Unverified Commit 370a4c8d authored by Ayushman Kumar's avatar Ayushman Kumar Committed by GitHub
Browse files

Merge pull request #5 from tensorflow/master

Updated
parents 1e2ceffd 2416dd9c
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CIFAR-10 data set.
See http://www.cs.toronto.edu/~kriz/cifar.html.
"""
import os
import tensorflow as tf
HEIGHT = 32
WIDTH = 32
DEPTH = 3
class Cifar10DataSet(object):
"""Cifar10 data set.
Described by http://www.cs.toronto.edu/~kriz/cifar.html.
"""
def __init__(self, data_dir, subset='train', use_distortion=True):
self.data_dir = data_dir
self.subset = subset
self.use_distortion = use_distortion
def get_filenames(self):
if self.subset in ['train', 'validation', 'eval']:
return [os.path.join(self.data_dir, self.subset + '.tfrecords')]
else:
raise ValueError('Invalid data subset "%s"' % self.subset)
def parser(self, serialized_example):
"""Parses a single tf.Example into image and label tensors."""
# Dimensions of the images in the CIFAR-10 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
features = tf.parse_single_example(
serialized_example,
features={
'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image'], tf.uint8)
image.set_shape([DEPTH * HEIGHT * WIDTH])
# Reshape from [depth * height * width] to [depth, height, width].
image = tf.cast(
tf.transpose(tf.reshape(image, [DEPTH, HEIGHT, WIDTH]), [1, 2, 0]),
tf.float32)
label = tf.cast(features['label'], tf.int32)
# Custom preprocessing.
image = self.preprocess(image)
return image, label
def make_batch(self, batch_size):
"""Read the images and labels from 'filenames'."""
filenames = self.get_filenames()
# Repeat infinitely.
dataset = tf.data.TFRecordDataset(filenames).repeat()
# Parse records.
dataset = dataset.map(
self.parser, num_parallel_calls=batch_size)
# Potentially shuffle records.
if self.subset == 'train':
min_queue_examples = int(
Cifar10DataSet.num_examples_per_epoch(self.subset) * 0.4)
# Ensure that the capacity is sufficiently large to provide good random
# shuffling.
dataset = dataset.shuffle(buffer_size=min_queue_examples + 3 * batch_size)
# Batch it up.
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
image_batch, label_batch = iterator.get_next()
return image_batch, label_batch
def preprocess(self, image):
"""Preprocess a single image in [height, width, depth] layout."""
if self.subset == 'train' and self.use_distortion:
# Pad 4 pixels on each dimension of feature map, done in mini-batch
image = tf.image.resize_image_with_crop_or_pad(image, 40, 40)
image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH])
image = tf.image.random_flip_left_right(image)
return image
@staticmethod
def num_examples_per_epoch(subset='train'):
if subset == 'train':
return 45000
elif subset == 'validation':
return 5000
elif subset == 'eval':
return 10000
else:
raise ValueError('Invalid data subset "%s"' % subset)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet model for classifying images from CIFAR-10 dataset.
Support single-host training with one or multiple devices.
ResNet as proposed in:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
CIFAR-10 as in:
http://www.cs.toronto.edu/~kriz/cifar.html
"""
from __future__ import division
from __future__ import print_function
import argparse
import functools
import itertools
import os
import cifar10
import cifar10_model
import cifar10_utils
import numpy as np
import six
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def get_model_fn(num_gpus, variable_strategy, num_workers):
"""Returns a function that will build the resnet model."""
def _resnet_model_fn(features, labels, mode, params):
"""Resnet model body.
Support single host, one or more GPU training. Parameter distribution can
be either one of the following scheme.
1. CPU is the parameter server and manages gradient updates.
2. Parameters are distributed evenly across all GPUs, and the first GPU
manages gradient updates.
Args:
features: a list of tensors, one for each tower
labels: a list of tensors, one for each tower
mode: ModeKeys.TRAIN or EVAL
params: Hyperparameters suitable for tuning
Returns:
A EstimatorSpec object.
"""
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
weight_decay = params.weight_decay
momentum = params.momentum
tower_features = features
tower_labels = labels
tower_losses = []
tower_gradvars = []
tower_preds = []
# channels first (NCHW) is normally optimal on GPU and channels last (NHWC)
# on CPU. The exception is Intel MKL on CPU which is optimal with
# channels_last.
data_format = params.data_format
if not data_format:
if num_gpus == 0:
data_format = 'channels_last'
else:
data_format = 'channels_first'
if num_gpus == 0:
num_devices = 1
device_type = 'cpu'
else:
num_devices = num_gpus
device_type = 'gpu'
for i in range(num_devices):
worker_device = '/{}:{}'.format(device_type, i)
if variable_strategy == 'CPU':
device_setter = cifar10_utils.local_device_setter(
worker_device=worker_device)
elif variable_strategy == 'GPU':
device_setter = cifar10_utils.local_device_setter(
ps_device_type='gpu',
worker_device=worker_device,
ps_strategy=tf.contrib.training.GreedyLoadBalancingStrategy(
num_gpus, tf.contrib.training.byte_size_load_fn))
with tf.variable_scope('resnet', reuse=bool(i != 0)):
with tf.name_scope('tower_%d' % i) as name_scope:
with tf.device(device_setter):
loss, gradvars, preds = _tower_fn(
is_training, weight_decay, tower_features[i], tower_labels[i],
data_format, params.num_layers, params.batch_norm_decay,
params.batch_norm_epsilon)
tower_losses.append(loss)
tower_gradvars.append(gradvars)
tower_preds.append(preds)
if i == 0:
# Only trigger batch_norm moving mean and variance update from
# the 1st tower. Ideally, we should grab the updates from all
# towers but these stats accumulate extremely fast so we can
# ignore the other stats from the other towers without
# significant detriment.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
name_scope)
# Now compute global loss and gradients.
gradvars = []
with tf.name_scope('gradient_averaging'):
all_grads = {}
for grad, var in itertools.chain(*tower_gradvars):
if grad is not None:
all_grads.setdefault(var, []).append(grad)
for var, grads in six.iteritems(all_grads):
# Average gradients on the same device as the variables
# to which they apply.
with tf.device(var.device):
if len(grads) == 1:
avg_grad = grads[0]
else:
avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads))
gradvars.append((avg_grad, var))
# Device that runs the ops to apply global gradient updates.
consolidation_device = '/gpu:0' if variable_strategy == 'GPU' else '/cpu:0'
with tf.device(consolidation_device):
# Suggested learning rate scheduling from
# https://github.com/ppwwyyxx/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py#L155
num_batches_per_epoch = cifar10.Cifar10DataSet.num_examples_per_epoch(
'train') // (params.train_batch_size * num_workers)
boundaries = [
num_batches_per_epoch * x
for x in np.array([82, 123, 300], dtype=np.int64)
]
staged_lr = [params.learning_rate * x for x in [1, 0.1, 0.01, 0.002]]
learning_rate = tf.train.piecewise_constant(tf.train.get_global_step(),
boundaries, staged_lr)
loss = tf.reduce_mean(tower_losses, name='loss')
examples_sec_hook = cifar10_utils.ExamplesPerSecondHook(
params.train_batch_size, every_n_steps=10)
tensors_to_log = {'learning_rate': learning_rate, 'loss': loss}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
train_hooks = [logging_hook, examples_sec_hook]
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate, momentum=momentum)
if params.sync:
optimizer = tf.train.SyncReplicasOptimizer(
optimizer, replicas_to_aggregate=num_workers)
sync_replicas_hook = optimizer.make_session_run_hook(params.is_chief)
train_hooks.append(sync_replicas_hook)
# Create single grouped train op
train_op = [
optimizer.apply_gradients(
gradvars, global_step=tf.train.get_global_step())
]
train_op.extend(update_ops)
train_op = tf.group(*train_op)
predictions = {
'classes':
tf.concat([p['classes'] for p in tower_preds], axis=0),
'probabilities':
tf.concat([p['probabilities'] for p in tower_preds], axis=0)
}
stacked_labels = tf.concat(labels, axis=0)
metrics = {
'accuracy':
tf.metrics.accuracy(stacked_labels, predictions['classes'])
}
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
training_hooks=train_hooks,
eval_metric_ops=metrics)
return _resnet_model_fn
def _tower_fn(is_training, weight_decay, feature, label, data_format,
num_layers, batch_norm_decay, batch_norm_epsilon):
"""Build computation tower (Resnet).
Args:
is_training: true if is training graph.
weight_decay: weight regularization strength, a float.
feature: a Tensor.
label: a Tensor.
data_format: channels_last (NHWC) or channels_first (NCHW).
num_layers: number of layers, an int.
batch_norm_decay: decay for batch normalization, a float.
batch_norm_epsilon: epsilon for batch normalization, a float.
Returns:
A tuple with the loss for the tower, the gradients and parameters, and
predictions.
"""
model = cifar10_model.ResNetCifar10(
num_layers,
batch_norm_decay=batch_norm_decay,
batch_norm_epsilon=batch_norm_epsilon,
is_training=is_training,
data_format=data_format)
logits = model.forward_pass(feature, input_data_format='channels_last')
tower_pred = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.nn.softmax(logits)
}
tower_loss = tf.losses.sparse_softmax_cross_entropy(
logits=logits, labels=label)
tower_loss = tf.reduce_mean(tower_loss)
model_params = tf.trainable_variables()
tower_loss += weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in model_params])
tower_grad = tf.gradients(tower_loss, model_params)
return tower_loss, zip(tower_grad, model_params), tower_pred
def input_fn(data_dir,
subset,
num_shards,
batch_size,
use_distortion_for_training=True):
"""Create input graph for model.
Args:
data_dir: Directory where TFRecords representing the dataset are located.
subset: one of 'train', 'validate' and 'eval'.
num_shards: num of towers participating in data-parallel training.
batch_size: total batch size for training to be divided by the number of
shards.
use_distortion_for_training: True to use distortions.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and use_distortion_for_training
dataset = cifar10.Cifar10DataSet(data_dir, subset, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
def get_experiment_fn(data_dir,
num_gpus,
variable_strategy,
use_distortion_for_training=True):
"""Returns an Experiment function.
Experiments perform training on several workers in parallel,
in other words experiments know how to invoke train and eval in a sensible
fashion for distributed training. Arguments passed directly to this
function are not tunable, all other arguments should be passed within
tf.HParams, passed to the enclosed function.
Args:
data_dir: str. Location of the data for input_fns.
num_gpus: int. Number of GPUs on each worker.
variable_strategy: String. CPU to use CPU as the parameter server
and GPU to use the GPUs as the parameter server.
use_distortion_for_training: bool. See cifar10.Cifar10DataSet.
Returns:
A function (tf.estimator.RunConfig, tf.contrib.training.HParams) ->
tf.contrib.learn.Experiment.
Suitable for use by tf.contrib.learn.learn_runner, which will run various
methods on Experiment (train, evaluate) based on information
about the current runner in `run_config`.
"""
def _experiment_fn(run_config, hparams):
"""Returns an Experiment."""
# Create estimator.
train_input_fn = functools.partial(
input_fn,
data_dir,
subset='train',
num_shards=num_gpus,
batch_size=hparams.train_batch_size,
use_distortion_for_training=use_distortion_for_training)
eval_input_fn = functools.partial(
input_fn,
data_dir,
subset='eval',
batch_size=hparams.eval_batch_size,
num_shards=num_gpus)
num_eval_examples = cifar10.Cifar10DataSet.num_examples_per_epoch('eval')
if num_eval_examples % hparams.eval_batch_size != 0:
raise ValueError(
'validation set size must be multiple of eval_batch_size')
train_steps = hparams.train_steps
eval_steps = num_eval_examples // hparams.eval_batch_size
classifier = tf.estimator.Estimator(
model_fn=get_model_fn(num_gpus, variable_strategy,
run_config.num_worker_replicas or 1),
config=run_config,
params=hparams)
# Create experiment.
return tf.contrib.learn.Experiment(
classifier,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
train_steps=train_steps,
eval_steps=eval_steps)
return _experiment_fn
def main(job_dir, data_dir, num_gpus, variable_strategy,
use_distortion_for_training, log_device_placement, num_intra_threads,
**hparams):
# The env variable is on deprecation path, default is set to off.
os.environ['TF_SYNC_ON_FINISH'] = '0'
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
# Session configuration.
sess_config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=log_device_placement,
intra_op_parallelism_threads=num_intra_threads,
gpu_options=tf.GPUOptions(force_gpu_compatible=True))
config = cifar10_utils.RunConfig(
session_config=sess_config, model_dir=job_dir)
tf.contrib.learn.learn_runner.run(
get_experiment_fn(data_dir, num_gpus, variable_strategy,
use_distortion_for_training),
run_config=config,
hparams=tf.contrib.training.HParams(
is_chief=config.is_chief,
**hparams))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data-dir',
type=str,
required=True,
help='The directory where the CIFAR-10 input data is stored.')
parser.add_argument(
'--job-dir',
type=str,
required=True,
help='The directory where the model will be stored.')
parser.add_argument(
'--variable-strategy',
choices=['CPU', 'GPU'],
type=str,
default='CPU',
help='Where to locate variable operations')
parser.add_argument(
'--num-gpus',
type=int,
default=1,
help='The number of gpus used. Uses only CPU if set to 0.')
parser.add_argument(
'--num-layers',
type=int,
default=44,
help='The number of layers of the model.')
parser.add_argument(
'--train-steps',
type=int,
default=80000,
help='The number of steps to use for training.')
parser.add_argument(
'--train-batch-size',
type=int,
default=128,
help='Batch size for training.')
parser.add_argument(
'--eval-batch-size',
type=int,
default=100,
help='Batch size for validation.')
parser.add_argument(
'--momentum',
type=float,
default=0.9,
help='Momentum for MomentumOptimizer.')
parser.add_argument(
'--weight-decay',
type=float,
default=2e-4,
help='Weight decay for convolutions.')
parser.add_argument(
'--learning-rate',
type=float,
default=0.1,
help="""\
This is the inital learning rate value. The learning rate will decrease
during training. For more details check the model_fn implementation in
this file.\
""")
parser.add_argument(
'--use-distortion-for-training',
type=bool,
default=True,
help='If doing image distortion for training.')
parser.add_argument(
'--sync',
action='store_true',
default=False,
help="""\
If present when running in a distributed environment will run on sync mode.\
""")
parser.add_argument(
'--num-intra-threads',
type=int,
default=0,
help="""\
Number of threads to use for intra-op parallelism. When training on CPU
set to 0 to have the system pick the appropriate number or alternatively
set it to the number of physical CPU cores.\
""")
parser.add_argument(
'--num-inter-threads',
type=int,
default=0,
help="""\
Number of threads to use for inter-op parallelism. If set to 0, the
system will pick an appropriate number.\
""")
parser.add_argument(
'--data-format',
type=str,
default=None,
help="""\
If not set, the data format best for the training device is used.
Allowed values: channels_first (NCHW) channels_last (NHWC).\
""")
parser.add_argument(
'--log-device-placement',
action='store_true',
default=False,
help='Whether to log device placement.')
parser.add_argument(
'--batch-norm-decay',
type=float,
default=0.997,
help='Decay for batch norm.')
parser.add_argument(
'--batch-norm-epsilon',
type=float,
default=1e-5,
help='Epsilon for batch norm.')
args = parser.parse_args()
if args.num_gpus > 0:
assert tf.test.is_gpu_available(), "Requested GPUs but none found."
if args.num_gpus < 0:
raise ValueError(
'Invalid GPU count: \"--num-gpus\" must be 0 or a positive integer.')
if args.num_gpus == 0 and args.variable_strategy == 'GPU':
raise ValueError('num-gpus=0, CPU must be used as parameter server. Set'
'--variable-strategy=CPU.')
if (args.num_layers - 2) % 6 != 0:
raise ValueError('Invalid --num-layers parameter.')
if args.num_gpus != 0 and args.train_batch_size % args.num_gpus != 0:
raise ValueError('--train-batch-size must be multiple of --num-gpus.')
if args.num_gpus != 0 and args.eval_batch_size % args.num_gpus != 0:
raise ValueError('--eval-batch-size must be multiple of --num-gpus.')
main(**vars(args))
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model class for Cifar10 Dataset."""
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import model_base
class ResNetCifar10(model_base.ResNet):
"""Cifar10 model with ResNetV1 and basic residual block."""
def __init__(self,
num_layers,
is_training,
batch_norm_decay,
batch_norm_epsilon,
data_format='channels_first'):
super(ResNetCifar10, self).__init__(
is_training,
data_format,
batch_norm_decay,
batch_norm_epsilon
)
self.n = (num_layers - 2) // 6
# Add one in case label starts with 1. No impact if label starts with 0.
self.num_classes = 10 + 1
self.filters = [16, 16, 32, 64]
self.strides = [1, 2, 2]
def forward_pass(self, x, input_data_format='channels_last'):
"""Build the core model within the graph."""
if self._data_format != input_data_format:
if input_data_format == 'channels_last':
# Computation requires channels_first.
x = tf.transpose(x, [0, 3, 1, 2])
else:
# Computation requires channels_last.
x = tf.transpose(x, [0, 2, 3, 1])
# Image standardization.
x = x / 128 - 1
x = self._conv(x, 3, 16, 1)
x = self._batch_norm(x)
x = self._relu(x)
# Use basic (non-bottleneck) block and ResNet V1 (post-activation).
res_func = self._residual_v1
# 3 stages of block stacking.
for i in range(3):
with tf.name_scope('stage'):
for j in range(self.n):
if j == 0:
# First block in a stage, filters and strides may change.
x = res_func(x, 3, self.filters[i], self.filters[i + 1],
self.strides[i])
else:
# Following blocks in a stage, constant filters and unit stride.
x = res_func(x, 3, self.filters[i + 1], self.filters[i + 1], 1)
x = self._global_avg_pool(x)
x = self._fully_connected(x, self.num_classes)
return x
import collections
import six
import tensorflow as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.core.framework import node_def_pb2
from tensorflow.python.framework import device as pydev
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import session_run_hook
from tensorflow.python.training import training_util
from tensorflow.python.training import device_setter
from tensorflow.contrib.learn.python.learn import run_config
# TODO(b/64848083) Remove once uid bug is fixed
class RunConfig(tf.contrib.learn.RunConfig):
def uid(self, whitelist=None):
"""Generates a 'Unique Identifier' based on all internal fields.
Caller should use the uid string to check `RunConfig` instance integrity
in one session use, but should not rely on the implementation details, which
is subject to change.
Args:
whitelist: A list of the string names of the properties uid should not
include. If `None`, defaults to `_DEFAULT_UID_WHITE_LIST`, which
includes most properties user allowes to change.
Returns:
A uid string.
"""
if whitelist is None:
whitelist = run_config._DEFAULT_UID_WHITE_LIST
state = {k: v for k, v in self.__dict__.items() if not k.startswith('__')}
# Pop out the keys in whitelist.
for k in whitelist:
state.pop('_' + k, None)
ordered_state = collections.OrderedDict(
sorted(state.items(), key=lambda t: t[0]))
# For class instance without __repr__, some special cares are required.
# Otherwise, the object address will be used.
if '_cluster_spec' in ordered_state:
ordered_state['_cluster_spec'] = collections.OrderedDict(
sorted(ordered_state['_cluster_spec'].as_dict().items(),
key=lambda t: t[0])
)
return ', '.join(
'%s=%r' % (k, v) for (k, v) in six.iteritems(ordered_state))
class ExamplesPerSecondHook(session_run_hook.SessionRunHook):
"""Hook to print out examples per second.
Total time is tracked and then divided by the total number of steps
to get the average step time and then batch_size is used to determine
the running average of examples per second. The examples per second for the
most recent interval is also logged.
"""
def __init__(
self,
batch_size,
every_n_steps=100,
every_n_secs=None,):
"""Initializer for ExamplesPerSecondHook.
Args:
batch_size: Total batch size used to calculate examples/second from
global time.
every_n_steps: Log stats every n steps.
every_n_secs: Log stats every n seconds.
"""
if (every_n_steps is None) == (every_n_secs is None):
raise ValueError('exactly one of every_n_steps'
' and every_n_secs should be provided.')
self._timer = basic_session_run_hooks.SecondOrStepTimer(
every_steps=every_n_steps, every_secs=every_n_secs)
self._step_train_time = 0
self._total_steps = 0
self._batch_size = batch_size
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError(
'Global step should be created to use StepCounterHook.')
def before_run(self, run_context): # pylint: disable=unused-argument
return basic_session_run_hooks.SessionRunArgs(self._global_step_tensor)
def after_run(self, run_context, run_values):
_ = run_context
global_step = run_values.results
if self._timer.should_trigger_for_step(global_step):
elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
global_step)
if elapsed_time is not None:
steps_per_sec = elapsed_steps / elapsed_time
self._step_train_time += elapsed_time
self._total_steps += elapsed_steps
average_examples_per_sec = self._batch_size * (
self._total_steps / self._step_train_time)
current_examples_per_sec = steps_per_sec * self._batch_size
# Average examples/sec followed by current examples/sec
logging.info('%s: %g (%g), step = %g', 'Average examples/sec',
average_examples_per_sec, current_examples_per_sec,
self._total_steps)
def local_device_setter(num_devices=1,
ps_device_type='cpu',
worker_device='/cpu:0',
ps_ops=None,
ps_strategy=None):
if ps_ops == None:
ps_ops = ['Variable', 'VariableV2', 'VarHandleOp']
if ps_strategy is None:
ps_strategy = device_setter._RoundRobinStrategy(num_devices)
if not six.callable(ps_strategy):
raise TypeError("ps_strategy must be callable")
def _local_device_chooser(op):
current_device = pydev.DeviceSpec.from_string(op.device or "")
node_def = op if isinstance(op, node_def_pb2.NodeDef) else op.node_def
if node_def.op in ps_ops:
ps_device_spec = pydev.DeviceSpec.from_string(
'/{}:{}'.format(ps_device_type, ps_strategy(op)))
ps_device_spec.merge_from(current_device)
return ps_device_spec.to_string()
else:
worker_device_spec = pydev.DeviceSpec.from_string(worker_device or "")
worker_device_spec.merge_from(current_device)
return worker_device_spec.to_string()
return _local_device_chooser
trainingInput:
scaleTier: CUSTOM
masterType: complex_model_m_gpu
workerType: complex_model_m_gpu
parameterServerType: complex_model_m
workerCount: 1
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Read CIFAR-10 data from pickled numpy arrays and writes TFRecords.
Generates tf.train.Example protos and writes them to TFRecord files from the
python version of the CIFAR-10 dataset downloaded from
https://www.cs.toronto.edu/~kriz/cifar.html.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tarfile
from six.moves import cPickle as pickle
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
CIFAR_FILENAME = 'cifar-10-python.tar.gz'
CIFAR_DOWNLOAD_URL = 'https://www.cs.toronto.edu/~kriz/' + CIFAR_FILENAME
CIFAR_LOCAL_FOLDER = 'cifar-10-batches-py'
def download_and_extract(data_dir):
# download CIFAR-10 if not already downloaded.
tf.contrib.learn.datasets.base.maybe_download(CIFAR_FILENAME, data_dir,
CIFAR_DOWNLOAD_URL)
tarfile.open(os.path.join(data_dir, CIFAR_FILENAME),
'r:gz').extractall(data_dir)
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _get_file_names():
"""Returns the file names expected to exist in the input_dir."""
file_names = {}
file_names['train'] = ['data_batch_%d' % i for i in xrange(1, 5)]
file_names['validation'] = ['data_batch_5']
file_names['eval'] = ['test_batch']
return file_names
def read_pickle_from_file(filename):
with tf.gfile.Open(filename, 'rb') as f:
if sys.version_info >= (3, 0):
data_dict = pickle.load(f, encoding='bytes')
else:
data_dict = pickle.load(f)
return data_dict
def convert_to_tfrecord(input_files, output_file):
"""Converts a file to TFRecords."""
print('Generating %s' % output_file)
with tf.python_io.TFRecordWriter(output_file) as record_writer:
for input_file in input_files:
data_dict = read_pickle_from_file(input_file)
data = data_dict[b'data']
labels = data_dict[b'labels']
num_entries_in_batch = len(labels)
for i in range(num_entries_in_batch):
example = tf.train.Example(features=tf.train.Features(
feature={
'image': _bytes_feature(data[i].tobytes()),
'label': _int64_feature(labels[i])
}))
record_writer.write(example.SerializeToString())
def main(data_dir):
print('Download from {} and extract.'.format(CIFAR_DOWNLOAD_URL))
download_and_extract(data_dir)
file_names = _get_file_names()
input_dir = os.path.join(data_dir, CIFAR_LOCAL_FOLDER)
for mode, files in file_names.items():
input_files = [os.path.join(input_dir, f) for f in files]
output_file = os.path.join(data_dir, mode + '.tfrecords')
try:
os.remove(output_file)
except OSError:
pass
# Convert to tf.train.Example and write the to TFRecords.
convert_to_tfrecord(input_files, output_file)
print('Done!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data-dir',
type=str,
default='',
help='Directory to download and extract CIFAR-10 to.')
args = parser.parse_args()
main(args.data_dir)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet model.
Related papers:
https://arxiv.org/pdf/1603.05027v2.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1605.07146v1.pdf
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class ResNet(object):
"""ResNet model."""
def __init__(self, is_training, data_format, batch_norm_decay, batch_norm_epsilon):
"""ResNet constructor.
Args:
is_training: if build training or inference model.
data_format: the data_format used during computation.
one of 'channels_first' or 'channels_last'.
"""
self._batch_norm_decay = batch_norm_decay
self._batch_norm_epsilon = batch_norm_epsilon
self._is_training = is_training
assert data_format in ('channels_first', 'channels_last')
self._data_format = data_format
def forward_pass(self, x):
raise NotImplementedError(
'forward_pass() is implemented in ResNet sub classes')
def _residual_v1(self,
x,
kernel_size,
in_filter,
out_filter,
stride,
activate_before_residual=False):
"""Residual unit with 2 sub layers, using Plan A for shortcut connection."""
del activate_before_residual
with tf.name_scope('residual_v1') as name_scope:
orig_x = x
x = self._conv(x, kernel_size, out_filter, stride)
x = self._batch_norm(x)
x = self._relu(x)
x = self._conv(x, kernel_size, out_filter, 1)
x = self._batch_norm(x)
if in_filter != out_filter:
orig_x = self._avg_pool(orig_x, stride, stride)
pad = (out_filter - in_filter) // 2
if self._data_format == 'channels_first':
orig_x = tf.pad(orig_x, [[0, 0], [pad, pad], [0, 0], [0, 0]])
else:
orig_x = tf.pad(orig_x, [[0, 0], [0, 0], [0, 0], [pad, pad]])
x = self._relu(tf.add(x, orig_x))
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _residual_v2(self,
x,
in_filter,
out_filter,
stride,
activate_before_residual=False):
"""Residual unit with 2 sub layers with preactivation, plan A shortcut."""
with tf.name_scope('residual_v2') as name_scope:
if activate_before_residual:
x = self._batch_norm(x)
x = self._relu(x)
orig_x = x
else:
orig_x = x
x = self._batch_norm(x)
x = self._relu(x)
x = self._conv(x, 3, out_filter, stride)
x = self._batch_norm(x)
x = self._relu(x)
x = self._conv(x, 3, out_filter, [1, 1, 1, 1])
if in_filter != out_filter:
pad = (out_filter - in_filter) // 2
orig_x = self._avg_pool(orig_x, stride, stride)
if self._data_format == 'channels_first':
orig_x = tf.pad(orig_x, [[0, 0], [pad, pad], [0, 0], [0, 0]])
else:
orig_x = tf.pad(orig_x, [[0, 0], [0, 0], [0, 0], [pad, pad]])
x = tf.add(x, orig_x)
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _bottleneck_residual_v2(self,
x,
in_filter,
out_filter,
stride,
activate_before_residual=False):
"""Bottleneck residual unit with 3 sub layers, plan B shortcut."""
with tf.name_scope('bottle_residual_v2') as name_scope:
if activate_before_residual:
x = self._batch_norm(x)
x = self._relu(x)
orig_x = x
else:
orig_x = x
x = self._batch_norm(x)
x = self._relu(x)
x = self._conv(x, 1, out_filter // 4, stride, is_atrous=True)
x = self._batch_norm(x)
x = self._relu(x)
# pad when stride isn't unit
x = self._conv(x, 3, out_filter // 4, 1, is_atrous=True)
x = self._batch_norm(x)
x = self._relu(x)
x = self._conv(x, 1, out_filter, 1, is_atrous=True)
if in_filter != out_filter:
orig_x = self._conv(orig_x, 1, out_filter, stride, is_atrous=True)
x = tf.add(x, orig_x)
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _conv(self, x, kernel_size, filters, strides, is_atrous=False):
"""Convolution."""
padding = 'SAME'
if not is_atrous and strides > 1:
pad = kernel_size - 1
pad_beg = pad // 2
pad_end = pad - pad_beg
if self._data_format == 'channels_first':
x = tf.pad(x, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]])
else:
x = tf.pad(x, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
padding = 'VALID'
return tf.layers.conv2d(
inputs=x,
kernel_size=kernel_size,
filters=filters,
strides=strides,
padding=padding,
use_bias=False,
data_format=self._data_format)
def _batch_norm(self, x):
if self._data_format == 'channels_first':
data_format = 'NCHW'
else:
data_format = 'NHWC'
return tf.contrib.layers.batch_norm(
x,
decay=self._batch_norm_decay,
center=True,
scale=True,
epsilon=self._batch_norm_epsilon,
is_training=self._is_training,
fused=True,
data_format=data_format)
def _relu(self, x):
return tf.nn.relu(x)
def _fully_connected(self, x, out_dim):
with tf.name_scope('fully_connected') as name_scope:
x = tf.layers.dense(x, out_dim)
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _avg_pool(self, x, pool_size, stride):
with tf.name_scope('avg_pool') as name_scope:
x = tf.layers.average_pooling2d(
x, pool_size, stride, 'SAME', data_format=self._data_format)
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
def _global_avg_pool(self, x):
with tf.name_scope('global_avg_pool') as name_scope:
assert x.get_shape().ndims == 4
if self._data_format == 'channels_first':
x = tf.reduce_mean(x, [2, 3])
else:
x = tf.reduce_mean(x, [1, 2])
tf.logging.info('image after unit %s: %s', name_scope, x.get_shape())
return x
# Description:
# Example TensorFlow models for ImageNet.
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
py_binary(
name = "classify_image",
srcs = [
"classify_image.py",
],
srcs_version = "PY2AND3",
visibility = ["//tensorflow:__subpackages__"],
deps = [
"//tensorflow:tensorflow_py",
],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple image classification with Inception.
Run image classification with Inception trained on ImageNet 2012 Challenge data
set.
This program creates a graph from a saved GraphDef protocol buffer,
and runs inference on an input JPEG image. It outputs human readable
strings of the top 5 predictions along with their probabilities.
Change the --image_file argument to any jpg image to compute a
classification of that image.
Please see the tutorial and website for a detailed description of how
to use this script to perform image recognition.
https://tensorflow.org/tutorials/image_recognition/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
FLAGS = None
# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
uid_lookup_path: string UID to human-readable string.
Returns:
dict from integer node ID to human-readable string.
"""
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string
# Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
# Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
def run_inference_on_image(image):
"""Runs inference on an image.
Args:
image: Image file name.
Returns:
Nothing
"""
if not tf.gfile.Exists(image):
tf.logging.fatal('File does not exist %s', image)
image_data = tf.gfile.FastGFile(image, 'rb').read()
# Creates graph from saved GraphDef.
create_graph()
with tf.Session() as sess:
# Some useful tensors:
# 'softmax:0': A tensor containing the normalized prediction across
# 1000 labels.
# 'pool_3:0': A tensor containing the next-to-last layer containing 2048
# float description of the image.
# 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
# encoding of the image.
# Runs the softmax tensor by feeding the image_data as input to the graph.
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
predictions = sess.run(softmax_tensor,
{'DecodeJpeg/contents:0': image_data})
predictions = np.squeeze(predictions)
# Creates node ID --> English string lookup.
node_lookup = NodeLookup()
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
def maybe_download_and_extract():
"""Download and extract model tar file."""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def main(_):
maybe_download_and_extract()
image = (FLAGS.image_file if FLAGS.image_file else
os.path.join(FLAGS.model_dir, 'cropped_panda.jpg'))
run_inference_on_image(image)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# classify_image_graph_def.pb:
# Binary representation of the GraphDef protocol buffer.
# imagenet_synset_to_human_label_map.txt:
# Map from synset ID to a human readable string.
# imagenet_2012_challenge_label_map_proto.pbtxt:
# Text representation of a protocol buffer mapping a label to synset ID.
parser.add_argument(
'--model_dir',
type=str,
default='/tmp/imagenet',
help="""\
Path to classify_image_graph_def.pb,
imagenet_synset_to_human_label_map.txt, and
imagenet_2012_challenge_label_map_proto.pbtxt.\
"""
)
parser.add_argument(
'--image_file',
type=str,
default='',
help='Absolute path to image file.'
)
parser.add_argument(
'--num_top_predictions',
type=int,
default=5,
help='Display this many predictions.'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
# Description:
# Example TensorFlow models for MNIST that achieves high accuracy
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
py_binary(
name = "convolutional",
srcs = [
"convolutional.py",
],
srcs_version = "PY2AND3",
visibility = ["//tensorflow:__subpackages__"],
deps = ["//tensorflow:tensorflow_py"],
)
py_test(
name = "convolutional_test",
size = "medium",
srcs = [
"convolutional.py",
],
args = [
"--self_test",
],
main = "convolutional.py",
srcs_version = "PY2AND3",
deps = ["//tensorflow:tensorflow_py"],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example.
This should achieve a test error of 0.7%. Please keep this model as simple and
linear as possible, it is meant as a tutorial for simple convolutional models.
Run with --self_test on the command line to execute a short self-test.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import gzip
import os
import sys
import time
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
WORK_DIRECTORY = 'data'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 10
VALIDATION_SIZE = 5000 # Size of the validation set.
SEED = 66478 # Set to None for random seed.
BATCH_SIZE = 64
NUM_EPOCHS = 10
EVAL_BATCH_SIZE = 64
EVAL_FREQUENCY = 100 # Number of steps between evaluations.
FLAGS = None
def data_type():
"""Return the type of the activations, weights, and placeholder variables."""
if FLAGS.use_fp16:
return tf.float16
else:
return tf.float32
def maybe_download(filename):
"""Download the data from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
if not tf.gfile.Exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath
def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
return data
def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels
def fake_data(num_images):
"""Generate a fake dataset that matches the dimensions of MNIST."""
data = numpy.ndarray(
shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
dtype=numpy.float32)
labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
for image in xrange(num_images):
label = image % 2
data[image, :, :, 0] = label - 0.5
labels[image] = label
return data, labels
def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) /
predictions.shape[0])
def main(_):
if FLAGS.self_test:
print('Running self-test.')
train_data, train_labels = fake_data(256)
validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
num_epochs = 1
else:
# Get the data.
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)
# Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0]
# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
train_data_node = tf.placeholder(
data_type(),
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
data_type(),
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
# The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when we call:
# {tf.global_variables_initializer().run()}
conv1_weights = tf.Variable(
tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED, dtype=data_type()))
conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type()))
conv2_weights = tf.Variable(tf.truncated_normal(
[5, 5, 32, 64], stddev=0.1,
seed=SEED, dtype=data_type()))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type()))
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type()))
fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc2_biases = tf.Variable(tf.constant(
0.1, shape=[NUM_LABELS], dtype=data_type()))
# We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Reshape the feature map cuboid into a 2D matrix to feed it to the
# fully connected layers.
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
# Add a 50% dropout during training only. Dropout also scales
# activations such that no rescaling is needed at evaluation time.
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc2_weights) + fc2_biases
# Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=train_labels_node, logits=logits))
# L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0, dtype=data_type())
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
0.01, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch)
# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)
# Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data))
# Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions
# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.global_variables_initializer().run()
print('Initialized!')
# Loop through training steps.
for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph it should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
# Run the optimizer to update weights.
sess.run(optimizer, feed_dict=feed_dict)
# print some extra information once reach the evaluation frequency
if step % EVAL_FREQUENCY == 0:
# fetch some extra nodes' data
l, lr, predictions = sess.run([loss, learning_rate, train_prediction],
feed_dict=feed_dict)
elapsed_time = time.time() - start_time
start_time = time.time()
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
print('Test error: %.1f%%' % test_error)
if FLAGS.self_test:
print('test_error', test_error)
assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
test_error,)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--use_fp16',
default=False,
help='Use half floats instead of full floats if True.',
action='store_true')
parser.add_argument(
'--self_test',
default=False,
action='store_true',
help='True if running a self test.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
# Description:
# Example RNN models, including language models and sequence-to-sequence models.
package(default_visibility = ["//visibility:public"])
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
py_library(
name = "linear",
srcs = [
"linear.py",
],
srcs_version = "PY2AND3",
deps = [
"//tensorflow:tensorflow_py",
],
)
py_library(
name = "rnn_cell",
srcs = [
"rnn_cell.py",
],
srcs_version = "PY2AND3",
deps = [
":linear",
"//tensorflow:tensorflow_py",
],
)
py_library(
name = "package",
srcs = [
"__init__.py",
],
srcs_version = "PY2AND3",
deps = [
":rnn",
":rnn_cell",
":seq2seq",
],
)
py_library(
name = "rnn",
srcs = [
"rnn.py",
],
srcs_version = "PY2AND3",
deps = [
":rnn_cell",
"//tensorflow:tensorflow_py",
],
)
py_library(
name = "seq2seq",
srcs = [
"seq2seq.py",
],
srcs_version = "PY2AND3",
deps = [
":rnn",
"//tensorflow:tensorflow_py",
],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)
This directory contains functions for creating recurrent neural networks
and sequence-to-sequence models. Detailed instructions on how to get started
and use them are available in the
[tutorials on tensorflow.org](http://tensorflow.org/tutorials/).
Here is a short overview of what is in this directory:
File | What's in it?
------------ | -------------
`ptb/` | PTB language model, see the [RNN Tutorial](http://tensorflow.org/tutorials/recurrent/)
`quickdraw/` | Quick, Draw! model, see the [RNN Tutorial for Drawing Classification](https://www.tensorflow.org/versions/master/tutorials/recurrent_quickdraw)
If you're looking for the
[`seq2seq` tutorial code](http://tensorflow.org/tutorials/seq2seq/), it lives
in [its own repo](https://github.com/tensorflow/nmt).
\ No newline at end of file
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Libraries to build Recurrent Neural Networks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Description:
# Python support for TensorFlow.
package(default_visibility = ["//tensorflow:internal"])
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
py_library(
name = "package",
srcs = [
"__init__.py",
],
srcs_version = "PY2AND3",
deps = [
":reader",
],
)
py_library(
name = "reader",
srcs = ["reader.py"],
srcs_version = "PY2AND3",
deps = ["//tensorflow:tensorflow_py"],
)
py_test(
name = "reader_test",
size = "small",
srcs = ["reader_test.py"],
srcs_version = "PY2AND3",
deps = [
":reader",
"//tensorflow:tensorflow_py",
],
)
py_library(
name = "util",
srcs = ["util.py"],
srcs_version = "PY2AND3",
deps = ["//tensorflow:tensorflow_py"],
)
py_binary(
name = "ptb_word_lm",
srcs = [
"ptb_word_lm.py",
],
srcs_version = "PY2AND3",
deps = [
":reader",
":util",
"//tensorflow:tensorflow_py",
],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Makes helper libraries available in the ptb package."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import reader
import util
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Example / benchmark for building a PTB LSTM model.
Trains the model described in:
(Zaremba, et. al.) Recurrent Neural Network Regularization
http://arxiv.org/abs/1409.2329
There are 3 supported model configurations:
===========================================
| config | epochs | train | valid | test
===========================================
| small | 13 | 37.99 | 121.39 | 115.91
| medium | 39 | 48.45 | 86.16 | 82.07
| large | 55 | 37.87 | 82.62 | 78.29
The exact results may vary depending on the random initialization.
The hyperparameters used in the model:
- init_scale - the initial scale of the weights
- learning_rate - the initial value of the learning rate
- max_grad_norm - the maximum permissible norm of the gradient
- num_layers - the number of LSTM layers
- num_steps - the number of unrolled steps of LSTM
- hidden_size - the number of LSTM units
- max_epoch - the number of epochs trained with the initial learning rate
- max_max_epoch - the total number of epochs for training
- keep_prob - the probability of keeping weights in the dropout layer
- lr_decay - the decay of the learning rate for each epoch after "max_epoch"
- batch_size - the batch size
- rnn_mode - the low level implementation of lstm cell: one of CUDNN,
BASIC, or BLOCK, representing cudnn_lstm, basic_lstm, and
lstm_block_cell classes.
The data required for this example is in the data/ dir of the
PTB dataset from Tomas Mikolov's webpage:
$ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
$ tar xvf simple-examples.tgz
To run:
$ python ptb_word_lm.py --data_path=simple-examples/data/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import numpy as np
import tensorflow as tf
import reader
import util
from tensorflow.python.client import device_lib
from distutils.version import StrictVersion
flags = tf.flags
logging = tf.logging
flags.DEFINE_string(
"model", "small",
"A type of model. Possible options are: small, medium, large.")
flags.DEFINE_string("data_path", None,
"Where the training/test data is stored.")
flags.DEFINE_string("save_path", None,
"Model output directory.")
flags.DEFINE_bool("use_fp16", False,
"Train using 16-bit floats instead of 32bit floats")
flags.DEFINE_integer("num_gpus", 1,
"If larger than 1, Grappler AutoParallel optimizer "
"will create multiple training replicas with each GPU "
"running one replica.")
flags.DEFINE_string("rnn_mode", None,
"The low level implementation of lstm cell: one of CUDNN, "
"BASIC, and BLOCK, representing cudnn_lstm, basic_lstm, "
"and lstm_block_cell classes.")
FLAGS = flags.FLAGS
BASIC = "basic"
CUDNN = "cudnn"
BLOCK = "block"
def data_type():
return tf.float16 if FLAGS.use_fp16 else tf.float32
class PTBInput(object):
"""The input data."""
def __init__(self, config, data, name=None):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = reader.ptb_producer(
data, batch_size, num_steps, name=name)
class PTBModel(object):
"""The PTB model."""
def __init__(self, is_training, config, input_):
self._is_training = is_training
self._input = input_
self._rnn_params = None
self._cell = None
self.batch_size = input_.batch_size
self.num_steps = input_.num_steps
size = config.hidden_size
vocab_size = config.vocab_size
with tf.device("/cpu:0"):
embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=data_type())
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
output, state = self._build_rnn_graph(inputs, config, is_training)
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
# Use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(
logits,
input_.targets,
tf.ones([self.batch_size, self.num_steps], dtype=data_type()),
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def _build_rnn_graph(self, inputs, config, is_training):
if config.rnn_mode == CUDNN:
return self._build_rnn_graph_cudnn(inputs, config, is_training)
else:
return self._build_rnn_graph_lstm(inputs, config, is_training)
def _build_rnn_graph_cudnn(self, inputs, config, is_training):
"""Build the inference graph using CUDNN cell."""
inputs = tf.transpose(inputs, [1, 0, 2])
self._cell = tf.contrib.cudnn_rnn.CudnnLSTM(
num_layers=config.num_layers,
num_units=config.hidden_size,
input_size=config.hidden_size,
dropout=1 - config.keep_prob if is_training else 0)
params_size_t = self._cell.params_size()
self._rnn_params = tf.get_variable(
"lstm_params",
initializer=tf.random_uniform(
[params_size_t], -config.init_scale, config.init_scale),
validate_shape=False)
c = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
h = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
self._initial_state = (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)
outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training)
outputs = tf.transpose(outputs, [1, 0, 2])
outputs = tf.reshape(outputs, [-1, config.hidden_size])
return outputs, (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)
def _get_lstm_cell(self, config, is_training):
if config.rnn_mode == BASIC:
return tf.contrib.rnn.BasicLSTMCell(
config.hidden_size, forget_bias=0.0, state_is_tuple=True,
reuse=not is_training)
if config.rnn_mode == BLOCK:
return tf.contrib.rnn.LSTMBlockCell(
config.hidden_size, forget_bias=0.0)
raise ValueError("rnn_mode %s not supported" % config.rnn_mode)
def _build_rnn_graph_lstm(self, inputs, config, is_training):
"""Build the inference graph using canonical LSTM cells."""
# Slightly better results can be obtained with forget gate biases
# initialized to 1 but the hyperparameters of the model would need to be
# different than reported in the paper.
def make_cell():
cell = self._get_lstm_cell(config, is_training)
if is_training and config.keep_prob < 1:
cell = tf.contrib.rnn.DropoutWrapper(
cell, output_keep_prob=config.keep_prob)
return cell
cell = tf.contrib.rnn.MultiRNNCell(
[make_cell() for _ in range(config.num_layers)], state_is_tuple=True)
self._initial_state = cell.zero_state(config.batch_size, data_type())
state = self._initial_state
# Simplified version of tf.nn.static_rnn().
# This builds an unrolled LSTM for tutorial purposes only.
# In general, use tf.nn.static_rnn() or tf.nn.static_state_saving_rnn().
#
# The alternative version of the code below is:
#
# inputs = tf.unstack(inputs, num=self.num_steps, axis=1)
# outputs, state = tf.nn.static_rnn(cell, inputs,
# initial_state=self._initial_state)
outputs = []
with tf.variable_scope("RNN"):
for time_step in range(self.num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size])
return output, state
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
def export_ops(self, name):
"""Exports ops to collections."""
self._name = name
ops = {util.with_prefix(self._name, "cost"): self._cost}
if self._is_training:
ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
if self._rnn_params:
ops.update(rnn_params=self._rnn_params)
for name, op in ops.items():
tf.add_to_collection(name, op)
self._initial_state_name = util.with_prefix(self._name, "initial")
self._final_state_name = util.with_prefix(self._name, "final")
util.export_state_tuples(self._initial_state, self._initial_state_name)
util.export_state_tuples(self._final_state, self._final_state_name)
def import_ops(self):
"""Imports ops from collections."""
if self._is_training:
self._train_op = tf.get_collection_ref("train_op")[0]
self._lr = tf.get_collection_ref("lr")[0]
self._new_lr = tf.get_collection_ref("new_lr")[0]
self._lr_update = tf.get_collection_ref("lr_update")[0]
rnn_params = tf.get_collection_ref("rnn_params")
if self._cell and rnn_params:
params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable(
self._cell,
self._cell.params_to_canonical,
self._cell.canonical_to_params,
rnn_params,
base_variable_scope="Model/RNN")
tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable)
self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0]
num_replicas = FLAGS.num_gpus if self._name == "Train" else 1
self._initial_state = util.import_state_tuples(
self._initial_state, self._initial_state_name, num_replicas)
self._final_state = util.import_state_tuples(
self._final_state, self._final_state_name, num_replicas)
@property
def input(self):
return self._input
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
@property
def initial_state_name(self):
return self._initial_state_name
@property
def final_state_name(self):
return self._final_state_name
class SmallConfig(object):
"""Small config."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 10000
rnn_mode = BLOCK
class MediumConfig(object):
"""Medium config."""
init_scale = 0.05
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 35
hidden_size = 650
max_epoch = 6
max_max_epoch = 39
keep_prob = 0.5
lr_decay = 0.8
batch_size = 20
vocab_size = 10000
rnn_mode = BLOCK
class LargeConfig(object):
"""Large config."""
init_scale = 0.04
learning_rate = 1.0
max_grad_norm = 10
num_layers = 2
num_steps = 35
hidden_size = 1500
max_epoch = 14
max_max_epoch = 55
keep_prob = 0.35
lr_decay = 1 / 1.15
batch_size = 20
vocab_size = 10000
rnn_mode = BLOCK
class TestConfig(object):
"""Tiny config, for testing."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 1
num_layers = 1
num_steps = 2
hidden_size = 2
max_epoch = 1
max_max_epoch = 1
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 10000
rnn_mode = BLOCK
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
start_time = time.time()
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
}
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
costs += cost
iters += model.input.num_steps
if verbose and step % (model.input.epoch_size // 10) == 10:
print("%.3f perplexity: %.3f speed: %.0f wps" %
(step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
iters * model.input.batch_size * max(1, FLAGS.num_gpus) /
(time.time() - start_time)))
return np.exp(costs / iters)
def get_config():
"""Get model config."""
config = None
if FLAGS.model == "small":
config = SmallConfig()
elif FLAGS.model == "medium":
config = MediumConfig()
elif FLAGS.model == "large":
config = LargeConfig()
elif FLAGS.model == "test":
config = TestConfig()
else:
raise ValueError("Invalid model: %s", FLAGS.model)
if FLAGS.rnn_mode:
config.rnn_mode = FLAGS.rnn_mode
if FLAGS.num_gpus != 1 or StrictVersion(tf.__version__) < StrictVersion("1.3.0") :
config.rnn_mode = BASIC
return config
def main(_):
if not FLAGS.data_path:
raise ValueError("Must set --data_path to PTB data directory")
gpus = [
x.name for x in device_lib.list_local_devices() if x.device_type == "GPU"
]
if FLAGS.num_gpus > len(gpus):
raise ValueError(
"Your machine has only %d gpus "
"which is less than the requested --num_gpus=%d."
% (len(gpus), FLAGS.num_gpus))
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
for name, model in models.items():
model.export_ops(name)
metagraph = tf.train.export_meta_graph()
if StrictVersion(tf.__version__) < StrictVersion("1.1.0") and FLAGS.num_gpus > 1:
raise ValueError("num_gpus > 1 is not supported for TensorFlow versions "
"below 1.1.0")
soft_placement = False
if FLAGS.num_gpus > 1:
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
with sv.managed_session(config=config_proto) as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op=m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
valid_perplexity = run_epoch(session, mvalid)
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
test_perplexity = run_epoch(session, mtest)
print("Test Perplexity: %.3f" % test_perplexity)
if FLAGS.save_path:
print("Saving model to %s." % FLAGS.save_path)
sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)
if __name__ == "__main__":
tf.app.run()
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for parsing PTB text files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
import tensorflow as tf
Py3 = sys.version_info[0] == 3
def _read_words(filename):
with tf.gfile.GFile(filename, "r") as f:
if Py3:
return f.read().replace("\n", "<eos>").split()
else:
return f.read().decode("utf-8").replace("\n", "<eos>").split()
def _build_vocab(filename):
data = _read_words(filename)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def _file_to_word_ids(filename, word_to_id):
data = _read_words(filename)
return [word_to_id[word] for word in data if word in word_to_id]
def ptb_raw_data(data_path=None):
"""Load PTB raw data from data directory "data_path".
Reads PTB text files, converts strings to integer ids,
and performs mini-batching of the inputs.
The PTB dataset comes from Tomas Mikolov's webpage:
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
Args:
data_path: string path to the directory where simple-examples.tgz has
been extracted.
Returns:
tuple (train_data, valid_data, test_data, vocabulary)
where each of the data objects can be passed to PTBIterator.
"""
train_path = os.path.join(data_path, "ptb.train.txt")
valid_path = os.path.join(data_path, "ptb.valid.txt")
test_path = os.path.join(data_path, "ptb.test.txt")
word_to_id = _build_vocab(train_path)
train_data = _file_to_word_ids(train_path, word_to_id)
valid_data = _file_to_word_ids(valid_path, word_to_id)
test_data = _file_to_word_ids(test_path, word_to_id)
vocabulary = len(word_to_id)
return train_data, valid_data, test_data, vocabulary
def ptb_producer(raw_data, batch_size, num_steps, name=None):
"""Iterate on the raw PTB data.
This chunks up raw_data into batches of examples and returns Tensors that
are drawn from these batches.
Args:
raw_data: one of the raw data outputs from ptb_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
name: the name of this operation (optional).
Returns:
A pair of Tensors, each shaped [batch_size, num_steps]. The second element
of the tuple is the same data time-shifted to the right by one.
Raises:
tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
"""
with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0 : batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
assertion = tf.assert_positive(
epoch_size,
message="epoch_size == 0, decrease batch_size or num_steps")
with tf.control_dependencies([assertion]):
epoch_size = tf.identity(epoch_size, name="epoch_size")
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = tf.strided_slice(data, [0, i * num_steps],
[batch_size, (i + 1) * num_steps])
x.set_shape([batch_size, num_steps])
y = tf.strided_slice(data, [0, i * num_steps + 1],
[batch_size, (i + 1) * num_steps + 1])
y.set_shape([batch_size, num_steps])
return x, y
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment