Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
3335e25d
"docs/source/_static/css/line_space.css" did not exist on "fd158e88e82c3fa848017c62a7eccb49a5c64f78"
Commit
3335e25d
authored
Aug 24, 2020
by
Allen Wang
Committed by
A. Unique TensorFlower
Aug 24, 2020
Browse files
Internal changes.
PiperOrigin-RevId: 328225451
parent
20db22c7
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
351 additions
and
17 deletions
+351
-17
official/nlp/modeling/layers/attention.py
official/nlp/modeling/layers/attention.py
+278
-0
official/nlp/modeling/layers/attention_test.py
official/nlp/modeling/layers/attention_test.py
+33
-0
official/nlp/modeling/layers/position_embedding.py
official/nlp/modeling/layers/position_embedding.py
+1
-0
official/nlp/xlnet/xlnet_modeling.py
official/nlp/xlnet/xlnet_modeling.py
+38
-16
official/nlp/xlnet/xlnet_modeling_test.py
official/nlp/xlnet/xlnet_modeling_test.py
+1
-1
No files found.
official/nlp/modeling/layers/attention.py
View file @
3335e25d
...
...
@@ -16,12 +16,16 @@
"""Keras-based attention layer."""
# pylint: disable=g-classes-have-attributes
import
math
import
string
import
tensorflow
as
tf
from
official.nlp.modeling.layers
import
masked_softmax
EinsumDense
=
tf
.
keras
.
layers
.
experimental
.
EinsumDense
MultiHeadAttention
=
tf
.
keras
.
layers
.
MultiHeadAttention
_CHR_IDX
=
string
.
ascii_lowercase
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
"Text"
)
...
...
@@ -107,3 +111,277 @@ class CachedAttention(tf.keras.layers.MultiHeadAttention):
if
return_attention_scores
:
return
attention_output
,
attention_scores
,
cache
return
attention_output
,
cache
def
_rel_shift
(
x
,
klen
=-
1
):
"""Performs relative shift to form the relative attention score."""
x
=
tf
.
transpose
(
x
,
perm
=
[
1
,
2
,
0
,
3
])
x_size
=
tf
.
shape
(
x
)
x
=
tf
.
reshape
(
x
,
[
x_size
[
1
],
x_size
[
0
],
x_size
[
2
],
x_size
[
3
]])
x
=
tf
.
slice
(
x
,
[
1
,
0
,
0
,
0
],
[
-
1
,
-
1
,
-
1
,
-
1
])
x
=
tf
.
reshape
(
x
,
[
x_size
[
0
],
x_size
[
1
]
-
1
,
x_size
[
2
],
x_size
[
3
]])
x
=
tf
.
slice
(
x
,
[
0
,
0
,
0
,
0
],
[
-
1
,
klen
,
-
1
,
-
1
])
x
=
tf
.
transpose
(
x
,
perm
=
[
2
,
0
,
1
,
3
])
return
x
def
_build_proj_equation
(
free_dims
,
bound_dims
,
output_dims
):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str
=
""
kernel_str
=
""
output_str
=
""
bias_axes
=
""
letter_offset
=
0
for
i
in
range
(
free_dims
):
char
=
_CHR_IDX
[
i
+
letter_offset
]
input_str
+=
char
output_str
+=
char
letter_offset
+=
free_dims
for
i
in
range
(
bound_dims
):
char
=
_CHR_IDX
[
i
+
letter_offset
]
input_str
+=
char
kernel_str
+=
char
letter_offset
+=
bound_dims
for
i
in
range
(
output_dims
):
char
=
_CHR_IDX
[
i
+
letter_offset
]
kernel_str
+=
char
output_str
+=
char
bias_axes
+=
char
equation
=
"%s,%s->%s"
%
(
input_str
,
kernel_str
,
output_str
)
return
equation
,
bias_axes
,
len
(
output_str
)
def
_get_output_shape
(
output_rank
,
known_last_dims
):
return
[
None
]
*
(
output_rank
-
len
(
known_last_dims
))
+
list
(
known_last_dims
)
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
"Text"
)
class
MultiHeadRelativeAttention
(
MultiHeadAttention
):
"""A multi-head attention layer with relative attention + position encoding.
This layer shares the same input/output projections as the common
MultiHeadAttention layer.
When it calculates attention logits, position encoding is projected to form
relative keys. The logits are composed by shifted relative logits and content
logits.
**Note: This layer is currently experimental.
Arguments:
num_heads: The number of attention heads.
key_dim: Size of each attention head for query and key.
value_dim: Size of attention head for value.
dropout: Dropout probability for attention.
use_bias: Boolean, whether the dense layers use bias vectors/matrices.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
Call args:
query: Query `Tensor` of shape `[B, T, dim]`.
value: Value `Tensor` of shape `[B, S, dim]`.
content_attention_bias: Bias `Tensor` for content based attention of shape
`[num_heads, dim]`.
position_attention_bias: Bias `Tensor` for position based attention of shape
`[num_heads, dim]`.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
state: Optional `Tensor` of shape [B, M, E] where M is the length of the
state or memory.
If passed, this is also attended over as in Transformer XL.
key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will use
`value` for both `key` and `value`, which is the most common case.
attention_mask: a boolean mask of shape `[B, T, S]`, that prevents attention
to certain positions.
"""
def
_build_from_signature
(
self
,
query
,
value
,
key
=
None
):
super
(
MultiHeadRelativeAttention
,
self
).
_build_from_signature
(
query
=
query
,
value
=
value
,
key
=
key
)
if
hasattr
(
query
,
"shape"
):
query_shape
=
tf
.
TensorShape
(
query
.
shape
)
else
:
query_shape
=
query
if
hasattr
(
value
,
"shape"
):
value_shape
=
tf
.
TensorShape
(
value
.
shape
)
else
:
value_shape
=
value
if
key
is
None
:
key_shape
=
value_shape
elif
hasattr
(
key
,
"shape"
):
key_shape
=
tf
.
TensorShape
(
key
.
shape
)
else
:
key_shape
=
key
common_kwargs
=
dict
(
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
)
with
tf
.
init_scope
():
free_dims
=
query_shape
.
rank
-
1
einsum_equation
,
bias_axes
,
output_rank
=
_build_proj_equation
(
key_shape
.
rank
-
1
,
bound_dims
=
1
,
output_dims
=
2
)
self
.
_encoding_dense
=
EinsumDense
(
einsum_equation
,
output_shape
=
_get_output_shape
(
output_rank
-
1
,
[
self
.
_num_heads
,
self
.
_key_dim
]),
bias_axes
=
bias_axes
if
self
.
_use_bias
else
None
,
name
=
"encoding"
,
**
common_kwargs
)
output_shape
=
[
query_shape
[
-
1
]]
einsum_equation
,
bias_axes
,
output_rank
=
_build_proj_equation
(
free_dims
,
bound_dims
=
2
,
output_dims
=
len
(
output_shape
))
# TODO(allencwang) - replace all einsums with programmatic equations.
einsum_equation
=
"abcd,ecd->abe"
self
.
_output_dense
=
EinsumDense
(
einsum_equation
,
output_shape
=
_get_output_shape
(
output_rank
-
1
,
output_shape
),
bias_axes
=
bias_axes
if
self
.
_use_bias
else
None
,
name
=
"attention_output"
,
**
common_kwargs
)
def
_build_attention
(
self
,
rank
):
self
.
_masked_softmax
=
masked_softmax
.
MaskedSoftmax
(
mask_expansion_axes
=
[
1
],
normalization_axes
=
[
2
])
self
.
_dropout_layer
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout
)
def
compute_attention
(
self
,
query
,
key
,
value
,
position
,
content_attention_bias
,
positional_attention_bias
,
attention_mask
=
None
):
"""Computes the attention.
This function defines the computation inside `call` with projected
multihead Q, K, V, R inputs.
Args:
query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
key: Projected key `Tensor` of shape `[B, S + M, N, key_dim]`.
value: Projected value `Tensor` of shape `[B, S + M, N, key_dim]`.
position: Projected position `Tensor` of shape `[B, L, N, key_dim]`.
content_attention_bias: Trainable bias parameter added to the query head
when calculating the content-based attention score.
positional_attention_bias: Trainable bias parameter added to the query
head when calculating the position-based attention score.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: Multi-headed output of attention computation of shape
`[B, T, N, key_dim]`.
"""
content_attention
=
tf
.
einsum
(
"bind,bjnd->bijn"
,
query
+
content_attention_bias
,
key
)
positional_attention
=
tf
.
einsum
(
"bind,bjnd->bijn"
,
query
+
positional_attention_bias
,
position
)
positional_attention
=
_rel_shift
(
positional_attention
,
klen
=
tf
.
shape
(
content_attention
)[
2
])
attention_scores
=
tf
.
multiply
((
content_attention
+
positional_attention
),
1.0
/
math
.
sqrt
(
float
(
self
.
_key_dim
)))
attention_scores
=
self
.
_masked_softmax
(
attention_scores
,
attention_mask
)
attention_output
=
self
.
_dropout_layer
(
attention_scores
)
attention_output
=
tf
.
einsum
(
"bijn,bjnd->bind"
,
attention_output
,
value
)
return
attention_output
def
call
(
self
,
query
,
value
,
content_attention_bias
,
positional_attention_bias
,
key
=
None
,
relative_position_encoding
=
None
,
state
=
None
,
attention_mask
=
None
):
"""Compute multi-head relative attention over inputs.
Size glossary:
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Batch dimensions (B).
* Query (target) attention axes shape (T).
* Value (source) attention axes shape (S), the rank must match the target.
* Encoding length (L): The relative positional encoding length.
Args:
query: attention input.
value: attention input.
content_attention_bias: A trainable bias parameter added to the query
head when calculating the content-based attention score.
positional_attention_bias: A trainable bias parameter added to the query
head when calculating the position-based attention score.
key: attention input.
relative_position_encoding: relative positional encoding for key and
value.
state: (default None) optional state. If passed, this is also attended
over as in TransformerXL.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: The result of the computation, of shape [B, T, E],
where `T` is for target sequence shapes and `E` is the query input last
dimension if `output_shape` is `None`. Otherwise, the multi-head outputs
are projected to the shape specified by `output_shape`.
"""
if
not
self
.
_built_from_signature
:
self
.
_build_from_signature
(
query
,
value
,
key
=
key
)
if
key
is
None
:
key
=
value
if
state
is
not
None
and
state
.
shape
.
ndims
>
1
:
value
=
tf
.
concat
([
state
,
value
],
1
)
key
=
tf
.
concat
([
state
,
key
],
1
)
# `query` = [B, T, N ,H]
query
=
self
.
_query_dense
(
query
)
# `key` = [B, S + M, N, H]
key
=
self
.
_key_dense
(
key
)
# `value` = [B, S + M, N, H]
value
=
self
.
_value_dense
(
value
)
# `position` = [B, L, N, H]
position
=
self
.
_encoding_dense
(
relative_position_encoding
)
attention_output
=
self
.
compute_attention
(
query
=
query
,
key
=
key
,
value
=
value
,
position
=
position
,
content_attention_bias
=
content_attention_bias
,
positional_attention_bias
=
positional_attention_bias
,
attention_mask
=
attention_mask
)
attention_output
=
self
.
_output_dense
(
attention_output
)
return
attention_output
official/nlp/modeling/layers/attention_test.py
View file @
3335e25d
...
...
@@ -92,5 +92,38 @@ class CachedAttentionTest(keras_parameterized.TestCase):
self
.
assertEqual
(
cache
[
"value"
].
shape
,
(
3
,
4
,
2
,
2
))
@
keras_parameterized
.
run_all_keras_modes
class
MultiHeadRelativeAttentionTest
(
keras_parameterized
.
TestCase
):
def
test_attention_scores
(
self
):
num_heads
=
12
key_dim
=
64
value_dim
=
32
seq_length
=
8
batch_size
=
2
test_layer
=
attention
.
MultiHeadRelativeAttention
(
num_heads
=
num_heads
,
key_dim
=
key_dim
,
value_dim
=
value_dim
)
query
=
tf
.
random
.
normal
(
shape
=
(
batch_size
,
seq_length
,
key_dim
))
value
=
query
relative_position_encoding
=
tf
.
random
.
normal
(
shape
=
(
batch_size
,
seq_length
*
2
,
key_dim
))
content_attention_bias
=
tf
.
random
.
normal
(
shape
=
(
num_heads
,
key_dim
))
positional_attention_bias
=
tf
.
random
.
normal
(
shape
=
(
num_heads
,
key_dim
))
output
=
test_layer
(
query
=
query
,
value
=
value
,
content_attention_bias
=
content_attention_bias
,
positional_attention_bias
=
positional_attention_bias
,
relative_position_encoding
=
relative_position_encoding
,
state
=
None
,
attention_mask
=
None
)
self
.
assertEqual
(
output
.
shape
,
[
batch_size
,
seq_length
,
key_dim
])
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
official/nlp/modeling/layers/position_embedding.py
View file @
3335e25d
...
...
@@ -196,3 +196,4 @@ class RelativePositionEmbedding(tf.keras.layers.Layer):
position_embeddings
=
tf
.
concat
(
[
tf
.
sin
(
scaled_time
),
tf
.
cos
(
scaled_time
)],
axis
=
1
)
return
position_embeddings
official/nlp/xlnet/xlnet_modeling.py
View file @
3335e25d
...
...
@@ -84,27 +84,49 @@ def is_special_none_tensor(tensor):
return
tensor
.
shape
.
ndims
==
0
and
tensor
.
dtype
==
tf
.
int32
class
PositionalEmbedding
(
tf
.
keras
.
layers
.
Layer
):
"""Generates relative positional embeddings used in Transformer-XL and XLNet."""
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
'Text'
)
class
RelativePositionEncoding
(
tf
.
keras
.
layers
.
Layer
):
"""Creates a relative positional encoding.
def
__init__
(
self
,
dim
,
**
kwargs
):
super
(
PositionalEmbedding
,
self
).
__init__
(
**
kwargs
)
self
.
dim
=
dim
This layer creates a relative positional encoding as described in
"Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
(https://arxiv.org/abs/1901.02860).
def
build
(
self
,
unused_input_shapes
):
"""Constructs inversed frequency vector for positional embedding layer."""
self
.
inv_freq
=
1.0
/
(
10000.0
**
(
tf
.
range
(
0
,
self
.
dim
,
2.0
)
/
self
.
dim
))
super
(
PositionalEmbedding
,
self
).
build
(
unused_input_shapes
)
Rather than an absolute position embedding as in Transformer, this
formulation represents position as the relative distance between tokens using
sinusoidal positional embeddings.
def
call
(
self
,
pos_seq
,
batch_size
):
"""Implements call() for the layer."""
sinusoid_inp
=
tf
.
einsum
(
'i,d->id'
,
pos_seq
,
self
.
inv_freq
)
pos_emb
=
tf
.
concat
([
tf
.
sin
(
sinusoid_inp
),
tf
.
cos
(
sinusoid_inp
)],
-
1
)
Note: This layer is currently experimental.
Attributes:
hidden_size: The dimensionality of the input embeddings.
"""
def
__init__
(
self
,
hidden_size
,
**
kwargs
):
super
(
RelativePositionEncoding
,
self
).
__init__
(
**
kwargs
)
self
.
_hidden_size
=
hidden_size
self
.
_inv_freq
=
1.0
/
(
10000.0
**
(
tf
.
range
(
0
,
self
.
_hidden_size
,
2.0
)
/
self
.
_hidden_size
))
def
call
(
self
,
pos_seq
,
batch_size
=
None
):
"""Implements call() for the layer.
Arguments:
pos_seq: A 1-D `Tensor`
batch_size: The optionally provided batch size that tiles the relative
positional encoding.
Returns:
The relative positional encoding of shape:
[len(pos_seq), batch_size, hidden_size] if batch_size is provided, else
[len(pos_seq), 1, hidden_size].
"""
sinusoid_input
=
tf
.
einsum
(
'i,d->id'
,
pos_seq
,
self
.
_inv_freq
)
pos_emb
=
tf
.
concat
([
tf
.
sin
(
sinusoid_input
),
tf
.
cos
(
sinusoid_input
)],
-
1
)
pos_emb
=
pos_emb
[:,
None
,
:]
if
batch_size
is
not
None
:
pos_emb
=
tf
.
tile
(
pos_emb
,
[
1
,
batch_size
,
1
])
return
pos_emb
...
...
@@ -475,8 +497,8 @@ class TransformerXLModel(tf.keras.layers.Layer):
'mask_emb/mask_emb'
,
shape
=
[
1
,
1
,
self
.
d_model
],
dtype
=
self
.
tf_float
)
self
.
emb_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
dropout
)
self
.
fwd_position_embedding
=
Position
alEmbed
ding
(
self
.
d_model
)
self
.
bwd_position_embedding
=
Position
alEmbed
ding
(
self
.
d_model
)
self
.
fwd_position_embedding
=
Relative
Position
Enco
ding
(
self
.
d_model
)
self
.
bwd_position_embedding
=
Relative
Position
Enco
ding
(
self
.
d_model
)
self
.
rel_multihead_layers
=
[]
self
.
h_positionwise_ffn_layers
=
[]
...
...
official/nlp/xlnet/xlnet_modeling_test.py
View file @
3335e25d
...
...
@@ -42,7 +42,7 @@ class PositionalEmbeddingLayerTest(tf.test.TestCase):
[[
0.
,
0.
,
1.
,
1.
]]])
d_model
=
4
pos_seq
=
tf
.
range
(
1
,
-
1
,
-
1.0
)
# [1., 0.]
pos_emb_layer
=
xlnet_modeling
.
Position
alEmbed
ding
(
d_model
)
pos_emb_layer
=
xlnet_modeling
.
Relative
Position
Enco
ding
(
d_model
)
pos_emb
=
pos_emb_layer
(
pos_seq
,
batch_size
=
None
).
numpy
().
astype
(
float
)
logging
.
info
(
pos_emb
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment