXPECT_TRUE
(
MedianFilter
(
x
,
y
,
7
,
5
,
-
10
,
10
,
&
result
,
&
error
));
EXPECT_TRUE
(
error
.
empty
());
vector
<
double
>
expected
=
{
1
,
2.5
,
4
,
7
,
9
,
11.5
,
12.5
};
EXPECT_THAT
(
result
,
Pointwise
(
DoubleNear
(),
expected
));
}
TEST
(
MedianFilter
,
NarrowBins
)
{
vector
<
double
>
x
=
{
-
6
,
-
5
,
-
4
,
-
3
,
-
2
,
-
1
,
0
,
1
,
2
,
3
,
4
,
5
,
6
};
vector
<
double
>
y
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
};
vector
<
double
>
result
;
std
::
string
error
;
EXPECT_TRUE
(
MedianFilter
(
x
,
y
,
9
,
0.5
,
-
2.25
,
2.25
,
&
result
,
&
error
));
EXPECT_TRUE
(
error
.
empty
());
// Bins 1, 3, 5, 7 are empty.
vector
<
double
>
expected
=
{
5
,
7
,
6
,
7
,
7
,
7
,
8
,
7
,
9
};
EXPECT_THAT
(
result
,
Pointwise
(
DoubleNear
(),
expected
));
}
}
// namespace
}
// namespace astronet
research/astronet/light_curve/fast_ops/median_test.cc
deleted
100644 → 0
View file @
17c2f0cc
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "light_curve/fast_ops/median.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using
testing
::
ElementsAreArray
;
namespace
astronet
{
namespace
{
TEST
(
InPlaceMedian
,
SingleFloat
)
{
std
::
vector
<
double
>
v
=
{
1.0
};
EXPECT_FLOAT_EQ
(
1.0
,
InPlaceMedian
(
v
.
begin
(),
v
.
end
()));
EXPECT_THAT
(
v
,
ElementsAreArray
({
1.0
}));
}
TEST
(
InPlaceMedian
,
TwoInts
)
{
std
::
vector
<
int
>
v
=
{
3
,
2
};
// Note that integer division is used, so the median is (2 + 3) / 2 = 2.
EXPECT_EQ
(
2
,
InPlaceMedian
(
v
.
begin
(),
v
.
end
()));
EXPECT_THAT
(
v
,
ElementsAreArray
({
2
,
3
}));
}
TEST
(
InPlaceMedian
,
OddElements
)
{
std
::
vector
<
double
>
v
=
{
1.0
,
0.0
,
2.0
};
EXPECT_FLOAT_EQ
(
1.0
,
InPlaceMedian
(
v
.
begin
(),
v
.
end
()));
EXPECT_THAT
(
v
,
ElementsAreArray
({
0.0
,
1.0
,
2.0
}));
}
TEST
(
InPlaceMedian
,
EvenElements
)
{
std
::
vector
<
double
>
v
=
{
1.0
,
0.0
,
4.0
,
3.0
};
EXPECT_FLOAT_EQ
(
2.0
,
InPlaceMedian
(
v
.
begin
(),
v
.
end
()));
EXPECT_FLOAT_EQ
(
3.0
,
v
[
2
]);
EXPECT_FLOAT_EQ
(
4.0
,
v
[
3
]);
}
TEST
(
InPlaceMedian
,
SubRanges
)
{
std
::
vector
<
double
>
v
=
{
1.0
,
4.0
,
0.0
,
3.0
,
-
1.0
,
6.0
,
9.0
,
-
10.0
};
// [0, 1)
EXPECT_FLOAT_EQ
(
1.0
,
InPlaceMedian
(
v
.
begin
(),
v
.
begin
()
+
1
));
EXPECT_FLOAT_EQ
(
1.0
,
v
[
0
]);
// [1, 4)
EXPECT_FLOAT_EQ
(
3.0
,
InPlaceMedian
(
v
.
begin
()
+
1
,
v
.
begin
()
+
4
));
EXPECT_FLOAT_EQ
(
0.0
,
v
[
1
]);
EXPECT_FLOAT_EQ
(
3.0
,
v
[
2
]);
EXPECT_FLOAT_EQ
(
4.0
,
v
[
3
]);
// [4, 8)
EXPECT_FLOAT_EQ
(
2.5
,
InPlaceMedian
(
v
.
begin
()
+
4
,
v
.
end
()));
EXPECT_FLOAT_EQ
(
6.0
,
v
[
6
]);
EXPECT_FLOAT_EQ
(
9.0
,
v
[
7
]);
}
TEST
(
Median
,
SingleFloat
)
{
std
::
vector
<
double
>
v
=
{
-
5.0
};
EXPECT_FLOAT_EQ
(
-
5.0
,
Median
(
v
.
begin
(),
v
.
end
()));
EXPECT_THAT
(
v
,
ElementsAreArray
({
-
5.0
}));
}
TEST
(
Median
,
TwoInts
)
{
std
::
vector
<
int
>
v
=
{
3
,
2
};
// Note that integer division is used, so the median is (2 + 3) / 2 = 2.
EXPECT_EQ
(
2
,
Median
(
v
.
begin
(),
v
.
end
()));
EXPECT_THAT
(
v
,
ElementsAreArray
({
3
,
2
}));
// Unmodified.
}
TEST
(
Median
,
SubRanges
)
{
std
::
vector
<
double
>
v
=
{
1.0
,
4.0
,
0.0
,
3.0
,
-
1.0
,
6.0
,
9.0
,
-
10.0
};
// [0, 1)
EXPECT_FLOAT_EQ
(
1.0
,
Median
(
v
.
begin
(),
v
.
begin
()
+
1
));
EXPECT_THAT
(
v
,
ElementsAreArray
({
1.0
,
4.0
,
0.0
,
3.0
,
-
1.0
,
6.0
,
9.0
,
-
10.0
}));
// [1, 4)
EXPECT_FLOAT_EQ
(
3.0
,
Median
(
v
.
begin
()
+
1
,
v
.
begin
()
+
4
));
EXPECT_THAT
(
v
,
ElementsAreArray
({
1.0
,
4.0
,
0.0
,
3.0
,
-
1.0
,
6.0
,
9.0
,
-
10.0
}));
// [4, 8)
EXPECT_FLOAT_EQ
(
2.5
,
Median
(
v
.
begin
()
+
4
,
v
.
end
()));
EXPECT_THAT
(
v
,
ElementsAreArray
({
1.0
,
4.0
,
0.0
,
3.0
,
-
1.0
,
6.0
,
9.0
,
-
10.0
}));
}
}
// namespace
}
// namespace astronet
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment