Commit 3ce2f61b authored by Kaushik Shivakumar's avatar Kaushik Shivakumar
Browse files

Merge branch 'master' of https://github.com/tensorflow/models into context_tf2

parents bb16d5ca 8e9296ff
# SSD with EfficientNet-b0 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d0).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b0 checkpoint.
#
# Train on TPU-8
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 512
max_dimension: 512
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 64
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 3
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b0_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 3
num_filters: 64
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 512
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b1 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d1).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b1 checkpoint.
#
# Train on TPU-8
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 640
max_dimension: 640
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 88
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 3
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b1_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 4
num_filters: 88
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 640
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b2 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d2).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b2 checkpoint.
#
# Train on TPU-8
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 768
max_dimension: 768
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 112
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 3
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b2_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 5
num_filters: 112
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 768
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b3 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d3).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b3 checkpoint.
#
# Train on TPU-32
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 896
max_dimension: 896
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 160
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 4
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b3_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 6
num_filters: 160
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 896
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b4 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d4).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b4 checkpoint.
#
# Train on TPU-32
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 1024
max_dimension: 1024
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 224
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 4
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b4_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 7
num_filters: 224
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 1024
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b5 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d5).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b5 checkpoint.
#
# Train on TPU-32
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 1280
max_dimension: 1280
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 288
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 4
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b5_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 7
num_filters: 288
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 1280
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b6 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d6).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b6 checkpoint.
#
# Train on TPU-32
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 1408
max_dimension: 1408
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 384
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 5
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b6_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 8
num_filters: 384
# Use unweighted sum for stability.
combine_method: 'sum'
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 1408
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with EfficientNet-b6 + BiFPN feature extractor,
# shared box predictor and focal loss (a.k.a EfficientDet-d7).
# See EfficientDet, Tan et al, https://arxiv.org/abs/1911.09070
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from an EfficientNet-b6 checkpoint.
#
# Train on TPU-32
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 1536
max_dimension: 1536
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 384
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 5
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b6_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 8
num_filters: 384
# Use unweighted sum for stability.
combine_method: 'sum'
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 300000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 1536
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 300000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BEE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Mobilenet v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 29.1 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_mobilenet_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/mobilenet_v1.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 25000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 25000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Mobilenet v2
# Trained on COCO17, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 22.2 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v2_keras'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/mobilenet_v2.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 512
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 50000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .8
total_steps: 50000
warmup_learning_rate: 0.13333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Mobilenet v2 FPN-lite (go/fpn-lite) feature extractor, shared box
# predictor and focal loss (a mobile version of Retinanet).
# Retinanet: see Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 22.2 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 128
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
share_prediction_tower: true
use_depthwise: true
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_mobilenet_v2_fpn_keras'
use_depthwise: true
fpn {
min_level: 3
max_level: 7
additional_layer_depth: 128
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/mobilenet_v2.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 50000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .08
total_steps: 50000
warmup_learning_rate: .026666
warmup_steps: 1000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Mobilenet v2 FPN-lite (go/fpn-lite) feature extractor, shared box
# predictor and focal loss (a mobile version of Retinanet).
# Retinanet: see Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 28.2 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 128
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
share_prediction_tower: true
use_depthwise: true
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_mobilenet_v2_fpn_keras'
use_depthwise: true
fpn {
min_level: 3
max_level: 7
additional_layer_depth: 128
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/mobilenet_v2.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 128
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 50000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .08
total_steps: 50000
warmup_learning_rate: .026666
warmup_steps: 1000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Resnet 101 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 39.5 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 1024
width: 1024
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet101_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/resnet101.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 100000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 100000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Resnet 101 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 35.4 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet101_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/resnet101.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 25000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 25000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Resnet 152 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 39.6 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 1024
width: 1024
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet152_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/resnet152.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 100000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 100000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Resnet 152 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 35.6 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet152_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/resnet152.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 25000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 25000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Resnet 50 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 38.3 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 1024
width: 1024
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet50_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/resnet50.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 100000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 100000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
# SSD with Resnet 50 v1 FPN feature extractor, shared box predictor and focal
# loss (a.k.a Retinanet).
# See Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 34.3 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 256
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_resnet50_v1_fpn_keras'
fpn {
min_level: 3
max_level: 7
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.0004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/resnet50.ckpt-1"
fine_tune_checkpoint_type: "classification"
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
use_bfloat16: true
num_steps: 25000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 25000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
}
}
......@@ -134,7 +134,7 @@ class BoxPredictor(object):
pass
class KerasBoxPredictor(tf.keras.Model):
class KerasBoxPredictor(tf.keras.layers.Layer):
"""Keras-based BoxPredictor."""
def __init__(self, is_training, num_classes, freeze_batchnorm,
......
......@@ -42,9 +42,6 @@ PART_NAMES = [
b'left_face',
]
_SRC_PATH = ('google3/third_party/tensorflow_models/object_detection/'
'dataset_tools/densepose')
def scale(dp_surface_coords, y_scale, x_scale, scope=None):
"""Scales DensePose coordinates in y and x dimensions.
......@@ -266,10 +263,14 @@ class DensePoseHorizontalFlip(object):
def __init__(self):
"""Constructor."""
uv_symmetry_transforms_path = os.path.join(
tf.resource_loader.get_data_files_path(), '..', 'dataset_tools',
'densepose', 'UV_symmetry_transforms.mat')
data = scipy.io.loadmat(uv_symmetry_transforms_path)
path = os.path.dirname(os.path.abspath(__file__))
uv_symmetry_transforms_path = tf.resource_loader.get_path_to_datafile(
os.path.join(path, '..', 'dataset_tools', 'densepose',
'UV_symmetry_transforms.mat'))
tf.logging.info('Loading DensePose symmetry transforms file from {}'.format(
uv_symmetry_transforms_path))
with tf.io.gfile.GFile(uv_symmetry_transforms_path, 'rb') as f:
data = scipy.io.loadmat(f)
# Create lookup maps which indicate how a VU coordinate changes after a
# horizontal flip.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment