Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
3e45d52f
Commit
3e45d52f
authored
Mar 06, 2021
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Mar 06, 2021
Browse files
Clean up unnecessary code in PY3
PiperOrigin-RevId: 361348924
parent
ebac9847
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
7 additions
and
7 deletions
+7
-7
official/modeling/optimization/ema_optimizer.py
official/modeling/optimization/ema_optimizer.py
+1
-1
official/modeling/optimization/lr_schedule.py
official/modeling/optimization/lr_schedule.py
+5
-5
official/modeling/optimization/optimizer_factory.py
official/modeling/optimization/optimizer_factory.py
+1
-1
No files found.
official/modeling/optimization/ema_optimizer.py
View file @
3e45d52f
...
@@ -70,7 +70,7 @@ class ExponentialMovingAverage(tf.keras.optimizers.Optimizer):
...
@@ -70,7 +70,7 @@ class ExponentialMovingAverage(tf.keras.optimizers.Optimizer):
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
`clipvalue`, `lr`, `decay`}.
`clipvalue`, `lr`, `decay`}.
"""
"""
super
(
ExponentialMovingAverage
,
self
).
__init__
(
name
,
**
kwargs
)
super
().
__init__
(
name
,
**
kwargs
)
self
.
_average_decay
=
average_decay
self
.
_average_decay
=
average_decay
self
.
_start_step
=
tf
.
constant
(
start_step
,
tf
.
float32
)
self
.
_start_step
=
tf
.
constant
(
start_step
,
tf
.
float32
)
self
.
_dynamic_decay
=
dynamic_decay
self
.
_dynamic_decay
=
dynamic_decay
...
...
official/modeling/optimization/lr_schedule.py
View file @
3e45d52f
...
@@ -44,7 +44,7 @@ class LinearWarmup(tf.keras.optimizers.schedules.LearningRateSchedule):
...
@@ -44,7 +44,7 @@ class LinearWarmup(tf.keras.optimizers.schedules.LearningRateSchedule):
warmup_learning_rate: Initial learning rate for the warmup.
warmup_learning_rate: Initial learning rate for the warmup.
name: Optional, name of warmup schedule.
name: Optional, name of warmup schedule.
"""
"""
super
(
LinearWarmup
,
self
).
__init__
()
super
().
__init__
()
self
.
_name
=
name
self
.
_name
=
name
self
.
_after_warmup_lr_sched
=
after_warmup_lr_sched
self
.
_after_warmup_lr_sched
=
after_warmup_lr_sched
self
.
_warmup_steps
=
warmup_steps
self
.
_warmup_steps
=
warmup_steps
...
@@ -101,7 +101,7 @@ class PolynomialWarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
...
@@ -101,7 +101,7 @@ class PolynomialWarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
warmup_steps
:
int
,
warmup_steps
:
int
,
power
:
float
=
1.0
,
power
:
float
=
1.0
,
name
:
str
=
"PolynomialWarmup"
):
name
:
str
=
"PolynomialWarmup"
):
super
(
PolynomialWarmUp
,
self
).
__init__
()
super
().
__init__
()
if
isinstance
(
after_warmup_lr_sched
,
if
isinstance
(
after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
self
.
_initial_learning_rate
=
after_warmup_lr_sched
(
warmup_steps
)
self
.
_initial_learning_rate
=
after_warmup_lr_sched
(
warmup_steps
)
...
@@ -174,7 +174,7 @@ class DirectPowerDecay(tf.keras.optimizers.schedules.LearningRateSchedule):
...
@@ -174,7 +174,7 @@ class DirectPowerDecay(tf.keras.optimizers.schedules.LearningRateSchedule):
power: The order of the polynomial.
power: The order of the polynomial.
name: Optional, name of warmup schedule.
name: Optional, name of warmup schedule.
"""
"""
super
(
DirectPowerDecay
,
self
).
__init__
()
super
().
__init__
()
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_power
=
power
self
.
_power
=
power
self
.
_name
=
name
self
.
_name
=
name
...
@@ -222,7 +222,7 @@ class PowerAndLinearDecay(tf.keras.optimizers.schedules.LearningRateSchedule):
...
@@ -222,7 +222,7 @@ class PowerAndLinearDecay(tf.keras.optimizers.schedules.LearningRateSchedule):
the learning rate will be multiplied by a linear decay.
the learning rate will be multiplied by a linear decay.
name: Optional, name of warmup schedule.
name: Optional, name of warmup schedule.
"""
"""
super
(
PowerAndLinearDecay
,
self
).
__init__
()
super
().
__init__
()
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_total_decay_steps
=
total_decay_steps
self
.
_total_decay_steps
=
total_decay_steps
self
.
_power
=
power
self
.
_power
=
power
...
@@ -276,7 +276,7 @@ class PowerDecayWithOffset(tf.keras.optimizers.schedules.LearningRateSchedule):
...
@@ -276,7 +276,7 @@ class PowerDecayWithOffset(tf.keras.optimizers.schedules.LearningRateSchedule):
pre_offset_learning_rate: The maximum learning rate we'll use.
pre_offset_learning_rate: The maximum learning rate we'll use.
name: Optional, name of warmup schedule.
name: Optional, name of warmup schedule.
"""
"""
super
(
PowerDecayWithOffset
,
self
).
__init__
()
super
().
__init__
()
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_power
=
power
self
.
_power
=
power
self
.
_offset
=
offset
self
.
_offset
=
offset
...
...
official/modeling/optimization/optimizer_factory.py
View file @
3e45d52f
...
@@ -49,7 +49,7 @@ WARMUP_CLS = {
...
@@ -49,7 +49,7 @@ WARMUP_CLS = {
}
}
class
OptimizerFactory
(
object
)
:
class
OptimizerFactory
:
"""Optimizer factory class.
"""Optimizer factory class.
This class builds learning rate and optimizer based on an optimization config.
This class builds learning rate and optimizer based on an optimization config.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment