Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
3d61d6b3
Commit
3d61d6b3
authored
Mar 30, 2023
by
qianyj
Browse files
initial files for ResNet50
parent
d3a70caf
Changes
166
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3104 additions
and
0 deletions
+3104
-0
official/modeling/multitask/evaluator.py
official/modeling/multitask/evaluator.py
+180
-0
official/modeling/multitask/evaluator_test.py
official/modeling/multitask/evaluator_test.py
+133
-0
official/modeling/multitask/interleaving_trainer.py
official/modeling/multitask/interleaving_trainer.py
+102
-0
official/modeling/multitask/interleaving_trainer_test.py
official/modeling/multitask/interleaving_trainer_test.py
+102
-0
official/modeling/multitask/multitask.py
official/modeling/multitask/multitask.py
+145
-0
official/modeling/multitask/task_sampler.py
official/modeling/multitask/task_sampler.py
+128
-0
official/modeling/multitask/task_sampler_test.py
official/modeling/multitask/task_sampler_test.py
+75
-0
official/modeling/multitask/test_utils.py
official/modeling/multitask/test_utils.py
+125
-0
official/modeling/multitask/train_lib.py
official/modeling/multitask/train_lib.py
+265
-0
official/modeling/multitask/train_lib_test.py
official/modeling/multitask/train_lib_test.py
+121
-0
official/modeling/optimization/__init__.py
official/modeling/optimization/__init__.py
+24
-0
official/modeling/optimization/adafactor_optimizer.py
official/modeling/optimization/adafactor_optimizer.py
+20
-0
official/modeling/optimization/configs/__init__.py
official/modeling/optimization/configs/__init__.py
+14
-0
official/modeling/optimization/configs/learning_rate_config.py
...ial/modeling/optimization/configs/learning_rate_config.py
+288
-0
official/modeling/optimization/configs/optimization_config.py
...cial/modeling/optimization/configs/optimization_config.py
+118
-0
official/modeling/optimization/configs/optimization_config_test.py
...modeling/optimization/configs/optimization_config_test.py
+59
-0
official/modeling/optimization/configs/optimizer_config.py
official/modeling/optimization/configs/optimizer_config.py
+268
-0
official/modeling/optimization/ema_optimizer.py
official/modeling/optimization/ema_optimizer.py
+255
-0
official/modeling/optimization/lars_optimizer.py
official/modeling/optimization/lars_optimizer.py
+186
-0
official/modeling/optimization/lr_schedule.py
official/modeling/optimization/lr_schedule.py
+496
-0
No files found.
official/modeling/multitask/evaluator.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multitask Evaluator implementation.
The evaluator implements the Orbit `AbstractEvaluator` interface.
"""
from
typing
import
Dict
,
List
,
Optional
,
Union
import
gin
import
orbit
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
train_utils
from
official.modeling.multitask
import
base_model
@
gin
.
configurable
class
MultiTaskEvaluator
(
orbit
.
AbstractEvaluator
):
"""Implements the common trainer shared for TensorFlow models."""
def
__init__
(
self
,
eval_tasks
:
List
[
base_task
.
Task
],
model
:
Union
[
tf
.
keras
.
Model
,
base_model
.
MultiTaskBaseModel
],
global_step
:
Optional
[
tf
.
Variable
]
=
None
,
eval_steps
:
Optional
[
Dict
[
str
,
int
]]
=
None
,
checkpoint_exporter
:
Optional
[
train_utils
.
BestCheckpointExporter
]
=
None
):
"""Initialize common trainer for TensorFlow models.
Args:
eval_tasks: A list of tasks to evaluate.
model: tf.keras.Model instance.
global_step: the global step variable.
eval_steps: a dictionary of steps to run eval keyed by task names.
checkpoint_exporter: an object that has the `maybe_export_checkpoint`
interface.
"""
# Gets the current distribution strategy. If not inside any strategy scope,
# it gets a single-replica no-op strategy.
self
.
_strategy
=
tf
.
distribute
.
get_strategy
()
self
.
_tasks
=
eval_tasks
self
.
_model
=
model
self
.
_global_step
=
global_step
or
orbit
.
utils
.
create_global_step
()
self
.
_checkpoint_exporter
=
checkpoint_exporter
if
hasattr
(
self
.
model
,
"checkpoint_items"
):
checkpoint_items
=
self
.
model
.
checkpoint_items
else
:
checkpoint_items
=
{}
self
.
_checkpoint
=
tf
.
train
.
Checkpoint
(
model
=
self
.
model
,
global_step
=
self
.
global_step
,
**
checkpoint_items
)
self
.
_validation_losses
=
None
self
.
_validation_metrics
=
None
# Builds per-task datasets.
self
.
eval_datasets
=
{}
self
.
eval_steps
=
eval_steps
or
{}
for
task
in
self
.
tasks
:
self
.
eval_datasets
[
task
.
name
]
=
orbit
.
utils
.
make_distributed_dataset
(
self
.
strategy
,
task
.
build_inputs
,
task
.
task_config
.
validation_data
)
# Builds per-task validation loops.
def
get_function
(
task_name
,
task
):
task_metrics
=
self
.
validation_metrics
[
task_name
]
task_loss
=
self
.
validation_losses
[
task_name
]
if
isinstance
(
self
.
model
,
base_model
.
MultiTaskBaseModel
):
model
=
self
.
model
.
sub_tasks
[
task_name
]
else
:
model
=
self
.
model
def
step_fn
(
inputs
):
logs
=
task
.
validation_step
(
inputs
,
model
=
model
,
metrics
=
task_metrics
)
task_loss
.
update_state
(
logs
[
task
.
loss
])
return
logs
@
tf
.
function
def
eval_step_fn
(
iterator
):
distributed_outputs
=
self
.
strategy
.
run
(
step_fn
,
args
=
(
next
(
iterator
),))
return
tf
.
nest
.
map_structure
(
self
.
strategy
.
experimental_local_results
,
distributed_outputs
)
return
orbit
.
utils
.
create_loop_fn
(
eval_step_fn
)
self
.
task_fns
=
{
task
.
name
:
get_function
(
task
.
name
,
task
)
for
task
in
self
.
tasks
}
@
property
def
strategy
(
self
):
return
self
.
_strategy
@
property
def
tasks
(
self
):
return
self
.
_tasks
@
property
def
model
(
self
):
return
self
.
_model
@
property
def
global_step
(
self
):
return
self
.
_global_step
@
property
def
validation_losses
(
self
):
"""Accesses the validation loss metric object."""
if
self
.
_validation_losses
is
None
:
# Builds the per-task metrics and losses.
self
.
_validation_losses
=
{}
for
task
in
self
.
tasks
:
self
.
_validation_losses
[
task
.
name
]
=
tf
.
keras
.
metrics
.
Mean
(
"validation_loss"
,
dtype
=
tf
.
float32
)
return
self
.
_validation_losses
@
property
def
validation_metrics
(
self
):
"""Accesses all validation metric metric objects."""
if
self
.
_validation_metrics
is
None
:
# Builds the per-task metrics and losses.
self
.
_validation_metrics
=
{}
for
task
in
self
.
tasks
:
self
.
_validation_metrics
[
task
.
name
]
=
task
.
build_metrics
(
training
=
False
)
return
self
.
_validation_metrics
@
property
def
checkpoint
(
self
):
"""Accesses the training checkpoint."""
return
self
.
_checkpoint
def
evaluate
(
self
,
num_steps
:
tf
.
Tensor
):
"""Performs evaluation for each `EvalTask`."""
for
metric
in
self
.
validation_losses
.
values
():
metric
.
reset_states
()
for
metrics
in
self
.
validation_metrics
.
values
():
for
metric
in
metrics
:
metric
.
reset_states
()
results
=
{}
eval_iters
=
tf
.
nest
.
map_structure
(
iter
,
self
.
eval_datasets
)
for
task
in
self
.
tasks
:
outputs
=
None
name
=
task
.
name
eval_iter
=
eval_iters
[
name
]
task_eval_steps
=
self
.
eval_steps
.
get
(
name
,
None
)
or
num_steps
outputs
=
self
.
task_fns
[
name
](
eval_iter
,
task_eval_steps
,
state
=
outputs
,
reduce_fn
=
task
.
aggregate_logs
)
task_metrics
=
self
.
validation_metrics
[
name
]
task_loss
=
self
.
validation_losses
[
name
]
logs
=
{}
for
metric
in
task_metrics
+
[
task_loss
]:
logs
[
metric
.
name
]
=
metric
.
result
()
if
outputs
:
metrics
=
task
.
reduce_aggregated_logs
(
outputs
,
global_step
=
self
.
global_step
)
logs
.
update
(
metrics
)
results
[
name
]
=
logs
if
self
.
_checkpoint_exporter
:
self
.
_checkpoint_exporter
.
maybe_export_checkpoint
(
self
.
checkpoint
,
results
,
self
.
global_step
.
numpy
())
return
results
official/modeling/multitask/evaluator_test.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for multitask.evaluator."""
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
tensorflow.python.distribute
import
strategy_combinations
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.modeling.multitask
import
evaluator
def
all_strategy_combinations
():
return
combinations
.
combine
(
distribution
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
mode
=
"eager"
,
)
class
MockModel
(
tf
.
keras
.
Model
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
().
__init__
(
*
args
,
**
kwargs
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
1
)
def
call
(
self
,
inputs
):
print
(
inputs
,
type
(
inputs
))
if
"y"
in
inputs
:
self
.
add_loss
(
tf
.
zeros
((
1
,),
dtype
=
tf
.
float32
))
else
:
self
.
add_loss
(
tf
.
ones
((
1
,),
dtype
=
tf
.
float32
))
return
self
.
dense
(
inputs
[
"x"
])
class
MockTask
(
base_task
.
Task
):
"""Mock task object for testing."""
def
build_metrics
(
self
,
training
:
bool
=
True
):
del
training
return
[
tf
.
keras
.
metrics
.
Accuracy
(
name
=
"acc"
)]
def
build_inputs
(
self
,
params
):
def
generate_data
(
_
):
x
=
tf
.
zeros
(
shape
=
(
2
,),
dtype
=
tf
.
float32
)
label
=
tf
.
zeros
([
1
],
dtype
=
tf
.
int32
)
if
self
.
name
==
"bar"
:
return
dict
(
x
=
x
,
y
=
x
),
label
else
:
return
dict
(
x
=
x
),
label
dataset
=
tf
.
data
.
Dataset
.
range
(
1
)
dataset
=
dataset
.
repeat
()
dataset
=
dataset
.
map
(
generate_data
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
return
dataset
.
prefetch
(
buffer_size
=
1
).
batch
(
2
,
drop_remainder
=
True
)
def
validation_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
metrics
=
None
):
logs
=
super
().
validation_step
(
inputs
,
model
,
metrics
)
logs
[
"counter"
]
=
tf
.
ones
((
1
,),
dtype
=
tf
.
float32
)
return
logs
def
aggregate_logs
(
self
,
state
,
step_outputs
):
if
state
is
None
:
state
=
{}
for
key
,
value
in
step_outputs
.
items
():
if
key
not
in
state
:
state
[
key
]
=
[]
state
[
key
].
append
(
np
.
concatenate
([
np
.
expand_dims
(
v
.
numpy
(),
axis
=
0
)
for
v
in
value
]))
return
state
def
reduce_aggregated_logs
(
self
,
aggregated_logs
,
global_step
=
None
):
for
k
,
v
in
aggregated_logs
.
items
():
aggregated_logs
[
k
]
=
np
.
sum
(
np
.
stack
(
v
,
axis
=
0
))
return
aggregated_logs
class
EvaluatorTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_multitask_evaluator
(
self
,
distribution
):
with
distribution
.
scope
():
tasks
=
[
MockTask
(
params
=
cfg
.
TaskConfig
(),
name
=
"bar"
),
MockTask
(
params
=
cfg
.
TaskConfig
(),
name
=
"foo"
)
]
model
=
MockModel
()
test_evaluator
=
evaluator
.
MultiTaskEvaluator
(
eval_tasks
=
tasks
,
model
=
model
)
results
=
test_evaluator
.
evaluate
(
tf
.
convert_to_tensor
(
1
,
dtype
=
tf
.
int32
))
self
.
assertContainsSubset
([
"validation_loss"
,
"acc"
],
results
[
"bar"
].
keys
())
self
.
assertContainsSubset
([
"validation_loss"
,
"acc"
],
results
[
"foo"
].
keys
())
self
.
assertEqual
(
results
[
"bar"
][
"validation_loss"
],
0.0
)
self
.
assertEqual
(
results
[
"foo"
][
"validation_loss"
],
1.0
)
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_multitask_evaluator_numpy_metrics
(
self
,
distribution
):
with
distribution
.
scope
():
tasks
=
[
MockTask
(
params
=
cfg
.
TaskConfig
(),
name
=
"bar"
),
MockTask
(
params
=
cfg
.
TaskConfig
(),
name
=
"foo"
)
]
model
=
MockModel
()
test_evaluator
=
evaluator
.
MultiTaskEvaluator
(
eval_tasks
=
tasks
,
model
=
model
)
results
=
test_evaluator
.
evaluate
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertEqual
(
results
[
"bar"
][
"counter"
],
5.
*
distribution
.
num_replicas_in_sync
)
self
.
assertEqual
(
results
[
"foo"
][
"counter"
],
5.
*
distribution
.
num_replicas_in_sync
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/modeling/multitask/interleaving_trainer.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multitask trainer that interleaves each task's train step."""
from
typing
import
Union
import
gin
import
orbit
import
tensorflow
as
tf
from
official.modeling.multitask
import
base_model
from
official.modeling.multitask
import
base_trainer
from
official.modeling.multitask
import
multitask
from
official.modeling.multitask
import
task_sampler
as
sampler
@
gin
.
configurable
class
MultiTaskInterleavingTrainer
(
base_trainer
.
MultiTaskBaseTrainer
):
"""MultiTask trainer that interleaves task update."""
def
__init__
(
self
,
multi_task
:
multitask
.
MultiTask
,
multi_task_model
:
Union
[
tf
.
keras
.
Model
,
base_model
.
MultiTaskBaseModel
],
optimizer
:
tf
.
optimizers
.
Optimizer
,
task_sampler
:
sampler
.
TaskSampler
,
trainer_options
=
None
):
super
().
__init__
(
multi_task
=
multi_task
,
multi_task_model
=
multi_task_model
,
optimizer
=
optimizer
,
trainer_options
=
trainer_options
)
self
.
_task_sampler
=
task_sampler
# Build per task train step.
def
_get_task_step
(
task_name
,
task
):
def
step_fn
(
inputs
):
if
isinstance
(
self
.
multi_task_model
,
base_model
.
MultiTaskBaseModel
):
task_model
=
self
.
multi_task_model
.
sub_tasks
[
task_name
]
else
:
task_model
=
self
.
multi_task_model
task_logs
=
task
.
train_step
(
inputs
,
model
=
task_model
,
optimizer
=
self
.
optimizer
,
metrics
=
self
.
training_metrics
[
task_name
])
self
.
training_losses
[
task_name
].
update_state
(
task_logs
[
task
.
loss
])
return
step_fn
self
.
_task_train_step_map
=
{
name
:
_get_task_step
(
name
,
task
)
for
name
,
task
in
self
.
multi_task
.
tasks
.
items
()
}
# TODO(haozhangthu): Add taskwise step counter to train_loop_end for logging
# on TensorBoard.
self
.
_task_step_counters
=
{
name
:
orbit
.
utils
.
create_global_step
()
for
name
in
self
.
multi_task
.
tasks
}
def
task_step_counter
(
self
,
name
):
return
self
.
_task_step_counters
[
name
]
def
train_step
(
self
,
iterator_map
):
# Sample one task to train according to a multinomial distribution
rn
=
tf
.
random
.
stateless_uniform
(
shape
=
[],
seed
=
(
0
,
self
.
global_step
))
cumulative_sample_distribution
=
self
.
_task_sampler
.
task_cumulative_distribution
(
self
.
global_step
)
# Prepend a [0.0] for indexing convenience.
cumulative_sample_distribution
=
tf
.
concat
(
[
tf
.
constant
([
0.0
],
dtype
=
tf
.
float32
),
cumulative_sample_distribution
],
axis
=
0
)
for
idx
,
(
name
,
_
)
in
enumerate
(
self
.
multi_task
.
tasks
.
items
()):
begin
=
cumulative_sample_distribution
[
idx
]
end
=
cumulative_sample_distribution
[
idx
+
1
]
if
rn
>=
begin
and
rn
<
end
:
self
.
_strategy
.
run
(
self
.
_task_train_step_map
[
name
],
args
=
(
next
(
iterator_map
[
name
]),))
self
.
global_step
.
assign_add
(
1
)
self
.
task_step_counter
(
name
).
assign_add
(
1
)
def
train_loop_end
(
self
):
"""Record loss and metric values per task."""
result
=
super
().
train_loop_end
()
# Interleaving training does not have a good semantic for `total_loss`. In
# fact, it is always zero. To avoid confusion, we filter the `total_loss`
# from the result logs.
if
'total_loss'
in
result
:
result
.
pop
(
'total_loss'
)
return
result
official/modeling/multitask/interleaving_trainer_test.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for multitask.interleaving_trainer."""
from
absl.testing
import
parameterized
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
tensorflow.python.distribute
import
strategy_combinations
from
official.modeling.multitask
import
configs
from
official.modeling.multitask
import
interleaving_trainer
from
official.modeling.multitask
import
multitask
from
official.modeling.multitask
import
task_sampler
from
official.modeling.multitask
import
test_utils
def
all_strategy_combinations
():
return
combinations
.
combine
(
distribution
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
mode
=
"eager"
,
)
class
InterleavingTrainerTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_multitask_interleaving_trainer
(
self
,
distribution
):
with
distribution
.
scope
():
tasks
=
[
test_utils
.
MockFooTask
(
params
=
test_utils
.
FooConfig
(),
name
=
"foo"
),
test_utils
.
MockBarTask
(
params
=
test_utils
.
BarConfig
(),
name
=
"bar"
)
]
test_multitask
=
multitask
.
MultiTask
(
tasks
=
tasks
)
test_optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
0.1
)
model
=
test_utils
.
MockMultiTaskModel
()
sampler
=
task_sampler
.
UniformTaskSampler
(
task_weights
=
test_multitask
.
task_weights
)
test_trainer
=
interleaving_trainer
.
MultiTaskInterleavingTrainer
(
multi_task
=
test_multitask
,
multi_task_model
=
model
,
optimizer
=
test_optimizer
,
task_sampler
=
sampler
)
results
=
test_trainer
.
train
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertContainsSubset
([
"training_loss"
,
"bar_acc"
],
results
[
"bar"
].
keys
())
self
.
assertContainsSubset
([
"training_loss"
,
"foo_acc"
],
results
[
"foo"
].
keys
())
self
.
assertNotIn
(
"total_loss"
,
results
)
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_trainer_with_configs
(
self
,
distribution
):
config
=
configs
.
MultiTaskConfig
(
task_routines
=
(
configs
.
TaskRoutine
(
task_name
=
"foo"
,
task_config
=
test_utils
.
FooConfig
(),
task_weight
=
3.0
),
configs
.
TaskRoutine
(
task_name
=
"bar"
,
task_config
=
test_utils
.
BarConfig
(),
task_weight
=
1.0
)))
with
distribution
.
scope
():
test_multitask
=
multitask
.
MultiTask
.
from_config
(
config
)
test_optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
0.1
)
model
=
test_utils
.
MockMultiTaskModel
()
num_step
=
1000
sampler
=
task_sampler
.
AnnealingTaskSampler
(
task_weights
=
test_multitask
.
task_weights
,
steps_per_epoch
=
num_step
/
5
,
total_steps
=
num_step
)
test_trainer
=
interleaving_trainer
.
MultiTaskInterleavingTrainer
(
multi_task
=
test_multitask
,
multi_task_model
=
model
,
optimizer
=
test_optimizer
,
task_sampler
=
sampler
)
results
=
test_trainer
.
train
(
tf
.
convert_to_tensor
(
num_step
,
dtype
=
tf
.
int32
))
self
.
assertContainsSubset
([
"training_loss"
,
"bar_acc"
],
results
[
"bar"
].
keys
())
self
.
assertContainsSubset
([
"training_loss"
,
"foo_acc"
],
results
[
"foo"
].
keys
())
self
.
assertEqual
(
test_trainer
.
global_step
.
numpy
(),
num_step
)
bar_sampled_step
=
test_trainer
.
task_step_counter
(
"bar"
).
numpy
()
foo_sampled_step
=
test_trainer
.
task_step_counter
(
"foo"
).
numpy
()
self
.
assertEqual
(
bar_sampled_step
+
foo_sampled_step
,
num_step
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/modeling/multitask/multitask.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Experimental MultiTask base class for multi-task training/evaluation."""
import
abc
from
typing
import
Dict
,
List
,
Optional
,
Text
,
Union
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
from
official.core
import
task_factory
from
official.modeling
import
optimization
from
official.modeling.multitask
import
base_model
from
official.modeling.multitask
import
configs
OptimizationConfig
=
optimization
.
OptimizationConfig
RuntimeConfig
=
config_definitions
.
RuntimeConfig
class
MultiTask
(
tf
.
Module
,
metaclass
=
abc
.
ABCMeta
):
"""A multi-task class to manage multiple tasks."""
def
__init__
(
self
,
tasks
:
Union
[
Dict
[
Text
,
base_task
.
Task
],
List
[
base_task
.
Task
]],
task_weights
:
Optional
[
Dict
[
str
,
Union
[
float
,
int
]]]
=
None
,
task_eval_steps
:
Optional
[
Dict
[
str
,
int
]]
=
None
,
name
:
Optional
[
str
]
=
None
):
"""MultiTask initialization.
Args:
tasks: a list or a flat dict of Task.
task_weights: a dict of (task, task weight), task weight can be applied
directly during loss summation in a joint backward step, or it can be
used to sample task among interleaved backward step.
task_eval_steps: a dict of (task, eval steps).
name: the instance name of a MultiTask object.
"""
super
().
__init__
(
name
=
name
)
if
isinstance
(
tasks
,
list
):
self
.
_tasks
=
{}
for
task
in
tasks
:
if
task
.
name
in
self
.
_tasks
:
raise
ValueError
(
"Duplicated tasks found, task.name is %s"
%
task
.
name
)
self
.
_tasks
[
task
.
name
]
=
task
elif
isinstance
(
tasks
,
dict
):
self
.
_tasks
=
tasks
else
:
raise
ValueError
(
"The tasks argument has an invalid type: %s"
%
type
(
tasks
))
self
.
task_eval_steps
=
task_eval_steps
or
{}
self
.
_task_weights
=
task_weights
or
{}
self
.
_task_weights
=
dict
([
(
name
,
self
.
_task_weights
.
get
(
name
,
1.0
))
for
name
in
self
.
tasks
])
@
classmethod
def
from_config
(
cls
,
config
:
configs
.
MultiTaskConfig
,
logging_dir
=
None
):
tasks
=
{}
task_eval_steps
=
{}
task_weights
=
{}
for
task_routine
in
config
.
task_routines
:
task_name
=
task_routine
.
task_name
or
task_routine
.
task_config
.
name
tasks
[
task_name
]
=
task_factory
.
get_task
(
task_routine
.
task_config
,
logging_dir
=
logging_dir
,
name
=
task_name
)
task_eval_steps
[
task_name
]
=
task_routine
.
eval_steps
task_weights
[
task_name
]
=
task_routine
.
task_weight
return
cls
(
tasks
,
task_eval_steps
=
task_eval_steps
,
task_weights
=
task_weights
)
@
property
def
tasks
(
self
):
return
self
.
_tasks
def
task_weight
(
self
,
task_name
):
return
self
.
_task_weights
[
task_name
]
@
property
def
task_weights
(
self
):
return
self
.
_task_weights
@
classmethod
def
create_optimizer
(
cls
,
optimizer_config
:
OptimizationConfig
,
runtime_config
:
Optional
[
RuntimeConfig
]
=
None
):
return
base_task
.
Task
.
create_optimizer
(
optimizer_config
=
optimizer_config
,
runtime_config
=
runtime_config
)
def
joint_train_step
(
self
,
task_inputs
,
multi_task_model
:
base_model
.
MultiTaskBaseModel
,
optimizer
:
tf
.
keras
.
optimizers
.
Optimizer
,
task_metrics
,
**
kwargs
):
"""The joint train step.
Args:
task_inputs: a dictionary of task names and per-task features.
multi_task_model: a MultiTaskBaseModel instance.
optimizer: a tf.optimizers.Optimizer.
task_metrics: a dictionary of task names and per-task metrics.
**kwargs: other arguments to pass through.
Returns:
A dictionary of losses, inculding per-task losses and their weighted sum.
"""
losses
=
{}
with
tf
.
GradientTape
()
as
tape
:
total_loss
=
0.0
for
name
,
model
in
multi_task_model
.
sub_tasks
.
items
():
inputs
=
task_inputs
[
name
]
if
isinstance
(
inputs
,
tuple
)
and
len
(
inputs
)
==
2
:
features
,
labels
=
inputs
elif
isinstance
(
inputs
,
dict
):
features
,
labels
=
inputs
,
inputs
else
:
raise
ValueError
(
"The iterator output is neither a tuple nor a "
"dictionary. It is not implemented to support "
"such outputs."
)
outputs
=
model
(
features
,
training
=
True
)
task_loss
=
self
.
tasks
[
name
].
build_losses
(
labels
,
outputs
)
task_weight
=
self
.
task_weight
(
name
)
total_loss
+=
task_weight
*
task_loss
losses
[
name
]
=
task_loss
self
.
tasks
[
name
].
process_metrics
(
task_metrics
[
name
],
labels
,
outputs
,
**
kwargs
)
# Scales loss as the default gradients allreduce performs sum inside
# the optimizer.
scaled_loss
=
total_loss
/
tf
.
distribute
.
get_strategy
(
).
num_replicas_in_sync
tvars
=
multi_task_model
.
trainable_variables
grads
=
tape
.
gradient
(
scaled_loss
,
tvars
)
optimizer
.
apply_gradients
(
list
(
zip
(
grads
,
tvars
)))
losses
[
"total_loss"
]
=
total_loss
return
losses
official/modeling/multitask/task_sampler.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utils to sample tasks for interleaved optimization."""
import
abc
from
typing
import
Union
,
Dict
,
Text
import
tensorflow
as
tf
from
official.modeling.multitask
import
configs
class
TaskSampler
(
tf
.
Module
,
metaclass
=
abc
.
ABCMeta
):
"""An abstract class defining task sampling API for interleaving trainer."""
def
__init__
(
self
,
task_weights
:
Dict
[
Text
,
Union
[
float
,
int
]]):
self
.
_task_weights
=
task_weights
@
property
def
task_weights
(
self
):
return
self
.
_task_weights
@
abc
.
abstractmethod
def
task_cumulative_distribution
(
self
,
global_step
:
tf
.
Tensor
)
->
tf
.
Tensor
:
"""Compute cumulative distribution to sample tasks.
It calculates the cumulative distribution of the multinomial task
distribution with respect to which to be sampled against.
Args:
global_step: A tensor indicating current progess of training.
Returns:
A float tensor with shape (#(task), 1) that represents the cumulative
sampling distribution.
"""
pass
class
UniformTaskSampler
(
TaskSampler
):
"""Sample all tasks uniformly."""
def
__init__
(
self
,
task_weights
:
Dict
[
Text
,
Union
[
float
,
int
]]):
super
(
UniformTaskSampler
,
self
).
__init__
(
task_weights
=
task_weights
)
self
.
_uniform_cumulative
=
tf
.
math
.
cumsum
(
tf
.
constant
(
[
1.0
/
len
(
self
.
_task_weights
)]
*
len
(
self
.
_task_weights
),
dtype
=
tf
.
float32
))
def
task_cumulative_distribution
(
self
,
global_step
:
tf
.
Tensor
)
->
tf
.
Tensor
:
del
global_step
return
self
.
_uniform_cumulative
class
ProportionalTaskSampler
(
TaskSampler
):
"""Sample tasks proportional to task weights."""
def
__init__
(
self
,
task_weights
:
Dict
[
Text
,
Union
[
float
,
int
]],
alpha
:
float
=
1.0
):
super
(
ProportionalTaskSampler
,
self
).
__init__
(
task_weights
=
task_weights
)
self
.
_alpha
=
tf
.
cast
(
alpha
,
dtype
=
tf
.
float32
)
task_weight_dict_ordered_list
=
tf
.
constant
(
[
weight
for
_
,
weight
in
self
.
_task_weights
.
items
()],
dtype
=
tf
.
float32
)
task_sizes
=
tf
.
math
.
pow
(
task_weight_dict_ordered_list
,
self
.
_alpha
)
task_distribution
=
task_sizes
/
tf
.
reduce_sum
(
task_sizes
)
self
.
_porportional_cumulative
=
tf
.
math
.
cumsum
(
task_distribution
)
def
task_cumulative_distribution
(
self
,
global_step
:
tf
.
Tensor
)
->
tf
.
Tensor
:
del
global_step
return
self
.
_porportional_cumulative
class
AnnealingTaskSampler
(
TaskSampler
):
"""Sample tasks according to task weights as well as training progress.
See http://proceedings.mlr.press/v97/stickland19a/stickland19a.pdf
"""
def
__init__
(
self
,
task_weights
:
Dict
[
Text
,
Union
[
float
,
int
]],
steps_per_epoch
:
int
,
total_steps
:
int
):
super
(
AnnealingTaskSampler
,
self
).
__init__
(
task_weights
=
task_weights
)
self
.
_steps_per_epoch
=
tf
.
cast
(
steps_per_epoch
,
dtype
=
tf
.
float32
)
self
.
_total_epochs
=
tf
.
cast
(
total_steps
/
self
.
_steps_per_epoch
,
dtype
=
tf
.
float32
)
def
task_cumulative_distribution
(
self
,
global_step
:
tf
.
Tensor
)
->
tf
.
Tensor
:
cur_epoch
=
tf
.
math
.
floor
(
tf
.
cast
(
global_step
,
dtype
=
tf
.
float32
)
/
self
.
_steps_per_epoch
)
alpha
=
1.0
-
0.8
*
(
cur_epoch
-
1
)
/
(
self
.
_total_epochs
-
1
+
1e-10
)
task_weight_dict_ordered_list
=
[
weight
for
_
,
weight
in
self
.
_task_weights
.
items
()
]
task_sizes
=
tf
.
math
.
pow
(
tf
.
constant
(
task_weight_dict_ordered_list
,
dtype
=
tf
.
float32
),
tf
.
cast
(
alpha
,
dtype
=
tf
.
float32
))
dynamic_task_distribution
=
task_sizes
/
tf
.
reduce_sum
(
task_sizes
)
return
tf
.
math
.
cumsum
(
dynamic_task_distribution
)
def
get_task_sampler
(
config
:
configs
.
TaskSamplingConfig
,
task_weights
:
Dict
[
Text
,
float
])
->
TaskSampler
:
"""Utils to create task sampler with configuration and task weights."""
oneof_config
=
config
.
get
()
if
config
.
type
==
'uniform'
:
return
UniformTaskSampler
(
task_weights
=
task_weights
)
elif
config
.
type
==
'proportional'
:
return
ProportionalTaskSampler
(
task_weights
=
task_weights
,
alpha
=
oneof_config
.
alpha
)
elif
config
.
type
==
'annealing'
:
return
AnnealingTaskSampler
(
task_weights
=
task_weights
,
steps_per_epoch
=
oneof_config
.
steps_per_epoch
,
total_steps
=
oneof_config
.
total_steps
)
else
:
raise
RuntimeError
(
'Task sampler type not supported'
)
official/modeling/multitask/task_sampler_test.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for multitask.task_sampler."""
import
tensorflow
as
tf
from
official.modeling.multitask
import
configs
from
official.modeling.multitask
import
task_sampler
as
sampler
class
TaskSamplerTest
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
super
(
TaskSamplerTest
,
self
).
setUp
()
self
.
_task_weights
=
{
'A'
:
1.0
,
'B'
:
2.0
,
'C'
:
3.0
}
def
test_uniform_sample_distribution
(
self
):
uniform_sampler
=
sampler
.
get_task_sampler
(
configs
.
TaskSamplingConfig
(
type
=
'uniform'
),
self
.
_task_weights
)
for
step
in
range
(
5
):
cumulative_distribution
=
uniform_sampler
.
task_cumulative_distribution
(
tf
.
constant
(
step
,
dtype
=
tf
.
int64
))
self
.
assertAllClose
([
0.333333
,
0.666666
,
1.0
],
cumulative_distribution
.
numpy
())
def
test_proportional_sample_distribution
(
self
):
prop_sampler
=
sampler
.
get_task_sampler
(
configs
.
TaskSamplingConfig
(
type
=
'proportional'
,
proportional
=
configs
.
ProportionalSampleConfig
(
alpha
=
2.0
)),
self
.
_task_weights
)
# CucmulativeOf(Normalize([1.0^2, 2.0^2, 3.0^2]))
for
step
in
range
(
5
):
cumulative_distribution
=
prop_sampler
.
task_cumulative_distribution
(
tf
.
constant
(
step
,
dtype
=
tf
.
int64
))
self
.
assertAllClose
([
0.07142857
,
0.35714286
,
1.0
],
cumulative_distribution
.
numpy
())
def
test_annealing_sample_distribution
(
self
):
num_epoch
=
3
step_per_epoch
=
6
annel_sampler
=
sampler
.
get_task_sampler
(
configs
.
TaskSamplingConfig
(
type
=
'annealing'
,
annealing
=
configs
.
AnnealingSampleConfig
(
steps_per_epoch
=
step_per_epoch
,
total_steps
=
step_per_epoch
*
num_epoch
)),
self
.
_task_weights
)
global_step
=
tf
.
Variable
(
0
,
dtype
=
tf
.
int64
,
name
=
'global_step'
,
trainable
=
False
)
expected_cumulative_epochs
=
[[
0.12056106
,
0.4387236
,
1.0
],
[
0.16666667
,
0.5
,
1.0
],
[
0.22477472
,
0.5654695
,
1.0
]]
for
epoch
in
range
(
num_epoch
):
for
_
in
range
(
step_per_epoch
):
cumulative_distribution
=
annel_sampler
.
task_cumulative_distribution
(
tf
.
constant
(
global_step
,
dtype
=
tf
.
int64
))
global_step
.
assign_add
(
1
)
self
.
assertAllClose
(
expected_cumulative_epochs
[
epoch
],
cumulative_distribution
.
numpy
())
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/modeling/multitask/test_utils.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing utils for mock models and tasks."""
from
typing
import
Dict
,
Text
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling.multitask
import
base_model
class
MockFooModel
(
tf
.
keras
.
Model
):
"""A mock model can consume 'foo' and 'bar' inputs."""
def
__init__
(
self
,
shared_layer
,
*
args
,
**
kwargs
):
super
().
__init__
(
*
args
,
**
kwargs
)
self
.
_share_layer
=
shared_layer
self
.
_foo_specific_layer
=
tf
.
keras
.
layers
.
Dense
(
1
)
def
call
(
self
,
inputs
):
self
.
add_loss
(
tf
.
zeros
((
1
,),
dtype
=
tf
.
float32
))
if
"foo"
in
inputs
:
input_tensor
=
inputs
[
"foo"
]
else
:
input_tensor
=
inputs
[
"bar"
]
return
self
.
_foo_specific_layer
(
self
.
_share_layer
(
input_tensor
))
class
MockBarModel
(
tf
.
keras
.
Model
):
def
__init__
(
self
,
shared_layer
,
*
args
,
**
kwargs
):
super
().
__init__
(
*
args
,
**
kwargs
)
self
.
_share_layer
=
shared_layer
self
.
_bar_specific_layer
=
tf
.
keras
.
layers
.
Dense
(
1
)
def
call
(
self
,
inputs
):
self
.
add_loss
(
tf
.
zeros
((
2
,),
dtype
=
tf
.
float32
))
return
self
.
_bar_specific_layer
(
self
.
_share_layer
(
inputs
[
"bar"
]))
class
MockMultiTaskModel
(
base_model
.
MultiTaskBaseModel
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
self
.
_shared_dense
=
tf
.
keras
.
layers
.
Dense
(
1
)
super
().
__init__
(
*
args
,
**
kwargs
)
def
_instantiate_sub_tasks
(
self
)
->
Dict
[
Text
,
tf
.
keras
.
Model
]:
return
{
"foo"
:
MockFooModel
(
self
.
_shared_dense
),
"bar"
:
MockBarModel
(
self
.
_shared_dense
)
}
def
mock_data
(
feature_name
):
"""Mock dataset function."""
def
_generate_data
(
_
):
x
=
tf
.
zeros
(
shape
=
(
2
,),
dtype
=
tf
.
float32
)
label
=
tf
.
zeros
([
1
],
dtype
=
tf
.
int32
)
return
{
feature_name
:
x
},
label
dataset
=
tf
.
data
.
Dataset
.
range
(
1
)
dataset
=
dataset
.
repeat
()
dataset
=
dataset
.
map
(
_generate_data
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
return
dataset
.
prefetch
(
buffer_size
=
1
).
batch
(
2
,
drop_remainder
=
True
)
class
FooConfig
(
cfg
.
TaskConfig
):
pass
class
BarConfig
(
cfg
.
TaskConfig
):
pass
@
task_factory
.
register_task_cls
(
FooConfig
)
class
MockFooTask
(
base_task
.
Task
):
"""Mock foo task object for testing."""
def
build_metrics
(
self
,
training
:
bool
=
True
):
del
training
return
[
tf
.
keras
.
metrics
.
Accuracy
(
name
=
"foo_acc"
)]
def
build_inputs
(
self
,
params
):
return
mock_data
(
"foo"
)
def
build_model
(
self
)
->
tf
.
keras
.
Model
:
return
MockFooModel
(
shared_layer
=
tf
.
keras
.
layers
.
Dense
(
1
))
def
build_losses
(
self
,
labels
,
model_outputs
,
aux_losses
=
None
)
->
tf
.
Tensor
:
loss
=
tf
.
keras
.
losses
.
mean_squared_error
(
labels
,
model_outputs
)
if
aux_losses
:
loss
+=
tf
.
add_n
(
aux_losses
)
return
tf
.
reduce_mean
(
loss
)
@
task_factory
.
register_task_cls
(
BarConfig
)
class
MockBarTask
(
base_task
.
Task
):
"""Mock bar task object for testing."""
def
build_metrics
(
self
,
training
:
bool
=
True
):
del
training
return
[
tf
.
keras
.
metrics
.
Accuracy
(
name
=
"bar_acc"
)]
def
build_inputs
(
self
,
params
):
return
mock_data
(
"bar"
)
def
build_losses
(
self
,
labels
,
model_outputs
,
aux_losses
=
None
)
->
tf
.
Tensor
:
loss
=
tf
.
keras
.
losses
.
mean_squared_error
(
labels
,
model_outputs
)
if
aux_losses
:
loss
+=
tf
.
add_n
(
aux_losses
)
return
tf
.
reduce_mean
(
loss
)
official/modeling/multitask/train_lib.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multitask training driver library."""
# pytype: disable=attribute-error
import
os
from
typing
import
Any
,
List
,
Optional
,
Tuple
from
absl
import
logging
import
orbit
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
base_trainer
as
core_lib
from
official.core
import
train_utils
from
official.modeling.multitask
import
base_model
from
official.modeling.multitask
import
base_trainer
from
official.modeling.multitask
import
configs
from
official.modeling.multitask
import
evaluator
as
evaluator_lib
from
official.modeling.multitask
import
interleaving_trainer
from
official.modeling.multitask
import
multitask
from
official.modeling.multitask
import
task_sampler
TRAINERS
=
{
'interleaving'
:
interleaving_trainer
.
MultiTaskInterleavingTrainer
,
'joint'
:
base_trainer
.
MultiTaskBaseTrainer
}
def
run_experiment
(
*
,
distribution_strategy
:
tf
.
distribute
.
Strategy
,
task
:
multitask
.
MultiTask
,
model
:
base_model
.
MultiTaskBaseModel
,
mode
:
str
,
params
:
configs
.
MultiTaskExperimentConfig
,
model_dir
:
str
,
trainer
:
base_trainer
.
MultiTaskBaseTrainer
=
None
)
->
base_model
.
MultiTaskBaseModel
:
"""Runs train/eval configured by the experiment params.
Args:
distribution_strategy: A distribution distribution_strategy.
task: A MultiTaskTask instance.
model: A MultiTaskBaseModel instance.
mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
or 'continuous_eval'.
params: ExperimentConfig instance.
model_dir: A 'str', a path to store model checkpoints and summaries.
trainer: (optional) A multi-task trainer to use. If none is provided, a
default one will be created based on `params`.
Returns:
model: `base_model.MultiTaskBaseModel` instance.
"""
is_training
=
'train'
in
mode
is_eval
=
'eval'
in
mode
with
distribution_strategy
.
scope
():
optimizer
=
task
.
create_optimizer
(
params
.
trainer
.
optimizer_config
,
params
.
runtime
)
kwargs
=
dict
(
multi_task
=
task
,
multi_task_model
=
model
,
optimizer
=
optimizer
)
if
params
.
trainer
.
trainer_type
==
'interleaving'
:
sampler
=
task_sampler
.
get_task_sampler
(
params
.
trainer
.
task_sampler
,
task
.
task_weights
)
kwargs
.
update
(
dict
(
task_sampler
=
sampler
))
if
trainer
is
None
:
trainer
=
TRAINERS
[
params
.
trainer
.
trainer_type
](
**
kwargs
)
if
is_training
else
None
if
is_eval
:
eval_steps
=
task
.
task_eval_steps
evaluator
=
evaluator_lib
.
MultiTaskEvaluator
(
eval_tasks
=
task
.
tasks
.
values
(),
model
=
model
,
eval_steps
=
eval_steps
,
global_step
=
trainer
.
global_step
if
is_training
else
None
,
checkpoint_exporter
=
train_utils
.
maybe_create_best_ckpt_exporter
(
params
,
model_dir
))
else
:
evaluator
=
None
if
trainer
:
checkpoint
=
trainer
.
checkpoint
global_step
=
trainer
.
global_step
else
:
checkpoint
=
evaluator
.
checkpoint
global_step
=
evaluator
.
global_step
# TODO(hongkuny,haozhangthu): Revisit initialization method.
checkpoint_manager
=
tf
.
train
.
CheckpointManager
(
checkpoint
,
directory
=
model_dir
,
max_to_keep
=
params
.
trainer
.
max_to_keep
,
step_counter
=
global_step
,
checkpoint_interval
=
params
.
trainer
.
checkpoint_interval
,
init_fn
=
model
.
initialize
)
controller
=
orbit
.
Controller
(
strategy
=
distribution_strategy
,
trainer
=
trainer
,
evaluator
=
evaluator
,
global_step
=
global_step
,
steps_per_loop
=
params
.
trainer
.
steps_per_loop
,
checkpoint_manager
=
checkpoint_manager
,
summary_dir
=
os
.
path
.
join
(
model_dir
,
'train'
),
eval_summary_dir
=
os
.
path
.
join
(
model_dir
,
'validation'
),
summary_interval
=
params
.
trainer
.
summary_interval
)
logging
.
info
(
'Starts to execute mode: %s'
,
mode
)
with
distribution_strategy
.
scope
():
if
mode
==
'train'
:
controller
.
train
(
steps
=
params
.
trainer
.
train_steps
)
elif
mode
==
'train_and_eval'
:
controller
.
train_and_evaluate
(
train_steps
=
params
.
trainer
.
train_steps
,
eval_steps
=
params
.
trainer
.
validation_steps
,
eval_interval
=
params
.
trainer
.
validation_interval
)
elif
mode
==
'eval'
:
controller
.
evaluate
(
steps
=
params
.
trainer
.
validation_steps
)
elif
mode
==
'continuous_eval'
:
def
timeout_fn
():
if
evaluator
.
global_step
.
numpy
()
>=
params
.
trainer
.
train_steps
:
return
True
return
False
controller
.
evaluate_continuously
(
steps
=
params
.
trainer
.
validation_steps
,
timeout
=
params
.
trainer
.
continuous_eval_timeout
,
timeout_fn
=
timeout_fn
)
else
:
raise
NotImplementedError
(
'The mode is not implemented: %s'
%
mode
)
return
model
def
run_experiment_with_multitask_eval
(
*
,
distribution_strategy
:
tf
.
distribute
.
Strategy
,
train_task
:
base_task
.
Task
,
eval_tasks
:
List
[
base_task
.
Task
],
mode
:
str
,
params
:
configs
.
MultiEvalExperimentConfig
,
model_dir
:
str
,
run_post_eval
:
bool
=
False
,
save_summary
:
bool
=
True
,
trainer
:
Optional
[
core_lib
.
Trainer
]
=
None
)
->
Tuple
[
Any
,
Any
]:
"""Runs train/eval configured by the experiment params.
Args:
distribution_strategy: A distribution distribution_strategy.
train_task: A base_task.Task instance.
eval_tasks: A list of evaluation tasks.
mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
or 'continuous_eval'.
params: MultiEvalExperimentConfig instance.
model_dir: A 'str', a path to store model checkpoints and summaries.
run_post_eval: Whether to run post eval once after training, metrics logs
are returned.
save_summary: Whether to save train and validation summary.
trainer: the core_lib.Trainer instance. It should be created within the
strategy.scope(). If not provided, an instance will be created by default
if `mode` contains 'train'.
Returns:
model: `tf.keras.Model` instance.
"""
is_training
=
'train'
in
mode
is_eval
=
'eval'
in
mode
with
distribution_strategy
.
scope
():
if
is_training
:
trainer
=
trainer
or
core_lib
.
Trainer
(
config
=
params
,
task
=
train_task
,
model
=
train_task
.
build_model
(),
optimizer
=
train_task
.
create_optimizer
(
params
.
trainer
.
optimizer_config
,
params
.
runtime
),
train
=
True
,
evaluate
=
False
)
else
:
trainer
=
None
model
=
trainer
.
model
if
trainer
else
train_task
.
build_model
()
if
is_eval
:
eval_steps
=
dict
([(
task_routine
.
task_config
.
name
,
task_routine
.
eval_steps
)
for
task_routine
in
params
.
eval_tasks
])
evaluator
=
evaluator_lib
.
MultiTaskEvaluator
(
eval_tasks
=
eval_tasks
,
model
=
model
,
global_step
=
trainer
.
global_step
if
is_training
else
None
,
eval_steps
=
eval_steps
,
checkpoint_exporter
=
train_utils
.
maybe_create_best_ckpt_exporter
(
params
,
model_dir
))
else
:
evaluator
=
None
if
trainer
:
checkpoint
=
trainer
.
checkpoint
global_step
=
trainer
.
global_step
else
:
checkpoint
=
evaluator
.
checkpoint
global_step
=
evaluator
.
global_step
checkpoint_manager
=
tf
.
train
.
CheckpointManager
(
checkpoint
,
directory
=
model_dir
,
max_to_keep
=
params
.
trainer
.
max_to_keep
,
step_counter
=
global_step
,
checkpoint_interval
=
params
.
trainer
.
checkpoint_interval
,
init_fn
=
trainer
.
initialize
if
trainer
else
None
)
controller
=
orbit
.
Controller
(
strategy
=
distribution_strategy
,
trainer
=
trainer
,
evaluator
=
evaluator
,
global_step
=
global_step
,
steps_per_loop
=
params
.
trainer
.
steps_per_loop
,
checkpoint_manager
=
checkpoint_manager
,
summary_dir
=
os
.
path
.
join
(
model_dir
,
'train'
)
if
save_summary
else
None
,
eval_summary_dir
=
os
.
path
.
join
(
model_dir
,
'validation'
)
if
(
save_summary
)
else
None
,
summary_interval
=
params
.
trainer
.
summary_interval
if
(
save_summary
)
else
None
)
logging
.
info
(
'Starts to execute mode: %s'
,
mode
)
with
distribution_strategy
.
scope
():
if
mode
==
'train'
:
controller
.
train
(
steps
=
params
.
trainer
.
train_steps
)
elif
mode
==
'train_and_eval'
:
controller
.
train_and_evaluate
(
train_steps
=
params
.
trainer
.
train_steps
,
eval_steps
=
params
.
trainer
.
validation_steps
,
eval_interval
=
params
.
trainer
.
validation_interval
)
elif
mode
==
'eval'
:
controller
.
evaluate
(
steps
=
params
.
trainer
.
validation_steps
)
elif
mode
==
'continuous_eval'
:
def
timeout_fn
():
if
evaluator
.
global_step
.
numpy
()
>=
params
.
trainer
.
train_steps
:
return
True
return
False
controller
.
evaluate_continuously
(
steps
=
params
.
trainer
.
validation_steps
,
timeout
=
params
.
trainer
.
continuous_eval_timeout
,
timeout_fn
=
timeout_fn
)
else
:
raise
NotImplementedError
(
'The mode is not implemented: %s'
%
mode
)
if
run_post_eval
:
return
model
,
evaluator
.
evaluate
(
tf
.
convert_to_tensor
(
params
.
trainer
.
validation_steps
))
# pytype: disable=bad-return-type # typed-keras
else
:
return
model
,
{}
# pytype: disable=bad-return-type # typed-keras
official/modeling/multitask/train_lib_test.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for multitask.train_lib."""
from
absl.testing
import
parameterized
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
tensorflow.python.distribute
import
strategy_combinations
from
official.core
import
task_factory
from
official.modeling.hyperparams
import
params_dict
from
official.modeling.multitask
import
configs
from
official.modeling.multitask
import
multitask
from
official.modeling.multitask
import
test_utils
from
official.modeling.multitask
import
train_lib
class
TrainLibTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
setUp
(
self
):
super
().
setUp
()
self
.
_test_config
=
{
'trainer'
:
{
'checkpoint_interval'
:
10
,
'steps_per_loop'
:
10
,
'summary_interval'
:
10
,
'train_steps'
:
10
,
'validation_steps'
:
5
,
'validation_interval'
:
10
,
'continuous_eval_timeout'
:
1
,
'optimizer_config'
:
{
'optimizer'
:
{
'type'
:
'sgd'
,
},
'learning_rate'
:
{
'type'
:
'constant'
}
}
},
}
@
combinations
.
generate
(
combinations
.
combine
(
distribution_strategy
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
mode
=
'eager'
,
flag_mode
=
[
'train'
,
'eval'
,
'train_and_eval'
]))
def
test_end_to_end
(
self
,
distribution_strategy
,
flag_mode
):
model_dir
=
self
.
get_temp_dir
()
experiment_config
=
configs
.
MultiTaskExperimentConfig
(
task
=
configs
.
MultiTaskConfig
(
task_routines
=
(
configs
.
TaskRoutine
(
task_name
=
'foo'
,
task_config
=
test_utils
.
FooConfig
()),
configs
.
TaskRoutine
(
task_name
=
'bar'
,
task_config
=
test_utils
.
BarConfig
()))))
experiment_config
=
params_dict
.
override_params_dict
(
experiment_config
,
self
.
_test_config
,
is_strict
=
False
)
with
distribution_strategy
.
scope
():
test_multitask
=
multitask
.
MultiTask
.
from_config
(
experiment_config
.
task
)
model
=
test_utils
.
MockMultiTaskModel
()
train_lib
.
run_experiment
(
distribution_strategy
=
distribution_strategy
,
task
=
test_multitask
,
model
=
model
,
mode
=
flag_mode
,
params
=
experiment_config
,
model_dir
=
model_dir
)
@
combinations
.
generate
(
combinations
.
combine
(
distribution_strategy
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
mode
=
'eager'
,
flag_mode
=
[
'train'
,
'eval'
,
'train_and_eval'
]))
def
test_end_to_end_multi_eval
(
self
,
distribution_strategy
,
flag_mode
):
model_dir
=
self
.
get_temp_dir
()
experiment_config
=
configs
.
MultiEvalExperimentConfig
(
task
=
test_utils
.
FooConfig
(),
eval_tasks
=
(
configs
.
TaskRoutine
(
task_name
=
'foo'
,
task_config
=
test_utils
.
FooConfig
(),
eval_steps
=
2
),
configs
.
TaskRoutine
(
task_name
=
'bar'
,
task_config
=
test_utils
.
BarConfig
(),
eval_steps
=
3
)))
experiment_config
=
params_dict
.
override_params_dict
(
experiment_config
,
self
.
_test_config
,
is_strict
=
False
)
with
distribution_strategy
.
scope
():
train_task
=
task_factory
.
get_task
(
experiment_config
.
task
)
eval_tasks
=
[
task_factory
.
get_task
(
config
.
task_config
,
name
=
config
.
task_name
)
for
config
in
experiment_config
.
eval_tasks
]
train_lib
.
run_experiment_with_multitask_eval
(
distribution_strategy
=
distribution_strategy
,
train_task
=
train_task
,
eval_tasks
=
eval_tasks
,
mode
=
flag_mode
,
params
=
experiment_config
,
model_dir
=
model_dir
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/modeling/optimization/__init__.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization package definition."""
# pylint: disable=wildcard-import
from
official.modeling.optimization.configs.learning_rate_config
import
*
from
official.modeling.optimization.configs.optimization_config
import
*
from
official.modeling.optimization.configs.optimizer_config
import
*
from
official.modeling.optimization.ema_optimizer
import
ExponentialMovingAverage
from
official.modeling.optimization.lr_schedule
import
*
from
official.modeling.optimization.optimizer_factory
import
OptimizerFactory
from
official.modeling.optimization.optimizer_factory
import
register_optimizer_cls
official/modeling/optimization/adafactor_optimizer.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Adafactor optimizer.
A new optimizer that will be open sourced soon.
"""
# pylint: disable=invalid-name, represents an unimplemented class definition.
Adafactor
=
"Unimplemented"
official/modeling/optimization/configs/__init__.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
official/modeling/optimization/configs/learning_rate_config.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataclasses for learning rate schedule config."""
from
typing
import
List
,
Optional
import
dataclasses
from
official.modeling.hyperparams
import
base_config
@
dataclasses
.
dataclass
class
ConstantLrConfig
(
base_config
.
Config
):
"""Configuration for constant learning rate.
This class is a containers for the constant learning rate decay configs.
Attributes:
name: The name of the learning rate schedule. Defaults to Constant.
learning_rate: A float. The learning rate. Defaults to 0.1.
"""
name
:
str
=
'Constant'
learning_rate
:
float
=
0.1
@
dataclasses
.
dataclass
class
StepwiseLrConfig
(
base_config
.
Config
):
"""Configuration for stepwise learning rate decay.
This class is a container for the piecewise constant learning rate scheduling
configs. It will configure an instance of PiecewiseConstantDecay keras
learning rate schedule.
An example (from keras docs): use a learning rate that's 1.0 for the first
100001 steps, 0.5 for the next 10000 steps, and 0.1 for any additional steps.
```python
boundaries: [100000, 110000]
values: [1.0, 0.5, 0.1]
Attributes:
name: The name of the learning rate schedule. Defaults to PiecewiseConstant.
boundaries: A list of ints of strictly increasing entries. Defaults to None.
values: A list of floats that specifies the values for the intervals defined
by `boundaries`. It should have one more element than `boundaries`.
The learning rate is computed as follows: [0, boundaries[0]] ->
values[0] [boundaries[0], boundaries[1]] -> values[1]
[boundaries[n-1], boundaries[n]] -> values[n] [boundaries[n],
end] -> values[n+1] Defaults to None.
offset: An int. The offset applied to steps. Defaults to 0.
"""
name
:
str
=
'PiecewiseConstantDecay'
boundaries
:
Optional
[
List
[
int
]]
=
None
values
:
Optional
[
List
[
float
]]
=
None
offset
:
int
=
0
@
dataclasses
.
dataclass
class
ExponentialLrConfig
(
base_config
.
Config
):
"""Configuration for exponential learning rate decay.
This class is a containers for the exponential learning rate decay configs.
Attributes:
name: The name of the learning rate schedule. Defaults to ExponentialDecay.
initial_learning_rate: A float. The initial learning rate. Defaults to None.
decay_steps: A positive integer that is used for decay computation. Defaults
to None.
decay_rate: A float. Defaults to None.
staircase: A boolean, if true, learning rate is decreased at discreate
intervals. Defaults to False.
offset: An int. The offset applied to steps. Defaults to 0.
"""
name
:
str
=
'ExponentialDecay'
initial_learning_rate
:
Optional
[
float
]
=
None
decay_steps
:
Optional
[
int
]
=
None
decay_rate
:
Optional
[
float
]
=
None
staircase
:
Optional
[
bool
]
=
None
offset
:
int
=
0
@
dataclasses
.
dataclass
class
PolynomialLrConfig
(
base_config
.
Config
):
"""Configuration for polynomial learning rate decay.
This class is a containers for the polynomial learning rate decay configs.
Attributes:
name: The name of the learning rate schedule. Defaults to PolynomialDecay.
initial_learning_rate: A float. The initial learning rate. Defaults to None.
decay_steps: A positive integer that is used for decay computation. Defaults
to None.
end_learning_rate: A float. The minimal end learning rate.
power: A float. The power of the polynomial. Defaults to linear, 1.0.
cycle: A boolean, whether or not it should cycle beyond decay_steps.
Defaults to False.
offset: An int. The offset applied to steps. Defaults to 0.
"""
name
:
str
=
'PolynomialDecay'
initial_learning_rate
:
Optional
[
float
]
=
None
decay_steps
:
Optional
[
int
]
=
None
end_learning_rate
:
float
=
0.0001
power
:
float
=
1.0
cycle
:
bool
=
False
offset
:
int
=
0
@
dataclasses
.
dataclass
class
CosineLrConfig
(
base_config
.
Config
):
"""Configuration for Cosine learning rate decay.
This class is a containers for the cosine learning rate decay configs,
tf.keras.experimental.CosineDecay.
Attributes:
name: The name of the learning rate schedule. Defaults to CosineDecay.
initial_learning_rate: A float. The initial learning rate. Defaults to None.
decay_steps: A positive integer that is used for decay computation. Defaults
to None.
alpha: A float. Minimum learning rate value as a fraction of
initial_learning_rate.
offset: An int. The offset applied to steps. Defaults to 0.
"""
name
:
str
=
'CosineDecay'
initial_learning_rate
:
Optional
[
float
]
=
None
decay_steps
:
Optional
[
int
]
=
None
alpha
:
float
=
0.0
offset
:
int
=
0
@
dataclasses
.
dataclass
class
DirectPowerLrConfig
(
base_config
.
Config
):
"""Configuration for DirectPower learning rate decay.
This class configures a schedule following follows lr * (step)^power.
Attributes:
name: The name of the learning rate schedule. Defaults to DirectPowerDecay.
initial_learning_rate: A float. The initial learning rate. Defaults to None.
power: A float. Defaults to -0.5, for sqrt decay.
"""
name
:
str
=
'DirectPowerDecay'
initial_learning_rate
:
Optional
[
float
]
=
None
power
:
float
=
-
0.5
@
dataclasses
.
dataclass
class
PowerAndLinearDecayLrConfig
(
base_config
.
Config
):
"""Configuration for DirectPower learning rate decay.
The schedule has the following behavoir.
Let offset_step = step - offset.
1) offset_step < 0, the actual learning rate equals initial_learning_rate.
2) offset_step <= total_decay_steps * (1 - linear_decay_fraction), the
actual learning rate equals lr * offset_step^power.
3) total_decay_steps * (1 - linear_decay_fraction) <= offset_step <
total_decay_steps, the actual learning rate equals lr * offset_step^power *
(total_decay_steps - offset_step) / (total_decay_steps *
linear_decay_fraction).
4) offset_step >= total_decay_steps, the actual learning rate equals zero.
Attributes:
name: The name of the learning rate schedule. Defaults to
PowerAndLinearDecay.
initial_learning_rate: A float. The initial learning rate. Defaults to None.
total_decay_steps: An int. The total number of steps for power + linear
decay. Defaults to None.
power: A float. The order of the polynomial. Defaults to -0.5, for sqrt
decay.
linear_decay_fraction: A float. In the last `linear_decay_fraction` steps,
the learning rate will be multiplied by a linear decay. Defaults to 0.1.
offset: An int. The offset applied to steps. Defaults to 0.
"""
name
:
str
=
'PowerAndLinearDecay'
initial_learning_rate
:
Optional
[
float
]
=
None
total_decay_steps
:
Optional
[
int
]
=
None
power
:
float
=
-
0.5
linear_decay_fraction
:
float
=
0.1
offset
:
int
=
0
@
dataclasses
.
dataclass
class
PowerDecayWithOffsetLrConfig
(
base_config
.
Config
):
"""Configuration for power learning rate decay with step offset.
Learning rate equals to `pre_offset_learning_rate` if `step` < `offset`.
Otherwise, learning rate equals to lr * (step - offset)^power.
Attributes:
name: The name of the learning rate schedule. Defaults to
PowerDecayWithOffset.
initial_learning_rate: A float. The initial learning rate. Defaults to None.
power: A float. Defaults to -0.5, for sqrt decay.
offset: An integer. Power decay happens after `offset` steps.
pre_offset_learning_rate: A float. The constant learning rate before
`offset` steps.
"""
name
:
str
=
'PowerDecayWithOffset'
initial_learning_rate
:
Optional
[
float
]
=
None
power
:
float
=
-
0.5
offset
:
int
=
0
pre_offset_learning_rate
:
float
=
1.0e6
@
dataclasses
.
dataclass
class
StepCosineLrConfig
(
base_config
.
Config
):
"""Configuration for stepwise learning rate decay.
This class is a container for the piecewise cosine learning rate scheduling
configs. It will configure an instance of StepConsineDecayWithOffset keras
learning rate schedule.
```python
boundaries: [100000, 110000]
values: [1.0, 0.5]
lr_decayed_fn = (
lr_schedule.StepConsineDecayWithOffset(
boundaries,
values))
```
from 0 to 100000 step, it will cosine decay from 1.0 to 0.5
from 100000 to 110000 step, it cosine decay from 0.5 to 0.0
Attributes:
name: The name of the learning rate schedule. Defaults to PiecewiseConstant.
boundaries: A list of ints of strictly increasing entries. Defaults to None.
values: A list of floats that specifies the values for the intervals defined
by `boundaries`. It should have one more element than `boundaries`.
The learning rate is computed as follows:
[0, boundaries[0]] -> cosine from values[0] to values[1]
[boundaries[0], boundaries[1]] -> values[1] to values[2]
...
[boundaries[n-1], boundaries[n]] -> values[n] to values[n+1]
[boundaries[n], end] -> values[n+1] to 0.
offset: An int. The offset applied to steps. Defaults to 0.
"""
name
:
str
=
'StepConsineDecayWithOffset'
boundaries
:
Optional
[
List
[
int
]]
=
None
values
:
Optional
[
List
[
float
]]
=
None
offset
:
int
=
0
@
dataclasses
.
dataclass
class
LinearWarmupConfig
(
base_config
.
Config
):
"""Configuration for linear warmup schedule config.
This class is a container for the linear warmup schedule configs.
Warmup_learning_rate is the initial learning rate, the final learning rate of
the warmup period is the learning_rate of the optimizer in use. The learning
rate at each step linearly increased according to the following formula:
warmup_learning_rate = warmup_learning_rate +
step / warmup_steps * (final_learning_rate - warmup_learning_rate).
Using warmup overrides the learning rate schedule by the number of warmup
steps.
Attributes:
name: The name of warmup schedule. Defaults to linear.
warmup_learning_rate: Initial learning rate for the warmup. Defaults to 0.
warmup_steps: Warmup steps. Defaults to None.
"""
name
:
str
=
'linear'
warmup_learning_rate
:
float
=
0
warmup_steps
:
Optional
[
int
]
=
None
@
dataclasses
.
dataclass
class
PolynomialWarmupConfig
(
base_config
.
Config
):
"""Configuration for linear warmup schedule config.
This class is a container for the polynomial warmup schedule configs.
Attributes:
name: The name of warmup schedule. Defaults to Polynomial.
power: Polynomial power. Defaults to 1.
warmup_steps: Warmup steps. Defaults to None.
"""
name
:
str
=
'polynomial'
power
:
float
=
1
warmup_steps
:
Optional
[
int
]
=
None
official/modeling/optimization/configs/optimization_config.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataclasses for optimization configs.
This file define the dataclass for optimization configs (OptimizationConfig).
It also has two helper functions get_optimizer_config, and get_lr_config from
an OptimizationConfig class.
"""
from
typing
import
Optional
import
dataclasses
from
official.modeling.hyperparams
import
base_config
from
official.modeling.hyperparams
import
oneof
from
official.modeling.optimization.configs
import
learning_rate_config
as
lr_cfg
from
official.modeling.optimization.configs
import
optimizer_config
as
opt_cfg
@
dataclasses
.
dataclass
class
OptimizerConfig
(
oneof
.
OneOfConfig
):
"""Configuration for optimizer.
Attributes:
type: 'str', type of optimizer to be used, on the of fields below.
sgd: sgd optimizer config.
adam: adam optimizer config.
adamw: adam with weight decay.
lamb: lamb optimizer.
rmsprop: rmsprop optimizer.
lars: lars optimizer.
adagrad: adagrad optimizer.
slide: slide optimizer.
"""
type
:
Optional
[
str
]
=
None
sgd
:
opt_cfg
.
SGDConfig
=
opt_cfg
.
SGDConfig
()
adam
:
opt_cfg
.
AdamConfig
=
opt_cfg
.
AdamConfig
()
adamw
:
opt_cfg
.
AdamWeightDecayConfig
=
opt_cfg
.
AdamWeightDecayConfig
()
lamb
:
opt_cfg
.
LAMBConfig
=
opt_cfg
.
LAMBConfig
()
rmsprop
:
opt_cfg
.
RMSPropConfig
=
opt_cfg
.
RMSPropConfig
()
lars
:
opt_cfg
.
LARSConfig
=
opt_cfg
.
LARSConfig
()
adagrad
:
opt_cfg
.
AdagradConfig
=
opt_cfg
.
AdagradConfig
()
slide
:
opt_cfg
.
SLIDEConfig
=
opt_cfg
.
SLIDEConfig
()
adafactor
:
opt_cfg
.
AdafactorConfig
=
opt_cfg
.
AdafactorConfig
()
@
dataclasses
.
dataclass
class
LrConfig
(
oneof
.
OneOfConfig
):
"""Configuration for lr schedule.
Attributes:
type: 'str', type of lr schedule to be used, one of the fields below.
constant: constant learning rate config.
stepwise: stepwise learning rate config.
exponential: exponential learning rate config.
polynomial: polynomial learning rate config.
cosine: cosine learning rate config.
power: step^power learning rate config.
power_linear: learning rate config of step^power followed by
step^power*linear.
power_with_offset: power decay with a step offset.
step_cosine_with_offset: Step cosine with a step offset.
"""
type
:
Optional
[
str
]
=
None
constant
:
lr_cfg
.
ConstantLrConfig
=
lr_cfg
.
ConstantLrConfig
()
stepwise
:
lr_cfg
.
StepwiseLrConfig
=
lr_cfg
.
StepwiseLrConfig
()
exponential
:
lr_cfg
.
ExponentialLrConfig
=
lr_cfg
.
ExponentialLrConfig
()
polynomial
:
lr_cfg
.
PolynomialLrConfig
=
lr_cfg
.
PolynomialLrConfig
()
cosine
:
lr_cfg
.
CosineLrConfig
=
lr_cfg
.
CosineLrConfig
()
power
:
lr_cfg
.
DirectPowerLrConfig
=
lr_cfg
.
DirectPowerLrConfig
()
power_linear
:
lr_cfg
.
PowerAndLinearDecayLrConfig
=
(
lr_cfg
.
PowerAndLinearDecayLrConfig
())
power_with_offset
:
lr_cfg
.
PowerDecayWithOffsetLrConfig
=
(
lr_cfg
.
PowerDecayWithOffsetLrConfig
())
step_cosine_with_offset
:
lr_cfg
.
StepCosineLrConfig
=
(
lr_cfg
.
StepCosineLrConfig
())
@
dataclasses
.
dataclass
class
WarmupConfig
(
oneof
.
OneOfConfig
):
"""Configuration for lr schedule.
Attributes:
type: 'str', type of warmup schedule to be used, one of the fields below.
linear: linear warmup config.
polynomial: polynomial warmup config.
"""
type
:
Optional
[
str
]
=
None
linear
:
lr_cfg
.
LinearWarmupConfig
=
lr_cfg
.
LinearWarmupConfig
()
polynomial
:
lr_cfg
.
PolynomialWarmupConfig
=
lr_cfg
.
PolynomialWarmupConfig
()
@
dataclasses
.
dataclass
class
OptimizationConfig
(
base_config
.
Config
):
"""Configuration for optimizer and learning rate schedule.
Attributes:
optimizer: optimizer oneof config.
ema: optional exponential moving average optimizer config, if specified, ema
optimizer will be used.
learning_rate: learning rate oneof config.
warmup: warmup oneof config.
"""
optimizer
:
OptimizerConfig
=
OptimizerConfig
()
ema
:
Optional
[
opt_cfg
.
EMAConfig
]
=
None
learning_rate
:
LrConfig
=
LrConfig
()
warmup
:
WarmupConfig
=
WarmupConfig
()
official/modeling/optimization/configs/optimization_config_test.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for optimization_config.py."""
import
tensorflow
as
tf
from
official.modeling.optimization.configs
import
learning_rate_config
as
lr_cfg
from
official.modeling.optimization.configs
import
optimization_config
from
official.modeling.optimization.configs
import
optimizer_config
as
opt_cfg
class
OptimizerConfigTest
(
tf
.
test
.
TestCase
):
def
test_no_optimizer
(
self
):
optimizer
=
optimization_config
.
OptimizationConfig
({}).
optimizer
.
get
()
self
.
assertIsNone
(
optimizer
)
def
test_no_lr_schedule
(
self
):
lr
=
optimization_config
.
OptimizationConfig
({}).
learning_rate
.
get
()
self
.
assertIsNone
(
lr
)
def
test_no_warmup_schedule
(
self
):
warmup
=
optimization_config
.
OptimizationConfig
({}).
warmup
.
get
()
self
.
assertIsNone
(
warmup
)
def
test_config
(
self
):
opt_config
=
optimization_config
.
OptimizationConfig
({
'optimizer'
:
{
'type'
:
'sgd'
,
'sgd'
:
{}
# default config
},
'learning_rate'
:
{
'type'
:
'polynomial'
,
'polynomial'
:
{}
},
'warmup'
:
{
'type'
:
'linear'
}
})
self
.
assertEqual
(
opt_config
.
optimizer
.
get
(),
opt_cfg
.
SGDConfig
())
self
.
assertEqual
(
opt_config
.
learning_rate
.
get
(),
lr_cfg
.
PolynomialLrConfig
())
self
.
assertEqual
(
opt_config
.
warmup
.
get
(),
lr_cfg
.
LinearWarmupConfig
())
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/modeling/optimization/configs/optimizer_config.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataclasses for optimizer configs."""
from
typing
import
List
,
Optional
import
dataclasses
from
official.modeling.hyperparams
import
base_config
@
dataclasses
.
dataclass
class
BaseOptimizerConfig
(
base_config
.
Config
):
"""Base optimizer config.
Attributes:
clipnorm: float >= 0 or None. If not None, Gradients will be clipped when
their L2 norm exceeds this value.
clipvalue: float >= 0 or None. If not None, Gradients will be clipped when
their absolute value exceeds this value.
global_clipnorm: float >= 0 or None. If not None, gradient of all weights is
clipped so that their global norm is no higher than this value
"""
clipnorm
:
Optional
[
float
]
=
None
clipvalue
:
Optional
[
float
]
=
None
global_clipnorm
:
Optional
[
float
]
=
None
@
dataclasses
.
dataclass
class
SGDConfig
(
BaseOptimizerConfig
):
"""Configuration for SGD optimizer.
The attributes for this class matches the arguments of tf.keras.optimizer.SGD.
Attributes:
name: name of the optimizer.
decay: decay rate for SGD optimizer.
nesterov: nesterov for SGD optimizer.
momentum: momentum for SGD optimizer.
"""
name
:
str
=
"SGD"
decay
:
float
=
0.0
nesterov
:
bool
=
False
momentum
:
float
=
0.0
@
dataclasses
.
dataclass
class
RMSPropConfig
(
BaseOptimizerConfig
):
"""Configuration for RMSProp optimizer.
The attributes for this class matches the arguments of
tf.keras.optimizers.RMSprop.
Attributes:
name: name of the optimizer.
rho: discounting factor for RMSprop optimizer.
momentum: momentum for RMSprop optimizer.
epsilon: epsilon value for RMSprop optimizer, help with numerical stability.
centered: Whether to normalize gradients or not.
"""
name
:
str
=
"RMSprop"
rho
:
float
=
0.9
momentum
:
float
=
0.0
epsilon
:
float
=
1e-7
centered
:
bool
=
False
@
dataclasses
.
dataclass
class
AdagradConfig
(
BaseOptimizerConfig
):
"""Configuration for Adagrad optimizer.
The attributes of this class match the arguments of
tf.keras.optimizer.Adagrad.
Attributes:
name: name of the optimizer.
initial_accumulator_value: A floating point value. Starting value for the
accumulators, must be non-negative.
epsilon: A small floating point value to avoid zero denominator.
"""
name
:
str
=
"Adagrad"
initial_accumulator_value
:
float
=
0.1
epsilon
:
float
=
1e-07
@
dataclasses
.
dataclass
class
AdamConfig
(
BaseOptimizerConfig
):
"""Configuration for Adam optimizer.
The attributes for this class matches the arguments of
tf.keras.optimizer.Adam.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in Adam optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
"""
name
:
str
=
"Adam"
beta_1
:
float
=
0.9
beta_2
:
float
=
0.999
epsilon
:
float
=
1e-07
amsgrad
:
bool
=
False
@
dataclasses
.
dataclass
class
AdamWeightDecayConfig
(
BaseOptimizerConfig
):
"""Configuration for Adam optimizer with weight decay.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in the optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
weight_decay_rate: float. Weight decay rate. Default to 0.
include_in_weight_decay: list[str], or None. List of weight names to include
in weight decay.
exclude_from_weight_decay: list[str], or None. List of weight names to not
include in weight decay.
gradient_clip_norm: A positive float. Clips the gradients to this maximum
L2-norm. Default to 1.0.
"""
name
:
str
=
"AdamWeightDecay"
beta_1
:
float
=
0.9
beta_2
:
float
=
0.999
epsilon
:
float
=
1e-07
amsgrad
:
bool
=
False
weight_decay_rate
:
float
=
0.0
include_in_weight_decay
:
Optional
[
List
[
str
]]
=
None
exclude_from_weight_decay
:
Optional
[
List
[
str
]]
=
None
gradient_clip_norm
:
float
=
1.0
@
dataclasses
.
dataclass
class
LAMBConfig
(
BaseOptimizerConfig
):
"""Configuration for LAMB optimizer.
The attributes for this class matches the arguments of
tensorflow_addons.optimizers.LAMB.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in LAMB optimizer.
weight_decay_rate: float. Weight decay rate. Default to 0.
exclude_from_weight_decay: List of regex patterns of variables excluded from
weight decay. Variables whose name contain a substring matching the
pattern will be excluded.
exclude_from_layer_adaptation: List of regex patterns of variables excluded
from layer adaptation. Variables whose name contain a substring matching
the pattern will be excluded.
"""
name
:
str
=
"LAMB"
beta_1
:
float
=
0.9
beta_2
:
float
=
0.999
epsilon
:
float
=
1e-6
weight_decay_rate
:
float
=
0.0
exclude_from_weight_decay
:
Optional
[
List
[
str
]]
=
None
exclude_from_layer_adaptation
:
Optional
[
List
[
str
]]
=
None
@
dataclasses
.
dataclass
class
EMAConfig
(
BaseOptimizerConfig
):
"""Exponential moving average optimizer config.
Attributes:
name: 'str', name of the optimizer.
trainable_weights_only: 'bool', if True, only model trainable weights will
be updated. Otherwise, all model weights will be updated. This mainly
affects batch normalization parameters.
average_decay: 'float', average decay value.
start_step: 'int', start step to apply moving average.
dynamic_decay: 'bool', whether to apply dynamic decay or not.
"""
name
:
str
=
"ExponentialMovingAverage"
trainable_weights_only
:
bool
=
True
average_decay
:
float
=
0.99
start_step
:
int
=
0
dynamic_decay
:
bool
=
True
@
dataclasses
.
dataclass
class
LARSConfig
(
BaseOptimizerConfig
):
"""Layer-wise adaptive rate scaling config.
Attributes:
name: 'str', name of the optimizer.
momentum: `float` hyperparameter >= 0 that accelerates gradient descent in
the relevant direction and dampens oscillations. Defaults to 0.9.
eeta: `float` LARS coefficient as used in the paper. Default set to LARS
coefficient from the paper. (eeta / weight_decay) determines the highest
scaling factor in LARS..
weight_decay_rate: `float` for weight decay.
nesterov: 'boolean' for whether to use nesterov momentum.
classic_momentum: `boolean` for whether to use classic (or popular)
momentum. The learning rate is applied during momentum update in classic
momentum, but after momentum for popular momentum.
exclude_from_weight_decay: A list of `string` for variable screening, if any
of the string appears in a variable's name, the variable will be excluded
for computing weight decay. For example, one could specify the list like
['batch_normalization', 'bias'] to exclude BN and bias from weight decay.
exclude_from_layer_adaptation: Similar to exclude_from_weight_decay, but for
layer adaptation. If it is None, it will be defaulted the same as
exclude_from_weight_decay.
"""
name
:
str
=
"LARS"
momentum
:
float
=
0.9
eeta
:
float
=
0.001
weight_decay_rate
:
float
=
0.0
nesterov
:
bool
=
False
classic_momentum
:
bool
=
True
exclude_from_weight_decay
:
Optional
[
List
[
str
]]
=
None
exclude_from_layer_adaptation
:
Optional
[
List
[
str
]]
=
None
@
dataclasses
.
dataclass
class
SLIDEConfig
(
BaseOptimizerConfig
):
"""Configuration for SLIDE optimizer.
Details coming soon.
"""
name
:
str
=
"SLIDE"
beta_1
:
float
=
0.9
beta_2
:
float
=
0.999
epsilon
:
float
=
1e-6
weight_decay_rate
:
float
=
0.0
weight_decay_type
:
str
=
"inner"
exclude_from_weight_decay
:
Optional
[
List
[
str
]]
=
None
exclude_from_layer_adaptation
:
Optional
[
List
[
str
]]
=
None
include_in_sparse_layer_adaptation
:
Optional
[
List
[
str
]]
=
None
sparse_layer_learning_rate
:
float
=
0.1
do_gradient_rescaling
:
bool
=
True
norm_type
:
str
=
"layer"
ratio_clip_norm
:
float
=
1e5
@
dataclasses
.
dataclass
class
AdafactorConfig
(
BaseOptimizerConfig
):
"""Configuration for Adafactor optimizer.
The attributes for this class matches the arguments of the Adafactor
implementation.
"""
name
:
str
=
"Adafactor"
factored
:
bool
=
True
multiply_by_parameter_scale
:
bool
=
True
beta1
:
Optional
[
float
]
=
None
decay_rate
:
float
=
0.8
step_offset
:
int
=
0
clipping_threshold
:
float
=
1.0
min_dim_size_to_factor
:
int
=
128
epsilon1
:
float
=
1e-30
epsilon2
:
float
=
1e-3
official/modeling/optimization/ema_optimizer.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Exponential moving average optimizer."""
from
typing
import
List
,
Optional
,
Text
import
tensorflow
as
tf
# pylint: disable=protected-access
class
ExponentialMovingAverage
(
tf
.
keras
.
optimizers
.
Optimizer
):
"""Optimizer that computes an exponential moving average of the variables.
Empirically it has been found that using the moving average of the trained
parameters of a deep network is better than using its trained parameters
directly. This optimizer allows you to compute this moving average and swap
the variables at save time so that any code outside of the training loop
will use by default the average values instead of the original ones.
Example of usage for training:
```python
opt = tf.keras.optimizers.SGD(learning_rate)
opt = ExponentialMovingAverage(opt)
opt.shadow_copy(model)
```
At test time, swap the shadow variables to evaluate on the averaged weights:
```python
opt.swap_weights()
# Test eval the model here
opt.swap_weights()
```
"""
def
__init__
(
self
,
optimizer
:
tf
.
keras
.
optimizers
.
Optimizer
,
trainable_weights_only
:
bool
=
True
,
average_decay
:
float
=
0.99
,
start_step
:
int
=
0
,
dynamic_decay
:
bool
=
True
,
name
:
Text
=
'ExponentialMovingAverage'
,
**
kwargs
):
"""Construct a new ExponentialMovingAverage optimizer.
Args:
optimizer: `tf.keras.optimizers.Optimizer` that will be
used to compute and apply gradients.
trainable_weights_only: 'bool', if True, only model trainable weights will
be updated. Otherwise, all model weights will be updated. This mainly
affects batch normalization parameters.
average_decay: float. Decay to use to maintain the moving averages
of trained variables.
start_step: int. What step to start the moving average.
dynamic_decay: bool. Whether to change the decay based on the number
of optimizer updates. Decay will start at 0.1 and gradually increase
up to `average_decay` after each optimizer update. This behavior is
similar to `tf.train.ExponentialMovingAverage` in TF 1.x.
name: Optional name for the operations created when applying
gradients. Defaults to "moving_average".
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
`clipvalue`, `lr`, `decay`}.
"""
super
().
__init__
(
name
,
**
kwargs
)
self
.
_average_decay
=
average_decay
self
.
_trainable_weights_only
=
trainable_weights_only
self
.
_start_step
=
tf
.
constant
(
start_step
,
tf
.
float32
)
self
.
_dynamic_decay
=
dynamic_decay
self
.
_optimizer
=
optimizer
self
.
_track_trackable
(
self
.
_optimizer
,
'base_optimizer'
)
self
.
_average_weights
=
None
self
.
_model_weights
=
None
def
shadow_copy
(
self
,
model
:
tf
.
keras
.
Model
):
"""Creates shadow variables for the given model weights."""
if
self
.
_trainable_weights_only
:
self
.
_model_weights
=
model
.
trainable_variables
else
:
self
.
_model_weights
=
model
.
variables
for
var
in
self
.
_model_weights
:
self
.
add_slot
(
var
,
'average'
,
initializer
=
'zeros'
)
self
.
_average_weights
=
[
self
.
get_slot
(
var
,
'average'
)
for
var
in
self
.
_model_weights
]
@
property
def
has_shadow_copy
(
self
):
"""Whether this optimizer has created shadow variables."""
return
self
.
_model_weights
is
not
None
and
self
.
_average_weights
is
not
None
def
_create_slots
(
self
,
var_list
):
self
.
_optimizer
.
_create_slots
(
var_list
=
var_list
)
# pylint: disable=protected-access
def
apply_gradients
(
self
,
grads_and_vars
,
name
:
Optional
[
Text
]
=
None
):
result
=
self
.
_optimizer
.
apply_gradients
(
grads_and_vars
,
name
)
self
.
update_average
(
self
.
iterations
)
return
result
@
tf
.
function
def
update_average
(
self
,
step
:
tf
.
Tensor
):
step
=
tf
.
cast
(
step
,
tf
.
float32
)
if
step
<
self
.
_start_step
:
decay
=
tf
.
constant
(
0.
,
tf
.
float32
)
elif
self
.
_dynamic_decay
:
decay
=
step
-
self
.
_start_step
decay
=
tf
.
minimum
(
self
.
_average_decay
,
(
1.
+
decay
)
/
(
10.
+
decay
))
else
:
decay
=
self
.
_average_decay
def
_apply_moving
(
v_moving
,
v_normal
):
diff
=
v_moving
-
v_normal
v_moving
.
assign_sub
(
tf
.
cast
(
1.
-
decay
,
v_moving
.
dtype
)
*
diff
)
return
v_moving
def
_update
(
strategy
,
v_moving_and_v_normal
):
for
v_moving
,
v_normal
in
v_moving_and_v_normal
:
strategy
.
extended
.
update
(
v_moving
,
_apply_moving
,
args
=
(
v_normal
,))
ctx
=
tf
.
distribute
.
get_replica_context
()
return
ctx
.
merge_call
(
_update
,
args
=
(
zip
(
self
.
_average_weights
,
self
.
_model_weights
),))
def
swap_weights
(
self
):
"""Swap the average and moving weights.
This is a convenience method to allow one to evaluate the averaged weights
at test time. Loads the weights stored in `self._average` into the model,
keeping a copy of the original model weights. Swapping twice will return
the original weights.
"""
if
tf
.
distribute
.
in_cross_replica_context
():
strategy
=
tf
.
distribute
.
get_strategy
()
strategy
.
run
(
self
.
_swap_weights
,
args
=
())
else
:
raise
ValueError
(
'Swapping weights must occur under a '
'tf.distribute.Strategy'
)
@
tf
.
function
def
_swap_weights
(
self
):
def
fn_0
(
a
,
b
):
a
.
assign_add
(
b
)
return
a
def
fn_1
(
b
,
a
):
b
.
assign
(
a
-
b
)
return
b
def
fn_2
(
a
,
b
):
a
.
assign_sub
(
b
)
return
a
def
swap
(
strategy
,
a_and_b
):
"""Swap `a` and `b` and mirror to all devices."""
for
a
,
b
in
a_and_b
:
strategy
.
extended
.
update
(
a
,
fn_0
,
args
=
(
b
,))
# a = a + b
strategy
.
extended
.
update
(
b
,
fn_1
,
args
=
(
a
,))
# b = a - b
strategy
.
extended
.
update
(
a
,
fn_2
,
args
=
(
b
,))
# a = a - b
ctx
=
tf
.
distribute
.
get_replica_context
()
return
ctx
.
merge_call
(
swap
,
args
=
(
zip
(
self
.
_average_weights
,
self
.
_model_weights
),))
def
assign_average_vars
(
self
,
var_list
:
List
[
tf
.
Variable
]):
"""Assign variables in var_list with their respective averages.
Args:
var_list: List of model variables to be assigned to their average.
Returns:
assign_op: The op corresponding to the assignment operation of
variables to their average.
"""
assign_op
=
tf
.
group
([
var
.
assign
(
self
.
get_slot
(
var
,
'average'
))
for
var
in
var_list
if
var
.
trainable
])
return
assign_op
def
_create_hypers
(
self
):
self
.
_optimizer
.
_create_hypers
()
# pylint: disable=protected-access
def
_prepare
(
self
,
var_list
):
return
self
.
_optimizer
.
_prepare
(
var_list
=
var_list
)
# pylint: disable=protected-access
@
property
def
iterations
(
self
):
return
self
.
_optimizer
.
iterations
@
iterations
.
setter
def
iterations
(
self
,
variable
):
self
.
_optimizer
.
iterations
=
variable
@
property
def
weights
(
self
):
# return self._weights + self._optimizer.weights
return
self
.
_optimizer
.
weights
def
variables
(
self
):
return
self
.
_weights
+
[
self
.
iterations
]
@
property
def
lr
(
self
):
return
self
.
_optimizer
.
_get_hyper
(
'learning_rate'
)
@
lr
.
setter
def
lr
(
self
,
lr
):
self
.
_optimizer
.
_set_hyper
(
'learning_rate'
,
lr
)
@
property
def
learning_rate
(
self
):
return
self
.
_optimizer
.
_get_hyper
(
'learning_rate'
)
@
learning_rate
.
setter
def
learning_rate
(
self
,
learning_rate
):
# pylint: disable=redefined-outer-name
self
.
_optimizer
.
_set_hyper
(
'learning_rate'
,
learning_rate
)
def
_resource_apply_dense
(
self
,
grad
,
var
):
return
self
.
_optimizer
.
_resource_apply_dense
(
grad
,
var
)
def
_resource_apply_sparse
(
self
,
grad
,
var
,
indices
):
return
self
.
_optimizer
.
_resource_apply_sparse
(
grad
,
var
,
indices
)
def
_resource_apply_sparse_duplicate_indices
(
self
,
grad
,
var
,
indices
):
return
self
.
_optimizer
.
_resource_apply_sparse_duplicate_indices
(
grad
,
var
,
indices
)
def
get_config
(
self
):
config
=
{
'optimizer'
:
tf
.
keras
.
optimizers
.
serialize
(
self
.
_optimizer
),
'average_decay'
:
self
.
_average_decay
,
'start_step'
:
self
.
_start_step
,
'dynamic_decay'
:
self
.
_dynamic_decay
,
}
base_config
=
super
(
ExponentialMovingAverage
,
self
).
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
@
classmethod
def
from_config
(
cls
,
config
,
custom_objects
=
None
):
optimizer
=
tf
.
keras
.
optimizers
.
deserialize
(
config
.
pop
(
'optimizer'
),
custom_objects
=
custom_objects
,
)
return
cls
(
optimizer
,
**
config
)
official/modeling/optimization/lars_optimizer.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layer-wise adaptive rate scaling optimizer."""
import
re
from
typing
import
Text
,
List
,
Optional
import
tensorflow
as
tf
# pylint: disable=protected-access
class
LARS
(
tf
.
keras
.
optimizers
.
Optimizer
):
"""Layer-wise Adaptive Rate Scaling for large batch training.
Introduced by "Large Batch Training of Convolutional Networks" by Y. You,
I. Gitman, and B. Ginsburg. (https://arxiv.org/abs/1708.03888)
"""
def
__init__
(
self
,
learning_rate
:
float
=
0.01
,
momentum
:
float
=
0.9
,
weight_decay_rate
:
float
=
0.0
,
eeta
:
float
=
0.001
,
nesterov
:
bool
=
False
,
classic_momentum
:
bool
=
True
,
exclude_from_weight_decay
:
Optional
[
List
[
Text
]]
=
None
,
exclude_from_layer_adaptation
:
Optional
[
List
[
Text
]]
=
None
,
name
:
Text
=
"LARS"
,
**
kwargs
):
"""Constructs a LARSOptimizer.
Args:
learning_rate: `float` for learning rate. Defaults to 0.01.
momentum: `float` hyperparameter >= 0 that accelerates gradient descent
in the relevant direction and dampens oscillations. Defaults to 0.9.
weight_decay_rate: `float` for weight decay.
eeta: `float` LARS coefficient as used in the paper. Default set to LARS
coefficient from the paper. (eeta / weight_decay) determines the
highest scaling factor in LARS..
nesterov: 'boolean' for whether to use nesterov momentum.
classic_momentum: `boolean` for whether to use classic (or popular)
momentum. The learning rate is applied during momentum update in
classic momentum, but after momentum for popular momentum.
exclude_from_weight_decay: A list of `string` for variable screening, if
any of the string appears in a variable's name, the variable will be
excluded for computing weight decay. For example, one could specify
the list like ['batch_normalization', 'bias'] to exclude BN and bias
from weight decay.
exclude_from_layer_adaptation: Similar to exclude_from_weight_decay, but
for layer adaptation. If it is None, it will be defaulted the same as
exclude_from_weight_decay.
name: `Text` as optional name for the operations created when applying
gradients. Defaults to "LARS".
**kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,
`decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip
gradients by value, `decay` is included for backward compatibility to
allow time inverse decay of learning rate. `lr` is included for
backward compatibility, recommended to use `learning_rate` instead.
"""
super
(
LARS
,
self
).
__init__
(
name
,
**
kwargs
)
self
.
_set_hyper
(
"learning_rate"
,
learning_rate
)
self
.
_set_hyper
(
"decay"
,
self
.
_initial_decay
)
self
.
momentum
=
momentum
self
.
weight_decay_rate
=
weight_decay_rate
self
.
eeta
=
eeta
self
.
nesterov
=
nesterov
self
.
classic_momentum
=
classic_momentum
self
.
exclude_from_weight_decay
=
exclude_from_weight_decay
# exclude_from_layer_adaptation is set to exclude_from_weight_decay if the
# arg is None.
if
exclude_from_layer_adaptation
:
self
.
exclude_from_layer_adaptation
=
exclude_from_layer_adaptation
else
:
self
.
exclude_from_layer_adaptation
=
exclude_from_weight_decay
def
_create_slots
(
self
,
var_list
):
for
v
in
var_list
:
self
.
add_slot
(
v
,
"momentum"
)
def
_resource_apply_dense
(
self
,
grad
,
param
,
apply_state
=
None
):
if
grad
is
None
or
param
is
None
:
return
tf
.
no_op
()
var_device
,
var_dtype
=
param
.
device
,
param
.
dtype
.
base_dtype
coefficients
=
((
apply_state
or
{}).
get
((
var_device
,
var_dtype
))
or
self
.
_fallback_apply_state
(
var_device
,
var_dtype
))
learning_rate
=
coefficients
[
"lr_t"
]
param_name
=
param
.
name
v
=
self
.
get_slot
(
param
,
"momentum"
)
if
self
.
_use_weight_decay
(
param_name
):
grad
+=
self
.
weight_decay_rate
*
param
if
self
.
classic_momentum
:
trust_ratio
=
1.0
if
self
.
_do_layer_adaptation
(
param_name
):
w_norm
=
tf
.
norm
(
param
,
ord
=
2
)
g_norm
=
tf
.
norm
(
grad
,
ord
=
2
)
trust_ratio
=
tf
.
where
(
tf
.
greater
(
w_norm
,
0
),
tf
.
where
(
tf
.
greater
(
g_norm
,
0
),
(
self
.
eeta
*
w_norm
/
g_norm
),
1.0
),
1.0
)
scaled_lr
=
learning_rate
*
trust_ratio
next_v
=
tf
.
multiply
(
self
.
momentum
,
v
)
+
scaled_lr
*
grad
if
self
.
nesterov
:
update
=
tf
.
multiply
(
self
.
momentum
,
next_v
)
+
scaled_lr
*
grad
else
:
update
=
next_v
next_param
=
param
-
update
else
:
next_v
=
tf
.
multiply
(
self
.
momentum
,
v
)
+
grad
if
self
.
nesterov
:
update
=
tf
.
multiply
(
self
.
momentum
,
next_v
)
+
grad
else
:
update
=
next_v
trust_ratio
=
1.0
if
self
.
_do_layer_adaptation
(
param_name
):
w_norm
=
tf
.
norm
(
param
,
ord
=
2
)
v_norm
=
tf
.
norm
(
update
,
ord
=
2
)
trust_ratio
=
tf
.
where
(
tf
.
greater
(
w_norm
,
0
),
tf
.
where
(
tf
.
greater
(
v_norm
,
0
),
(
self
.
eeta
*
w_norm
/
v_norm
),
1.0
),
1.0
)
scaled_lr
=
trust_ratio
*
learning_rate
next_param
=
param
-
scaled_lr
*
update
return
tf
.
group
(
*
[
param
.
assign
(
next_param
,
use_locking
=
False
),
v
.
assign
(
next_v
,
use_locking
=
False
)
])
def
_resource_apply_sparse
(
self
,
grad
,
handle
,
indices
,
apply_state
):
raise
NotImplementedError
(
"Applying sparse gradients is not implemented."
)
def
_use_weight_decay
(
self
,
param_name
):
"""Whether to use L2 weight decay for `param_name`."""
if
not
self
.
weight_decay_rate
:
return
False
if
self
.
exclude_from_weight_decay
:
for
r
in
self
.
exclude_from_weight_decay
:
if
re
.
search
(
r
,
param_name
)
is
not
None
:
return
False
return
True
def
_do_layer_adaptation
(
self
,
param_name
):
"""Whether to do layer-wise learning rate adaptation for `param_name`."""
if
self
.
exclude_from_layer_adaptation
:
for
r
in
self
.
exclude_from_layer_adaptation
:
if
re
.
search
(
r
,
param_name
)
is
not
None
:
return
False
return
True
def
get_config
(
self
):
config
=
super
(
LARS
,
self
).
get_config
()
config
.
update
({
"learning_rate"
:
self
.
_serialize_hyperparameter
(
"learning_rate"
),
"decay"
:
self
.
_serialize_hyperparameter
(
"decay"
),
"momentum"
:
self
.
momentum
,
"classic_momentum"
:
self
.
classic_momentum
,
"weight_decay_rate"
:
self
.
weight_decay_rate
,
"eeta"
:
self
.
eeta
,
"nesterov"
:
self
.
nesterov
,
})
return
config
@
classmethod
def
from_config
(
cls
,
config
,
custom_objects
=
None
):
return
cls
(
**
config
)
official/modeling/optimization/lr_schedule.py
0 → 100644
View file @
3d61d6b3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Learning rate schedule classes."""
import
math
from
typing
import
Mapping
,
Any
,
Union
,
Optional
import
tensorflow
as
tf
def
_make_offset_wrapper
(
new_class_name
:
str
,
base_lr_class
):
"""Generates a offset wrapper of learning rate schedule.
It will returns a subclass of the the `base_lr_class`, the subclass takes an
`offset` argument in the constructor. When the new class instance is called,
the behavior is:
new_class_object(step) = base_lr_class_object(step - offset)
Example:
CosineDecayWithOffset = _make_offset_wrapper(
'CosineDecayWithOffset', tf.keras.experimental.CosineDecay)
# Use the lr:
lr = CosineDecayWithOffset(offset=100, initial_learning_rate=0.1,
decay_steps=1000)
lr(101) # equals to tf.keras.experimental.CosineDecay(...)(101-100)
Args:
new_class_name: the name of the new class.
base_lr_class: the base learning rate schedule class. Should be subclass of
tf.keras.optimizers.schedules.LearningRateSchedule
Returns:
A new class (subclass of the base_lr_class) that can take an offset.
"""
assert
issubclass
(
base_lr_class
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
),
(
"base_lr_class should be subclass of keras "
f
"LearningRateSchedule, got
{
base_lr_class
}
"
)
# pylint: disable=protected-access,pointless-statement
def
offset_learning_rate_init
(
self
,
offset
=
0
,
**
kwargs
):
"""Construct learning rate schedule object.
When this object is called, its behavior is
self.__call__(step) == base_lr_class.__call__(step - offset)
Args:
self: this object.
offset: The offset when computing the learning rate schedule.
**kwargs: Pass through to base learning rate class constructor.
"""
base_lr_class
.
__init__
(
self
,
**
kwargs
)
self
.
_offset
=
offset
def
offset_learning_rate_call
(
self
,
step
):
step
=
tf
.
cast
(
step
-
self
.
_offset
,
tf
.
float32
)
return
base_lr_class
.
__call__
(
self
,
step
)
# pylint: enable=protected-access,pointless-statement
return
type
(
new_class_name
,
(
base_lr_class
,),
{
"base_lr_class"
:
base_lr_class
,
"__init__"
:
offset_learning_rate_init
,
"__call__"
:
offset_learning_rate_call
})
PiecewiseConstantDecayWithOffset
=
_make_offset_wrapper
(
"PiecewiseConstantDecayWithOffset"
,
tf
.
keras
.
optimizers
.
schedules
.
PiecewiseConstantDecay
)
PolynomialDecayWithOffset
=
_make_offset_wrapper
(
"PolynomialDecayWithOffset"
,
tf
.
keras
.
optimizers
.
schedules
.
PolynomialDecay
)
ExponentialDecayWithOffset
=
_make_offset_wrapper
(
"ExponentialDecayWithOffset"
,
tf
.
keras
.
optimizers
.
schedules
.
ExponentialDecay
)
CosineDecayWithOffset
=
_make_offset_wrapper
(
"CosineDecayWithOffset"
,
tf
.
keras
.
experimental
.
CosineDecay
)
class
LinearWarmup
(
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
"""Linear warmup schedule."""
def
__init__
(
self
,
after_warmup_lr_sched
:
Union
[
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
,
float
],
warmup_steps
:
int
,
warmup_learning_rate
:
float
,
name
:
Optional
[
str
]
=
None
):
"""Add linear warmup schedule to a learning rate schedule.
warmup_lr is the initial learning rate, the final learning rate of the
init_warmup period is the initial learning rate of lr_schedule in use.
The learning rate at each step linearly increased according to the following
formula:
learning_rate = warmup_lr + step / warmup_steps
* (final_warmup_lr - warmup_lr).
Using warmup overrides the learning rate schedule by the number of warmup
steps.
Args:
after_warmup_lr_sched: tf.keras.optimizers.schedules .LearningRateSchedule
or a constant.
warmup_steps: Number of the warmup steps.
warmup_learning_rate: Initial learning rate for the warmup.
name: Optional, name of warmup schedule.
"""
super
().
__init__
()
self
.
_name
=
name
self
.
_after_warmup_lr_sched
=
after_warmup_lr_sched
self
.
_warmup_steps
=
warmup_steps
self
.
_init_warmup_lr
=
warmup_learning_rate
if
isinstance
(
after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
self
.
_final_warmup_lr
=
after_warmup_lr_sched
(
warmup_steps
)
else
:
self
.
_final_warmup_lr
=
tf
.
cast
(
after_warmup_lr_sched
,
dtype
=
tf
.
float32
)
def
__call__
(
self
,
step
:
int
):
global_step
=
tf
.
cast
(
step
,
dtype
=
tf
.
float32
)
linear_warmup_lr
=
(
self
.
_init_warmup_lr
+
global_step
/
self
.
_warmup_steps
*
(
self
.
_final_warmup_lr
-
self
.
_init_warmup_lr
))
if
isinstance
(
self
.
_after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
after_warmup_lr
=
self
.
_after_warmup_lr_sched
(
step
)
else
:
after_warmup_lr
=
tf
.
cast
(
self
.
_after_warmup_lr_sched
,
dtype
=
tf
.
float32
)
lr
=
tf
.
cond
(
global_step
<
self
.
_warmup_steps
,
lambda
:
linear_warmup_lr
,
lambda
:
after_warmup_lr
)
return
lr
def
get_config
(
self
)
->
Mapping
[
str
,
Any
]:
if
isinstance
(
self
.
_after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
config
=
{
"after_warmup_lr_sched"
:
self
.
_after_warmup_lr_sched
.
get_config
()}
# pytype: disable=attribute-error
else
:
config
=
{
"after_warmup_lr_sched"
:
self
.
_after_warmup_lr_sched
}
# pytype: disable=attribute-error
config
.
update
({
"warmup_steps"
:
self
.
_warmup_steps
,
"warmup_learning_rate"
:
self
.
_init_warmup_lr
,
"name"
:
self
.
_name
})
return
config
class
PolynomialWarmUp
(
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
"""Applies polynomial warmup schedule on a given learning rate decay schedule."""
def
__init__
(
self
,
after_warmup_lr_sched
:
Union
[
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
,
float
],
warmup_steps
:
int
,
power
:
float
=
1.0
,
name
:
str
=
"PolynomialWarmup"
):
super
().
__init__
()
if
isinstance
(
after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
self
.
_initial_learning_rate
=
after_warmup_lr_sched
(
warmup_steps
)
else
:
self
.
_initial_learning_rate
=
tf
.
cast
(
after_warmup_lr_sched
,
dtype
=
tf
.
float32
)
self
.
_warmup_steps
=
warmup_steps
self
.
_power
=
power
self
.
_after_warmup_lr_sched
=
after_warmup_lr_sched
self
.
_name
=
name
def
__call__
(
self
,
step
):
with
tf
.
name_scope
(
self
.
_name
or
"PolynomialWarmUp"
)
as
name
:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float
=
tf
.
cast
(
step
,
tf
.
float32
)
warmup_steps_float
=
tf
.
cast
(
self
.
_warmup_steps
,
tf
.
float32
)
if
self
.
_warmup_steps
<=
0
:
warmup_percent_done
=
1.0
else
:
# A zero `step` may cause Inf. So make `step` positive.
step_non_zero
=
tf
.
math
.
maximum
(
global_step_float
,
1.0
)
warmup_percent_done
=
step_non_zero
/
warmup_steps_float
warmup_learning_rate
=
(
self
.
_initial_learning_rate
*
tf
.
math
.
pow
(
warmup_percent_done
,
self
.
_power
))
if
isinstance
(
self
.
_after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
after_warmup_lr
=
self
.
_after_warmup_lr_sched
(
step
)
else
:
after_warmup_lr
=
tf
.
cast
(
self
.
_after_warmup_lr_sched
,
dtype
=
tf
.
float32
)
return
tf
.
cond
(
global_step_float
<
warmup_steps_float
,
lambda
:
warmup_learning_rate
,
lambda
:
after_warmup_lr
,
name
=
name
)
def
get_config
(
self
)
->
Mapping
[
str
,
Any
]:
if
isinstance
(
self
.
_after_warmup_lr_sched
,
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
config
=
{
"after_warmup_lr_sched"
:
self
.
_after_warmup_lr_sched
.
get_config
()}
# pytype: disable=attribute-error
else
:
config
=
{
"after_warmup_lr_sched"
:
self
.
_after_warmup_lr_sched
}
# pytype: disable=attribute-error
config
.
update
({
"warmup_steps"
:
self
.
_warmup_steps
,
"power"
:
self
.
_power
,
"name"
:
self
.
_name
})
return
config
class
DirectPowerDecay
(
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
"""Learning rate schedule follows lr * (step)^power."""
def
__init__
(
self
,
initial_learning_rate
:
float
,
power
:
float
=
1.0
,
name
:
str
=
"DirectPowerDecay"
):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: The initial learning rate.
power: The order of the polynomial.
name: Optional, name of learning rate schedule.
"""
super
().
__init__
()
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_power
=
power
self
.
_name
=
name
def
__call__
(
self
,
step
):
with
tf
.
name_scope
(
self
.
_name
or
"DirectPowerDecay"
):
step
=
tf
.
cast
(
step
,
tf
.
float32
)
learning_rate
=
self
.
_initial_learning_rate
# A zero `step` may cause Inf. So make `step` positive.
step_non_zero
=
tf
.
math
.
maximum
(
step
,
1.0
)
learning_rate
*=
tf
.
math
.
pow
(
step_non_zero
,
self
.
_power
)
return
learning_rate
def
get_config
(
self
):
"""Get the configuration of the learning rate schedule."""
return
{
"initial_learning_rate"
:
self
.
_initial_learning_rate
,
"power"
:
self
.
_power
,
"name"
:
self
.
_name
,
}
class
PowerAndLinearDecay
(
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
"""Learning rate schedule with multiplied by linear decay at the end.
The schedule has the following behavoir.
Let offset_step = step - offset.
1) offset_step < 0, the actual learning rate equals initial_learning_rate.
2) offset_step <= total_decay_steps * (1 - linear_decay_fraction), the
actual learning rate equals lr * offset_step^power.
3) total_decay_steps * (1 - linear_decay_fraction) <= offset_step <
total_decay_steps, the actual learning rate equals lr * offset_step^power *
(total_decay_steps - offset_step) / (total_decay_steps *
linear_decay_fraction).
4) offset_step >= total_decay_steps, the actual learning rate equals zero.
"""
def
__init__
(
self
,
initial_learning_rate
:
float
,
total_decay_steps
:
int
,
power
:
float
=
1.0
,
linear_decay_fraction
:
float
=
0.1
,
offset
:
int
=
0
,
name
:
str
=
"PowerAndLinearDecay"
):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: The initial learning rate.
total_decay_steps: The total number of steps for power + linear decay.
power: The order of the polynomial.
linear_decay_fraction: In the last `linear_decay_fraction` steps, the
learning rate will be multiplied by a linear decay.
offset: The offset applied to steps.
name: Optional, name of learning rate schedule.
"""
super
().
__init__
()
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_total_decay_steps
=
total_decay_steps
self
.
_power
=
power
self
.
_linear_decay_fraction
=
linear_decay_fraction
self
.
_offset
=
offset
self
.
_name
=
name
def
__call__
(
self
,
step
):
with
tf
.
name_scope
(
self
.
_name
or
"PowerAndLinearDecay"
):
step
=
tf
.
cast
(
step
-
self
.
_offset
,
tf
.
float32
)
learning_rate
=
self
.
_initial_learning_rate
# A zero `step` may cause Inf. So make `step` positive.
step_non_zero
=
tf
.
math
.
maximum
(
step
,
1.0
)
learning_rate
*=
tf
.
math
.
pow
(
step_non_zero
,
self
.
_power
)
if
self
.
_total_decay_steps
*
self
.
_linear_decay_fraction
>
0
:
learning_rate
*=
tf
.
minimum
(
1.0
,
(
self
.
_total_decay_steps
-
step
)
/
(
self
.
_total_decay_steps
*
self
.
_linear_decay_fraction
))
learning_rate
=
tf
.
maximum
(
0.0
,
learning_rate
)
return
learning_rate
def
get_config
(
self
):
"""Get the configuration of the learning rate schedule."""
return
{
"initial_learning_rate"
:
self
.
_initial_learning_rate
,
"total_decay_steps"
:
self
.
_total_decay_steps
,
"power"
:
self
.
_power
,
"linear_decay_fraction"
:
self
.
_linear_decay_fraction
,
"offset"
:
self
.
_offset
,
"name"
:
self
.
_name
,
}
class
PowerDecayWithOffset
(
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
"""Power learning rate decay with offset.
Learning rate equals to `pre_offset_learning_rate` if `step` < `offset`.
Otherwise, learning rate equals to lr * (step - offset)^power.
"""
def
__init__
(
self
,
initial_learning_rate
:
float
,
power
:
float
=
1.0
,
offset
:
int
=
0
,
pre_offset_learning_rate
:
float
=
1.0e6
,
name
:
str
=
"PowerDecayWithOffset"
):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: The initial learning rate.
power: The order of the polynomial.
offset: The offset when computing the power decay.
pre_offset_learning_rate: The maximum learning rate we'll use.
name: Optional, name of learning rate schedule.
"""
super
().
__init__
()
self
.
_initial_learning_rate
=
initial_learning_rate
self
.
_power
=
power
self
.
_offset
=
offset
self
.
_pre_offset_lr
=
pre_offset_learning_rate
self
.
_name
=
name
def
__call__
(
self
,
step
):
with
tf
.
name_scope
(
self
.
_name
or
"PowerDecayWithOffset"
):
step
=
tf
.
cast
(
step
,
tf
.
float32
)
lr_after_offset
=
tf
.
math
.
pow
(
tf
.
math
.
maximum
(
step
-
self
.
_offset
,
1.0
),
self
.
_power
)
*
(
self
.
_initial_learning_rate
)
sign
=
tf
.
cast
(
step
>
self
.
_offset
,
tf
.
float32
)
lr_combined
=
(
1.0
-
sign
)
*
self
.
_pre_offset_lr
+
sign
*
lr_after_offset
# Power may give infinitely large LR. So cap it with pre_offset_lr.
return
tf
.
math
.
minimum
(
lr_combined
,
self
.
_pre_offset_lr
)
def
get_config
(
self
):
"""Get the configuration of the learning rate schedule."""
return
{
"initial_learning_rate"
:
self
.
_initial_learning_rate
,
"power"
:
self
.
_power
,
"offset"
:
self
.
_offset
,
"pre_offset_learning_rate"
:
self
.
_pre_offset_lr
,
"name"
:
self
.
_name
,
}
class
StepConsineDecayWithOffset
(
tf
.
keras
.
optimizers
.
schedules
.
LearningRateSchedule
):
"""Stepwise cosine learning rate decay with offset.
Learning rate is equivalent to one or more consine decay(s) starting and
ending at each interval.
ExampleL
```python
boundaries: [100000, 110000]
values: [1.0, 0.5]
lr_decayed_fn = (
lr_schedule.StepConsineDecayWithOffset(
boundaries,
values))
```
from 0 to 100000 step, it will cosine decay from 1.0 to 0.5
from 100000 to 110000 step, it cosine decay from 0.5 to 0.0
"""
def
__init__
(
self
,
boundaries
,
values
,
offset
:
int
=
0
,
name
:
str
=
"StepConsineDecayWithOffset"
):
"""Initialize configuration of the learning rate schedule.
Args:
boundaries: A list of `Tensor`s or `int`s with strictly
increasing entries, and with all elements having the same type as the
optimizer step.
values: A list of `Tensor`s or `float`s that specifies the
values for the intervals defined by `boundaries`. It should have one
more element than `boundaries`, and all elements should have the same
type.
offset: The offset when computing the power decay.
name: Optional, name of learning rate schedule.
"""
super
().
__init__
()
self
.
values
=
values
self
.
boundaries
=
boundaries
self
.
offset
=
offset
self
.
name
=
name
if
len
(
self
.
values
)
<
1
:
raise
ValueError
(
f
"Expect non empty
{
self
.
values
}
"
)
if
len
(
self
.
boundaries
)
!=
len
(
self
.
values
):
raise
ValueError
(
"Boundaries length is equal to learning rate levels length"
f
"
{
len
(
self
.
boundaries
)
}
!=
{
len
(
self
.
values
)
}
"
)
self
.
total_steps
=
(
[
boundaries
[
i
+
1
]
-
boundaries
[
i
]
for
i
in
range
(
len
(
boundaries
)
-
1
)
]
+
[
0
])
def
__call__
(
self
,
global_step
):
with
tf
.
name_scope
(
self
.
name
or
"StepConsineDecayWithOffset"
):
global_step
=
tf
.
cast
(
global_step
-
self
.
offset
,
tf
.
float32
)
lr_levels
=
self
.
values
lr_steps
=
self
.
boundaries
level_total_steps
=
self
.
total_steps
num_levels
=
len
(
lr_levels
)
init_lr
=
lr_levels
[
0
]
next_init_lr
=
lr_levels
[
1
]
if
num_levels
>
1
else
0.
init_total_steps
=
level_total_steps
[
0
]
cosine_learning_rate
=
((
init_lr
-
next_init_lr
)
*
(
tf
.
cos
(
tf
.
constant
(
math
.
pi
)
*
(
global_step
)
/
(
init_total_steps
))
+
1.0
)
/
2.0
+
next_init_lr
)
learning_rate
=
cosine_learning_rate
tf
.
compat
.
v1
.
logging
.
info
(
"DEBUG lr %r next lr %r"
,
learning_rate
,
cosine_learning_rate
)
tf
.
compat
.
v1
.
logging
.
info
(
"DEBUG lr %r next lr %r inittotalstep %r"
,
init_lr
,
next_init_lr
,
init_total_steps
)
for
i
in
range
(
1
,
num_levels
):
next_init_lr
=
lr_levels
[
i
]
next_start_step
=
lr_steps
[
i
]
next_total_steps
=
level_total_steps
[
i
]
next_next_init_lr
=
lr_levels
[
i
+
1
]
if
num_levels
>
i
+
1
else
0.
tf
.
compat
.
v1
.
logging
.
info
(
"DEBUG step %r nilr %r nss %r nts %r nnilr %r"
,
global_step
,
next_init_lr
,
next_start_step
,
next_total_steps
,
next_next_init_lr
)
next_cosine_learning_rate
=
((
next_init_lr
-
next_next_init_lr
)
*
(
tf
.
cos
(
tf
.
constant
(
math
.
pi
)
*
(
global_step
-
next_start_step
)
/
(
next_total_steps
))
+
1.0
)
/
2.0
+
next_next_init_lr
)
learning_rate
=
tf
.
where
(
global_step
>=
next_start_step
,
next_cosine_learning_rate
,
learning_rate
)
tf
.
compat
.
v1
.
logging
.
info
(
"DEBUG lr %r next lr %r"
,
learning_rate
,
next_cosine_learning_rate
)
return
learning_rate
def
get_config
(
self
):
return
{
"boundaries"
:
self
.
boundaries
,
"values"
:
self
.
values
,
"offset"
:
self
.
offset
,
"name"
:
self
.
name
}
Prev
1
2
3
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment