"tests/vscode:/vscode.git/clone" did not exist on "36400705434656fa91bca6f4dd8357396bc587ef"
Commit 3fd9c7fe authored by Shining Sun's avatar Shining Sun
Browse files

first attempt to extract common parts of two main files

parent eaf2bd1b
......@@ -27,6 +27,7 @@ import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import cifar10_main as cifar_main
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_common
from official.resnet.keras import keras_resnet_model
from official.utils.flags import core as flags_core
from official.utils.logs import logger
......@@ -34,51 +35,6 @@ from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
class TimeHistory(tf.keras.callbacks.Callback):
"""Callback for Keras models."""
def __init__(self, batch_size):
"""Callback for Keras models.
Args:
batch_size: Total batch size.
"""
self._batch_size = batch_size
self.last_exp_per_sec = 0
super(TimeHistory, self).__init__()
def on_train_begin(self, logs=None):
self.epoch_times_secs = []
self.batch_times_secs = []
self.record_batch = True
def on_epoch_begin(self, epoch, logs=None):
self.epoch_time_start = time.time()
def on_epoch_end(self, epoch, logs=None):
self.epoch_times_secs.append(time.time() - self.epoch_time_start)
def on_batch_begin(self, batch, logs=None):
if self.record_batch:
self.batch_time_start = time.time()
self.record_batch = False
def on_batch_end(self, batch, logs=None):
n = 100
if batch % n == 0:
last_n_batches = time.time() - self.batch_time_start
examples_per_second = (self._batch_size * n) / last_n_batches
self.batch_times_secs.append(last_n_batches)
self.last_exp_per_sec = examples_per_second
self.record_batch = True
# TODO(anjalisridhar): add timestamp as well.
if batch != 0:
tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
"'images_per_second': %f}" %
(batch, last_n_batches, examples_per_second))
# LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
# (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
# ]
......@@ -127,42 +83,6 @@ def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batc
return learning_rate
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
"""Callback to update learning rate on every batch (not epoch boundaries).
N.B. Only support Keras optimizers, not TF optimizers.
Args:
schedule: a function that takes an epoch index and a batch index as input
(both integer, indexed from 0) and returns a new learning rate as
output (float).
"""
def __init__(self, schedule, batch_size, num_images):
super(LearningRateBatchScheduler, self).__init__()
self.schedule = schedule
self.batches_per_epoch = num_images / batch_size
self.batch_size = batch_size
self.epochs = -1
self.prev_lr = -1
def on_epoch_begin(self, epoch, logs=None):
#if not hasattr(self.model.optimizer, 'learning_rate'):
# raise ValueError('Optimizer must have a "learning_rate" attribute.')
self.epochs += 1
def on_batch_begin(self, batch, logs=None):
lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
if not isinstance(lr, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function should be float.')
if lr != self.prev_lr:
tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
self.prev_lr = lr
tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
'learning rate to %s.', self.epochs, batch, lr)
def parse_record_keras(raw_record, is_training, dtype):
"""Parses a record containing a training example of an image.
......@@ -244,56 +164,23 @@ def run_cifar_with_keras(flags_obj):
num_epochs=flags_obj.train_epochs,
parse_record_fn=parse_record_keras)
# Use Keras ResNet50 applications model and native keras APIs
# initialize RMSprop optimizer
# TODO(anjalisridhar): Move to using MomentumOptimizer.
# opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
# I am setting an initial LR of 0.001 since this will be reset
# at the beginning of the training loop.
opt = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
# TF Optimizer:
# opt = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9)
strategy = distribution_utils.get_distribution_strategy(
num_gpus=flags_obj.num_gpus)
opt, loss, accuracy = keras_common.get_optimizer_loss_and_metrics()
strategy = keras_common.get_dist_strategy()
model = keras_resnet_model.ResNet56(input_shape=(32, 32, 3),
include_top=True,
classes=cifar_main._NUM_CLASSES,
weights=None)
loss = 'categorical_crossentropy'
accuracy = 'categorical_accuracy'
if flags_obj.num_gpus == 1 and flags_obj.dist_strat_off:
print('Not using distribution strategies.')
model.compile(loss=loss,
optimizer=opt,
metrics=[accuracy])
else:
model.compile(loss=loss,
optimizer=opt,
metrics=[accuracy],
distribute=strategy)
time_callback, tensorboard_callback, lr_callback = keras_common.get_fit_callbacks()
steps_per_epoch = cifar_main._NUM_IMAGES['train'] // flags_obj.batch_size
time_callback = TimeHistory(flags_obj.batch_size)
tesorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=flags_obj.model_dir)
# update_freq="batch") # Add this if want per batch logging.
lr_callback = LearningRateBatchScheduler(
learning_rate_schedule,
batch_size=flags_obj.batch_size,
num_images=cifar_main._NUM_IMAGES['train'])
num_eval_steps = (cifar_main._NUM_IMAGES['validation'] //
flags_obj.batch_size)
print('Executing eagerly?:', tf.executing_eagerly())
history = model.fit(train_input_dataset,
epochs=flags_obj.train_epochs,
steps_per_epoch=steps_per_epoch,
......@@ -310,14 +197,9 @@ def run_cifar_with_keras(flags_obj):
steps=num_eval_steps,
verbose=1)
stats = {}
stats['accuracy_top_1'] = eval_output[1]
stats['eval_loss'] = eval_output[0]
stats['training_loss'] = history.history['loss'][-1]
stats['training_accuracy_top_1'] = history.history['categorical_accuracy'][-1]
print('Test loss:', eval_output[0])
stats = keras_common.analyze_eval_result(eval_output)
print('top_1 accuracy:{}'.format(stats['accuracy_top_1']))
print('top_1_training_accuracy:{}'.format(stats['training_accuracy_top_1']))
return stats
......
......@@ -25,17 +25,16 @@ from absl import flags
import numpy as np
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import cifar10_main as cifar_main
from official.resnet import imagenet_main
from official.resnet import imagenet_preprocessing
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_resnet_model
from official.resnet.keras import resnet_model_tpu
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
IMAGENET_DATASET = "imagenet"
CIFAR_DATASET = "cifar"
class TimeHistory(tf.keras.callbacks.Callback):
"""Callback for Keras models."""
......@@ -48,7 +47,6 @@ class TimeHistory(tf.keras.callbacks.Callback):
"""
self._batch_size = batch_size
self.last_exp_per_sec = 0
super(TimeHistory, self).__init__()
def on_train_begin(self, logs=None):
......@@ -73,7 +71,6 @@ class TimeHistory(tf.keras.callbacks.Callback):
last_n_batches = time.time() - self.batch_time_start
examples_per_second = (self._batch_size * n) / last_n_batches
self.batch_times_secs.append(last_n_batches)
self.last_exp_per_sec = examples_per_second
self.record_batch = True
# TODO(anjalisridhar): add timestamp as well.
if batch != 0:
......@@ -81,56 +78,6 @@ class TimeHistory(tf.keras.callbacks.Callback):
"'images_per_second': %f}" %
(batch, last_n_batches, examples_per_second))
# LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
# (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
# ]
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(0.1, 91), (0.01, 136), (0.001, 182)
]
BASE_LEARNING_RATE = 0.1
def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batch_size):
"""Handles linear scaling rule, gradual warmup, and LR decay.
The learning rate starts at 0, then it increases linearly per step.
After 5 epochs we reach the base learning rate (scaled to account
for batch size).
After 30, 60 and 80 epochs the learning rate is divided by 10.
After 90 epochs training stops and the LR is set to 0. This ensures
that we train for exactly 90 epochs for reproducibility.
Args:
current_epoch: integer, current epoch indexed from 0.
current_batch: integer, current batch in the current epoch, indexed from 0.
Returns:
Adjusted learning rate.
"""
# epoch = current_epoch + float(current_batch) / batches_per_epoch
# warmup_lr_multiplier, warmup_end_epoch = LR_SCHEDULE[0]
# if epoch < warmup_end_epoch:
# # Learning rate increases linearly per step.
# return BASE_LEARNING_RATE * warmup_lr_multiplier * epoch / warmup_end_epoch
# for mult, start_epoch in LR_SCHEDULE:
# if epoch >= start_epoch:
# learning_rate = BASE_LEARNING_RATE * mult
# else:
# break
# return learning_rate
initial_learning_rate = BASE_LEARNING_RATE * batch_size / 128
learning_rate = initial_learning_rate
for mult, start_epoch in LR_SCHEDULE:
if current_epoch >= start_epoch:
learning_rate = initial_learning_rate * mult
else:
break
return learning_rate
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
"""Callback to update learning rate on every batch (not epoch boundaries).
......@@ -165,66 +112,7 @@ class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
'learning rate to %s.', self.epochs, batch, lr)
def parse_record_keras(raw_record, is_training, dtype):
"""Parses a record containing a training example of an image.
The input record is parsed into a label and image, and the image is passed
through preprocessing steps (cropping, flipping, and so on).
Args:
raw_record: scalar Tensor tf.string containing a serialized
Example protocol buffer.
is_training: A boolean denoting whether the input is for training.
dtype: Data type to use for input images.
Returns:
Tuple with processed image tensor and one-hot-encoded label tensor.
"""
if flags_obj.dataset == IMAGENET_DATASET:
image_buffer, label, bbox = imagenet_main._parse_example_proto(raw_record)
image = imagenet_preprocessing.preprocess_image(
image_buffer=image_buffer,
bbox=bbox,
output_height=imagenet_main._DEFAULT_IMAGE_SIZE,
output_width=imagenet_main._DEFAULT_IMAGE_SIZE,
num_channels=imagenet_main._NUM_CHANNELS,
is_training=is_training)
image = tf.cast(image, dtype)
label = tf.sparse_to_dense(label, (imagenet_main._NUM_CLASSES,), 1)
elif flags_obj.dataset == CIFAR_DATASET:
image, label = cifar_main.parse_record(raw_record, is_training, dtype)
label = tf.sparse_to_dense(label, (cifar_main._NUM_CLASSES,), 1)
else:
raise ValueError("Unknown dataset: {%s}".format(flags_obj.dataset))
return image, label
def run_imagenet_with_keras(flags_obj):
"""Run ResNet ImageNet training and eval loop using native Keras APIs.
Args:
flags_obj: An object containing parsed flag values.
Raises:
ValueError: If fp16 is passed as it is not currently supported.
"""
if flags_obj.enable_eager:
tf.enable_eager_execution()
dtype = flags_core.get_tf_dtype(flags_obj)
if dtype == 'fp16':
raise ValueError('dtype fp16 is not supported in Keras. Use the default '
'value(fp32).')
per_device_batch_size = distribution_utils.per_device_batch_size(
flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))
train_input_dataset, eval_input_dataset = get_data(
flags_obj.dataset, flags_obj.use_synthetic_data)
def get_optimizer_loss_and_metrics():
# Use Keras ResNet50 applications model and native keras APIs
# initialize RMSprop optimizer
# TODO(anjalisridhar): Move to using MomentumOptimizer.
......@@ -236,79 +124,38 @@ def run_imagenet_with_keras(flags_obj):
# TF Optimizer:
# learning_rate = BASE_LEARNING_RATE * flags_obj.batch_size / 256
# opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
strategy = distribution_utils.get_distribution_strategy(
num_gpus=flags_obj.num_gpus)
if flags_obj.dataset == IMAGENET_DATASET:
model = resnet_model_tpu.ResNet50(num_classes=imagenet_main._NUM_CLASSES)
steps_per_epoch = imagenet_main._NUM_IMAGES['train'] // flags_obj.batch_size
lr_callback = LearningRateBatchScheduler(
learning_rate_schedule,
batch_size=flags_obj.batch_size,
num_images=imagenet_main._NUM_IMAGES['train'])
num_eval_steps = (imagenet_main._NUM_IMAGES['validation'] //
flags_obj.batch_size)
elif flags_obj.dataset = CIFAR_DATASET:
model = keras_resnet_model.ResNet56(input_shape=(32, 32, 3),
include_top=True,
classes=cifar_main._NUM_CLASSES,
weights=None)
steps_per_epoch = cifar_main._NUM_IMAGES['train'] // flags_obj.batch_size
lr_callback = LearningRateBatchScheduler(
learning_rate_schedule,
batch_size=flags_obj.batch_size,
num_images=cifar_main._NUM_IMAGES['train'])
num_eval_steps = (cifar_main._NUM_IMAGES['validation'] //
flags_obj.batch_size)
else:
raise ValueError("Unknown dataset: {%s}".format(flags_obj.dataset))
loss = 'categorical_crossentropy'
accuracy = 'categorical_accuracy'
return opt, loss, accuracy
def get_dist_strategy():
if flags_obj.num_gpus == 1 and flags_obj.dist_strat_off:
print('Not using distribution strategies.')
model.compile(loss=loss,
optimizer=opt,
metrics=[accuracy])
strategy = None
else:
model.compile(loss=loss,
optimizer=opt,
metrics=[accuracy],
distribute=strategy)
strategy = distribution_utils.get_distribution_strategy(
num_gpus=flags_obj.num_gpus)
time_callback = TimeHistory(flags_obj.batch_size)
return strategy
tesorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=flags_obj.model_dir)
# update_freq="batch") # Add this if want per batch logging.
def get_fit_callbacks():
time_callback = keras_common.TimeHistory(flags_obj.batch_size)
print('Executing eagerly?:', tf.executing_eagerly())
history = model.fit(train_input_dataset,
epochs=flags_obj.train_epochs,
steps_per_epoch=steps_per_epoch,
callbacks=[
time_callback,
lr_callback,
tesorboard_callback
],
validation_steps=num_eval_steps,
validation_data=eval_input_dataset,
verbose=1)
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=flags_obj.model_dir)
#update_freq="batch") # Add this if want per batch logging.
eval_output = model.evaluate(eval_input_dataset,
steps=num_eval_steps,
verbose=1)
lr_callback = keras_common.LearningRateBatchScheduler(
learning_rate_schedule,
batch_size=flags_obj.batch_size,
num_images=imagenet_main._NUM_IMAGES['train'])
print('Test loss:', eval_output[0])
return time_callback, tensorboard_callback, lr_callback
def analyze_eval_result(eval_output):
stats = {}
stats['accuracy_top_1'] = eval_output[1]
stats['eval_loss'] = eval_output[0]
......@@ -319,108 +166,3 @@ def run_imagenet_with_keras(flags_obj):
print('top_1_training_accuracy:{}'.format(stats['training_accuracy_top_1']))
return stats
\ No newline at end of file
def get_data(dataset, use_synthetic_data):
if dataset == IMAGENET_DATASET:
if use_synthetic_data:
synth_input_fn = resnet_run_loop.get_synth_input_fn(
imagenet_main._DEFAULT_IMAGE_SIZE, imagenet_main._DEFAULT_IMAGE_SIZE,
imagenet_main._NUM_CHANNELS, imagenet_main._NUM_CLASSES,
dtype=flags_core.get_tf_dtype(flags_obj))
train_input_dataset = synth_input_fn(
batch_size=per_device_batch_size,
height=imagenet_main._DEFAULT_IMAGE_SIZE,
width=imagenet_main._DEFAULT_IMAGE_SIZE,
num_channels=imagenet_main._NUM_CHANNELS,
num_classes=imagenet_main._NUM_CLASSES,
dtype=dtype)
eval_input_dataset = synth_input_fn(
batch_size=per_device_batch_size,
height=imagenet_main._DEFAULT_IMAGE_SIZE,
width=imagenet_main._DEFAULT_IMAGE_SIZE,
num_channels=imagenet_main._NUM_CHANNELS,
num_classes=imagenet_main._NUM_CLASSES,
dtype=dtype)
# pylint: enable=protected-access
else:
train_input_dataset = imagenet_main.input_fn(
True,
flags_obj.data_dir,
batch_size=per_device_batch_size,
num_epochs=flags_obj.train_epochs,
parse_record_fn=parse_record_keras)
eval_input_dataset = imagenet_main.input_fn(
False,
flags_obj.data_dir,
batch_size=per_device_batch_size,
num_epochs=flags_obj.train_epochs,
parse_record_fn=parse_record_keras)
elif dataset == CIFAR_DATASET:
if use_synthetic_data:
if flags_obj.use_synthetic_data:
synth_input_fn = resnet_run_loop.get_synth_input_fn(
cifar_main._HEIGHT, cifar_main._WIDTH,
cifar_main._NUM_CHANNELS, cifar_main._NUM_CLASSES,
dtype=flags_core.get_tf_dtype(flags_obj))
train_input_dataset = synth_input_fn(
True,
flags_obj.data_dir,
batch_size=per_device_batch_size,
height=cifar_main._HEIGHT,
width=cifar_main._WIDTH,
num_channels=cifar_main._NUM_CHANNELS,
num_classes=cifar_main._NUM_CLASSES,
dtype=dtype)
eval_input_dataset = synth_input_fn(
False,
flags_obj.data_dir,
batch_size=per_device_batch_size,
height=cifar_main._HEIGHT,
width=cifar_main._WIDTH,
num_channels=cifar_main._NUM_CHANNELS,
num_classes=cifar_main._NUM_CLASSES,
dtype=dtype)
# pylint: enable=protected-access
else:
train_input_dataset = cifar_main.input_fn(
True,
flags_obj.data_dir,
batch_size=per_device_batch_size,
num_epochs=flags_obj.train_epochs,
parse_record_fn=parse_record_keras)
eval_input_dataset = cifar_main.input_fn(
False,
flags_obj.data_dir,
batch_size=per_device_batch_size,
num_epochs=flags_obj.train_epochs,
parse_record_fn=parse_record_keras)
return train_input_dataset, eval_input_dataset
def define_keras_flags():
flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
flags.DEFINE_string(name='dataset', default=IMAGENET_DATASET,
help='Which dataset, ImageNet or Cifar?')
def main(_):
with logger.benchmark_context(flags.FLAGS):
run_imagenet_with_keras(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_keras_flags()
if flags_obj.dataset == IMAGENET_DATASET:
imagenet_main.define_imagenet_flags()
elif flags_obj.dataset == CIFAR_DATASET:
cifar_main.define_cifar_flags()
absl_app.run(main)
......@@ -28,6 +28,7 @@ import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import imagenet_main
from official.resnet import imagenet_preprocessing
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_common
from official.resnet.keras import keras_resnet_model
from official.resnet.keras import resnet_model_tpu
from official.utils.flags import core as flags_core
......@@ -36,49 +37,6 @@ from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
class TimeHistory(tf.keras.callbacks.Callback):
"""Callback for Keras models."""
def __init__(self, batch_size):
"""Callback for Keras models.
Args:
batch_size: Total batch size.
"""
self._batch_size = batch_size
super(TimeHistory, self).__init__()
def on_train_begin(self, logs=None):
self.epoch_times_secs = []
self.batch_times_secs = []
self.record_batch = True
def on_epoch_begin(self, epoch, logs=None):
self.epoch_time_start = time.time()
def on_epoch_end(self, epoch, logs=None):
self.epoch_times_secs.append(time.time() - self.epoch_time_start)
def on_batch_begin(self, batch, logs=None):
if self.record_batch:
self.batch_time_start = time.time()
self.record_batch = False
def on_batch_end(self, batch, logs=None):
n = 100
if batch % n == 0:
last_n_batches = time.time() - self.batch_time_start
examples_per_second = (self._batch_size * n) / last_n_batches
self.batch_times_secs.append(last_n_batches)
self.record_batch = True
# TODO(anjalisridhar): add timestamp as well.
if batch != 0:
tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
"'images_per_second': %f}" %
(batch, last_n_batches, examples_per_second))
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
......@@ -115,42 +73,6 @@ def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batc
return learning_rate
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
"""Callback to update learning rate on every batch (not epoch boundaries).
N.B. Only support Keras optimizers, not TF optimizers.
Args:
schedule: a function that takes an epoch index and a batch index as input
(both integer, indexed from 0) and returns a new learning rate as
output (float).
"""
def __init__(self, schedule, batch_size, num_images):
super(LearningRateBatchScheduler, self).__init__()
self.schedule = schedule
self.batches_per_epoch = num_images / batch_size
self.batch_size = batch_size
self.epochs = -1
self.prev_lr = -1
def on_epoch_begin(self, epoch, logs=None):
#if not hasattr(self.model.optimizer, 'learning_rate'):
# raise ValueError('Optimizer must have a "learning_rate" attribute.')
self.epochs += 1
def on_batch_begin(self, batch, logs=None):
lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
if not isinstance(lr, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function should be float.')
if lr != self.prev_lr:
tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
self.prev_lr = lr
tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
'learning rate to %s.', self.epochs, batch, lr)
def parse_record_keras(raw_record, is_training, dtype):
"""Parses a record containing a training example of an image.
......@@ -239,49 +161,20 @@ def run_imagenet_with_keras(flags_obj):
parse_record_fn=parse_record_keras)
# Use Keras ResNet50 applications model and native keras APIs
# initialize RMSprop optimizer
# TODO(anjalisridhar): Move to using MomentumOptimizer.
# opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
# I am setting an initial LR of 0.001 since this will be reset
# at the beginning of the training loop.
opt = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
# TF Optimizer:
# learning_rate = BASE_LEARNING_RATE * flags_obj.batch_size / 256
# opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
opt, loss, accuracy = keras_common.get_optimizer_loss_and_metrics()
strategy = keras_common.get_dist_strategy()
strategy = distribution_utils.get_distribution_strategy(
num_gpus=flags_obj.num_gpus)
if flags_obj.use_tpu_model:
model = resnet_model_tpu.ResNet50(num_classes=imagenet_main._NUM_CLASSES)
else:
model = keras_resnet_model.ResNet50(classes=imagenet_main._NUM_CLASSES,
weights=None)
loss = 'categorical_crossentropy'
accuracy = 'categorical_accuracy'
model.compile(loss=loss,
optimizer=opt,
metrics=[accuracy],
distribute=strategy)
steps_per_epoch = imagenet_main._NUM_IMAGES['train'] // flags_obj.batch_size
time_callback = TimeHistory(flags_obj.batch_size)
tesorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=flags_obj.model_dir)
#update_freq="batch") # Add this if want per batch logging.
lr_callback = LearningRateBatchScheduler(
learning_rate_schedule,
batch_size=flags_obj.batch_size,
num_images=imagenet_main._NUM_IMAGES['train'])
time_callback, tensorboard_callback, lr_callback = keras_common.get_fit_callbacks()
steps_per_epoch = imagenet_main._NUM_IMAGES['train'] // flags_obj.batch_size
num_eval_steps = (imagenet_main._NUM_IMAGES['validation'] //
flags_obj.batch_size)
......@@ -291,7 +184,7 @@ def run_imagenet_with_keras(flags_obj):
callbacks=[
time_callback,
lr_callback,
tesorboard_callback
tensorboard_callback
],
validation_steps=num_eval_steps,
validation_data=eval_input_dataset,
......@@ -301,6 +194,9 @@ def run_imagenet_with_keras(flags_obj):
steps=num_eval_steps,
verbose=1)
print('Test loss:', eval_output[0])
stats = keras_common.analyze_eval_result(eval_output)
return stats
def define_keras_imagenet_flags():
flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
......@@ -315,5 +211,4 @@ if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_keras_imagenet_flags()
imagenet_main.define_imagenet_flags()
flags.DEFINE_boolean(name='use_tpu_model', default=False, help='Use resnet model from tpu.')
absl_app.run(main)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment