Commit 40c3b10e authored by Neal Wu's avatar Neal Wu
Browse files

Upgrade to TF 1.0

parent b8c29cd2
...@@ -282,15 +282,17 @@ def add_autoencoders(source_data, source_shared, target_data, target_shared, ...@@ -282,15 +282,17 @@ def add_autoencoders(source_data, source_shared, target_data, target_shared,
# Add summaries # Add summaries
source_reconstructions = tf.concat( source_reconstructions = tf.concat(
map(normalize_images, [ axis=2,
values=map(normalize_images, [
source_data, source_recons, source_shared_recons, source_data, source_recons, source_shared_recons,
source_private_recons source_private_recons
]), 2) ]))
target_reconstructions = tf.concat( target_reconstructions = tf.concat(
map(normalize_images, [ axis=2,
values=map(normalize_images, [
target_data, target_recons, target_shared_recons, target_data, target_recons, target_shared_recons,
target_private_recons target_private_recons
]), 2) ]))
tf.summary.image( tf.summary.image(
'Source Images:Recons:RGB', 'Source Images:Recons:RGB',
source_reconstructions[:, :, :, :3], source_reconstructions[:, :, :, :3],
......
...@@ -26,7 +26,7 @@ class HelperFunctionsTest(tf.test.TestCase): ...@@ -26,7 +26,7 @@ class HelperFunctionsTest(tf.test.TestCase):
with self.test_session() as sess: with self.test_session() as sess:
# Test for when global_step < domain_separation_startpoint # Test for when global_step < domain_separation_startpoint
step = tf.contrib.slim.get_or_create_global_step() step = tf.contrib.slim.get_or_create_global_step()
sess.run(tf.initialize_all_variables()) # global_step = 0 sess.run(tf.global_variables_initializer()) # global_step = 0
params = {'domain_separation_startpoint': 2} params = {'domain_separation_startpoint': 2}
weight = dsn.dsn_loss_coefficient(params) weight = dsn.dsn_loss_coefficient(params)
weight_np = sess.run(weight) weight_np = sess.run(weight)
......
...@@ -100,7 +100,7 @@ def mmd_loss(source_samples, target_samples, weight, scope=None): ...@@ -100,7 +100,7 @@ def mmd_loss(source_samples, target_samples, weight, scope=None):
tag = 'MMD Loss' tag = 'MMD Loss'
if scope: if scope:
tag = scope + tag tag = scope + tag
tf.contrib.deprecated.scalar_summary(tag, loss_value) tf.summary.scalar(tag, loss_value)
tf.losses.add_loss(loss_value) tf.losses.add_loss(loss_value)
return loss_value return loss_value
...@@ -135,7 +135,7 @@ def correlation_loss(source_samples, target_samples, weight, scope=None): ...@@ -135,7 +135,7 @@ def correlation_loss(source_samples, target_samples, weight, scope=None):
tag = 'Correlation Loss' tag = 'Correlation Loss'
if scope: if scope:
tag = scope + tag tag = scope + tag
tf.contrib.deprecated.scalar_summary(tag, corr_loss) tf.summary.scalar(tag, corr_loss)
tf.losses.add_loss(corr_loss) tf.losses.add_loss(corr_loss)
return corr_loss return corr_loss
...@@ -155,11 +155,11 @@ def dann_loss(source_samples, target_samples, weight, scope=None): ...@@ -155,11 +155,11 @@ def dann_loss(source_samples, target_samples, weight, scope=None):
""" """
with tf.variable_scope('dann'): with tf.variable_scope('dann'):
batch_size = tf.shape(source_samples)[0] batch_size = tf.shape(source_samples)[0]
samples = tf.concat([source_samples, target_samples], 0) samples = tf.concat(axis=0, values=[source_samples, target_samples])
samples = slim.flatten(samples) samples = slim.flatten(samples)
domain_selection_mask = tf.concat( domain_selection_mask = tf.concat(
[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))], 0) axis=0, values=[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))])
# Perform the gradient reversal and be careful with the shape. # Perform the gradient reversal and be careful with the shape.
grl = grl_ops.gradient_reversal(samples) grl = grl_ops.gradient_reversal(samples)
...@@ -184,9 +184,9 @@ def dann_loss(source_samples, target_samples, weight, scope=None): ...@@ -184,9 +184,9 @@ def dann_loss(source_samples, target_samples, weight, scope=None):
tag_loss = scope + tag_loss tag_loss = scope + tag_loss
tag_accuracy = scope + tag_accuracy tag_accuracy = scope + tag_accuracy
tf.contrib.deprecated.scalar_summary( tf.summary.scalar(
tag_loss, domain_loss, name='domain_loss_summary') tag_loss, domain_loss, name='domain_loss_summary')
tf.contrib.deprecated.scalar_summary( tf.summary.scalar(
tag_accuracy, domain_accuracy, name='domain_accuracy_summary') tag_accuracy, domain_accuracy, name='domain_accuracy_summary')
return domain_loss return domain_loss
...@@ -216,7 +216,7 @@ def difference_loss(private_samples, shared_samples, weight=1.0, name=''): ...@@ -216,7 +216,7 @@ def difference_loss(private_samples, shared_samples, weight=1.0, name=''):
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value') cost = tf.where(cost > 0, cost, 0, name='value')
tf.contrib.deprecated.scalar_summary('losses/Difference Loss {}'.format(name), tf.summary.scalar('losses/Difference Loss {}'.format(name),
cost) cost)
assert_op = tf.Assert(tf.is_finite(cost), [cost]) assert_op = tf.Assert(tf.is_finite(cost), [cost])
with tf.control_dependencies([assert_op]): with tf.control_dependencies([assert_op]):
......
...@@ -115,7 +115,7 @@ class DecoderTest(tf.test.TestCase): ...@@ -115,7 +115,7 @@ class DecoderTest(tf.test.TestCase):
width=width, width=width,
channels=channels, channels=channels,
batch_norm_params=batch_norm_params) batch_norm_params=batch_norm_params)
sess.run(tf.initialize_all_variables()) sess.run(tf.global_variables_initializer())
output_np = sess.run(output) output_np = sess.run(output)
self.assertEqual(output_np.shape, (32, height, width, channels)) self.assertEqual(output_np.shape, (32, height, width, channels))
self.assertTrue(np.any(output_np)) self.assertTrue(np.any(output_np))
......
...@@ -75,15 +75,15 @@ def reshape_feature_maps(features_tensor): ...@@ -75,15 +75,15 @@ def reshape_feature_maps(features_tensor):
num_filters) num_filters)
num_filters_sqrt = int(num_filters_sqrt) num_filters_sqrt = int(num_filters_sqrt)
conv_summary = tf.unstack(features_tensor, axis=3) conv_summary = tf.unstack(features_tensor, axis=3)
conv_one_row = tf.concat(conv_summary[0:num_filters_sqrt], 2) conv_one_row = tf.concat(axis=2, values=conv_summary[0:num_filters_sqrt])
ind = 1 ind = 1
conv_final = conv_one_row conv_final = conv_one_row
for ind in range(1, num_filters_sqrt): for ind in range(1, num_filters_sqrt):
conv_one_row = tf.concat(conv_summary[ conv_one_row = tf.concat(axis=2,
ind * num_filters_sqrt + 0:ind * num_filters_sqrt + num_filters_sqrt], values=conv_summary[
2) ind * num_filters_sqrt + 0:ind * num_filters_sqrt + num_filters_sqrt])
conv_final = tf.concat( conv_final = tf.concat(
[tf.squeeze(conv_final), tf.squeeze(conv_one_row)], 1) axis=1, values=[tf.squeeze(conv_final), tf.squeeze(conv_one_row)])
conv_final = tf.expand_dims(conv_final, -1) conv_final = tf.expand_dims(conv_final, -1)
return conv_final return conv_final
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment