Commit 31ca3b97 authored by Kaushik Shivakumar's avatar Kaushik Shivakumar
Browse files

resovle merge conflicts

parents 3e9d886d 7fcd7cba
...@@ -21,6 +21,7 @@ from __future__ import print_function ...@@ -21,6 +21,7 @@ from __future__ import print_function
import tensorflow as tf import tensorflow as tf
from official.nlp.modeling import layers
from official.nlp.modeling import networks from official.nlp.modeling import networks
...@@ -36,6 +37,9 @@ class BertClassifier(tf.keras.Model): ...@@ -36,6 +37,9 @@ class BertClassifier(tf.keras.Model):
instantiates a classification network based on the passed `num_classes` instantiates a classification network based on the passed `num_classes`
argument. If `num_classes` is set to 1, a regression network is instantiated. argument. If `num_classes` is set to 1, a regression network is instantiated.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
network: A transformer network. This network should output a sequence output network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding and a classification output. Furthermore, it should expose its embedding
...@@ -43,23 +47,25 @@ class BertClassifier(tf.keras.Model): ...@@ -43,23 +47,25 @@ class BertClassifier(tf.keras.Model):
num_classes: Number of classes to predict from the classification network. num_classes: Number of classes to predict from the classification network.
initializer: The initializer (if any) to use in the classification networks. initializer: The initializer (if any) to use in the classification networks.
Defaults to a Glorot uniform initializer. Defaults to a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or dropout_rate: The dropout probability of the cls head.
'predictions'. use_encoder_pooler: Whether to use the pooler layer pre-defined inside
the encoder.
""" """
def __init__(self, def __init__(self,
network, network,
num_classes, num_classes,
initializer='glorot_uniform', initializer='glorot_uniform',
output='logits',
dropout_rate=0.1, dropout_rate=0.1,
use_encoder_pooler=True,
**kwargs): **kwargs):
self._self_setattr_tracking = False self._self_setattr_tracking = False
self._network = network
self._config = { self._config = {
'network': network, 'network': network,
'num_classes': num_classes, 'num_classes': num_classes,
'initializer': initializer, 'initializer': initializer,
'output': output, 'use_encoder_pooler': use_encoder_pooler,
} }
# We want to use the inputs of the passed network as the inputs to this # We want to use the inputs of the passed network as the inputs to this
...@@ -67,22 +73,36 @@ class BertClassifier(tf.keras.Model): ...@@ -67,22 +73,36 @@ class BertClassifier(tf.keras.Model):
# when we construct the Model object at the end of init. # when we construct the Model object at the end of init.
inputs = network.inputs inputs = network.inputs
# Because we have a copy of inputs to create this Model object, we can if use_encoder_pooler:
# invoke the Network object with its own input tensors to start the Model. # Because we have a copy of inputs to create this Model object, we can
_, cls_output = network(inputs) # invoke the Network object with its own input tensors to start the Model.
cls_output = tf.keras.layers.Dropout(rate=dropout_rate)(cls_output) _, cls_output = network(inputs)
cls_output = tf.keras.layers.Dropout(rate=dropout_rate)(cls_output)
self.classifier = networks.Classification( self.classifier = networks.Classification(
input_width=cls_output.shape[-1], input_width=cls_output.shape[-1],
num_classes=num_classes, num_classes=num_classes,
initializer=initializer, initializer=initializer,
output=output, output='logits',
name='classification') name='sentence_prediction')
predictions = self.classifier(cls_output) predictions = self.classifier(cls_output)
else:
sequence_output, _ = network(inputs)
self.classifier = layers.ClassificationHead(
inner_dim=sequence_output.shape[-1],
num_classes=num_classes,
initializer=initializer,
dropout_rate=dropout_rate,
name='sentence_prediction')
predictions = self.classifier(sequence_output)
super(BertClassifier, self).__init__( super(BertClassifier, self).__init__(
inputs=inputs, outputs=predictions, **kwargs) inputs=inputs, outputs=predictions, **kwargs)
@property
def checkpoint_items(self):
return dict(encoder=self._network)
def get_config(self): def get_config(self):
return self._config return self._config
......
...@@ -42,8 +42,7 @@ class BertClassifierTest(keras_parameterized.TestCase): ...@@ -42,8 +42,7 @@ class BertClassifierTest(keras_parameterized.TestCase):
# Create a BERT trainer with the created network. # Create a BERT trainer with the created network.
bert_trainer_model = bert_classifier.BertClassifier( bert_trainer_model = bert_classifier.BertClassifier(
test_network, test_network, num_classes=num_classes)
num_classes=num_classes)
# Create a set of 2-dimensional inputs (the first dimension is implicit). # Create a set of 2-dimensional inputs (the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32) word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
...@@ -89,7 +88,7 @@ class BertClassifierTest(keras_parameterized.TestCase): ...@@ -89,7 +88,7 @@ class BertClassifierTest(keras_parameterized.TestCase):
# Create a BERT trainer with the created network. (Note that all the args # Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.) # are different, so we can catch any serialization mismatches.)
bert_trainer_model = bert_classifier.BertClassifier( bert_trainer_model = bert_classifier.BertClassifier(
test_network, num_classes=4, initializer='zeros', output='predictions') test_network, num_classes=4, initializer='zeros')
# Create another BERT trainer via serialization and deserialization. # Create another BERT trainer via serialization and deserialization.
config = bert_trainer_model.get_config() config = bert_trainer_model.get_config()
......
...@@ -41,6 +41,9 @@ class BertPretrainer(tf.keras.Model): ...@@ -41,6 +41,9 @@ class BertPretrainer(tf.keras.Model):
instantiates the masked language model and classification networks that are instantiates the masked language model and classification networks that are
used to create the training objectives. used to create the training objectives.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
network: A transformer network. This network should output a sequence output network: A transformer network. This network should output a sequence output
and a classification output. and a classification output.
...@@ -147,11 +150,9 @@ class BertPretrainerV2(tf.keras.Model): ...@@ -147,11 +150,9 @@ class BertPretrainerV2(tf.keras.Model):
(Experimental). (Experimental).
Adds the masked language model head and optional classification heads upon the Adds the masked language model head and optional classification heads upon the
transformer encoder. When num_masked_tokens == 0, there won't be MaskedLM transformer encoder.
head.
Arguments: Arguments:
num_masked_tokens: Number of tokens to predict from the masked LM.
encoder_network: A transformer network. This network should output a encoder_network: A transformer network. This network should output a
sequence output and a classification output. sequence output and a classification output.
mlm_activation: The activation (if any) to use in the masked LM network. If mlm_activation: The activation (if any) to use in the masked LM network. If
...@@ -169,7 +170,6 @@ class BertPretrainerV2(tf.keras.Model): ...@@ -169,7 +170,6 @@ class BertPretrainerV2(tf.keras.Model):
def __init__( def __init__(
self, self,
num_masked_tokens: int,
encoder_network: tf.keras.Model, encoder_network: tf.keras.Model,
mlm_activation=None, mlm_activation=None,
mlm_initializer='glorot_uniform', mlm_initializer='glorot_uniform',
...@@ -179,7 +179,6 @@ class BertPretrainerV2(tf.keras.Model): ...@@ -179,7 +179,6 @@ class BertPretrainerV2(tf.keras.Model):
self._self_setattr_tracking = False self._self_setattr_tracking = False
self._config = { self._config = {
'encoder_network': encoder_network, 'encoder_network': encoder_network,
'num_masked_tokens': num_masked_tokens,
'mlm_initializer': mlm_initializer, 'mlm_initializer': mlm_initializer,
'classification_heads': classification_heads, 'classification_heads': classification_heads,
'name': name, 'name': name,
...@@ -195,19 +194,16 @@ class BertPretrainerV2(tf.keras.Model): ...@@ -195,19 +194,16 @@ class BertPretrainerV2(tf.keras.Model):
raise ValueError('Classification heads should have unique names.') raise ValueError('Classification heads should have unique names.')
outputs = dict() outputs = dict()
if num_masked_tokens > 0: self.masked_lm = layers.MaskedLM(
self.masked_lm = layers.MaskedLM( embedding_table=self.encoder_network.get_embedding_table(),
embedding_table=self.encoder_network.get_embedding_table(), activation=mlm_activation,
activation=mlm_activation, initializer=mlm_initializer,
initializer=mlm_initializer, name='cls/predictions')
name='cls/predictions') masked_lm_positions = tf.keras.layers.Input(
masked_lm_positions = tf.keras.layers.Input( shape=(None,), name='masked_lm_positions', dtype=tf.int32)
shape=(num_masked_tokens,), inputs.append(masked_lm_positions)
name='masked_lm_positions', outputs['lm_output'] = self.masked_lm(
dtype=tf.int32) sequence_output, masked_positions=masked_lm_positions)
inputs.append(masked_lm_positions)
outputs['lm_output'] = self.masked_lm(
sequence_output, masked_positions=masked_lm_positions)
for cls_head in self.classification_heads: for cls_head in self.classification_heads:
outputs[cls_head.name] = cls_head(sequence_output) outputs[cls_head.name] = cls_head(sequence_output)
...@@ -217,7 +213,7 @@ class BertPretrainerV2(tf.keras.Model): ...@@ -217,7 +213,7 @@ class BertPretrainerV2(tf.keras.Model):
@property @property
def checkpoint_items(self): def checkpoint_items(self):
"""Returns a dictionary of items to be additionally checkpointed.""" """Returns a dictionary of items to be additionally checkpointed."""
items = dict(encoder=self.encoder_network) items = dict(encoder=self.encoder_network, masked_lm=self.masked_lm)
for head in self.classification_heads: for head in self.classification_heads:
for key, item in head.checkpoint_items.items(): for key, item in head.checkpoint_items.items():
items['.'.join([head.name, key])] = item items['.'.join([head.name, key])] = item
......
...@@ -118,10 +118,9 @@ class BertPretrainerTest(keras_parameterized.TestCase): ...@@ -118,10 +118,9 @@ class BertPretrainerTest(keras_parameterized.TestCase):
vocab_size=vocab_size, num_layers=2, sequence_length=sequence_length) vocab_size=vocab_size, num_layers=2, sequence_length=sequence_length)
# Create a BERT trainer with the created network. # Create a BERT trainer with the created network.
num_token_predictions = 2
bert_trainer_model = bert_pretrainer.BertPretrainerV2( bert_trainer_model = bert_pretrainer.BertPretrainerV2(
encoder_network=test_network, num_masked_tokens=num_token_predictions) encoder_network=test_network)
num_token_predictions = 20
# Create a set of 2-dimensional inputs (the first dimension is implicit). # Create a set of 2-dimensional inputs (the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32) word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
...@@ -145,7 +144,7 @@ class BertPretrainerTest(keras_parameterized.TestCase): ...@@ -145,7 +144,7 @@ class BertPretrainerTest(keras_parameterized.TestCase):
# Create a BERT trainer with the created network. (Note that all the args # Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.) # are different, so we can catch any serialization mismatches.)
bert_trainer_model = bert_pretrainer.BertPretrainerV2( bert_trainer_model = bert_pretrainer.BertPretrainerV2(
encoder_network=test_network, num_masked_tokens=2) encoder_network=test_network)
# Create another BERT trainer via serialization and deserialization. # Create another BERT trainer via serialization and deserialization.
config = bert_trainer_model.get_config() config = bert_trainer_model.get_config()
......
...@@ -32,9 +32,12 @@ class BertSpanLabeler(tf.keras.Model): ...@@ -32,9 +32,12 @@ class BertSpanLabeler(tf.keras.Model):
encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding" (https://arxiv.org/abs/1810.04805). for Language Understanding" (https://arxiv.org/abs/1810.04805).
The BertSpanLabeler allows a user to pass in a transformer stack, and The BertSpanLabeler allows a user to pass in a transformer encoder, and
instantiates a span labeling network based on a single dense layer. instantiates a span labeling network based on a single dense layer.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
network: A transformer network. This network should output a sequence output network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding and a classification output. Furthermore, it should expose its embedding
......
...@@ -36,6 +36,9 @@ class BertTokenClassifier(tf.keras.Model): ...@@ -36,6 +36,9 @@ class BertTokenClassifier(tf.keras.Model):
instantiates a token classification network based on the passed `num_classes` instantiates a token classification network based on the passed `num_classes`
argument. argument.
*Note* that the model is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
network: A transformer network. This network should output a sequence output network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding and a classification output. Furthermore, it should expose its embedding
......
...@@ -39,6 +39,9 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -39,6 +39,9 @@ class ElectraPretrainer(tf.keras.Model):
model (at generator side) and classification networks (at discriminator side) model (at generator side) and classification networks (at discriminator side)
that are used to create the training objectives. that are used to create the training objectives.
*Note* that the model is constructed by Keras Subclass API, where layers are
defined inside __init__ and call() implements the computation.
Arguments: Arguments:
generator_network: A transformer network for generator, this network should generator_network: A transformer network for generator, this network should
output a sequence output and an optional classification output. output a sequence output and an optional classification output.
...@@ -48,7 +51,6 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -48,7 +51,6 @@ class ElectraPretrainer(tf.keras.Model):
num_classes: Number of classes to predict from the classification network num_classes: Number of classes to predict from the classification network
for the generator network (not used now) for the generator network (not used now)
sequence_length: Input sequence length sequence_length: Input sequence length
last_hidden_dim: Last hidden dim of generator transformer output
num_token_predictions: Number of tokens to predict from the masked LM. num_token_predictions: Number of tokens to predict from the masked LM.
mlm_activation: The activation (if any) to use in the masked LM and mlm_activation: The activation (if any) to use in the masked LM and
classification networks. If None, no activation will be used. classification networks. If None, no activation will be used.
...@@ -66,7 +68,6 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -66,7 +68,6 @@ class ElectraPretrainer(tf.keras.Model):
vocab_size, vocab_size,
num_classes, num_classes,
sequence_length, sequence_length,
last_hidden_dim,
num_token_predictions, num_token_predictions,
mlm_activation=None, mlm_activation=None,
mlm_initializer='glorot_uniform', mlm_initializer='glorot_uniform',
...@@ -80,7 +81,6 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -80,7 +81,6 @@ class ElectraPretrainer(tf.keras.Model):
'vocab_size': vocab_size, 'vocab_size': vocab_size,
'num_classes': num_classes, 'num_classes': num_classes,
'sequence_length': sequence_length, 'sequence_length': sequence_length,
'last_hidden_dim': last_hidden_dim,
'num_token_predictions': num_token_predictions, 'num_token_predictions': num_token_predictions,
'mlm_activation': mlm_activation, 'mlm_activation': mlm_activation,
'mlm_initializer': mlm_initializer, 'mlm_initializer': mlm_initializer,
...@@ -95,7 +95,6 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -95,7 +95,6 @@ class ElectraPretrainer(tf.keras.Model):
self.vocab_size = vocab_size self.vocab_size = vocab_size
self.num_classes = num_classes self.num_classes = num_classes
self.sequence_length = sequence_length self.sequence_length = sequence_length
self.last_hidden_dim = last_hidden_dim
self.num_token_predictions = num_token_predictions self.num_token_predictions = num_token_predictions
self.mlm_activation = mlm_activation self.mlm_activation = mlm_activation
self.mlm_initializer = mlm_initializer self.mlm_initializer = mlm_initializer
...@@ -108,14 +107,35 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -108,14 +107,35 @@ class ElectraPretrainer(tf.keras.Model):
output=output_type, output=output_type,
name='generator_masked_lm') name='generator_masked_lm')
self.classification = layers.ClassificationHead( self.classification = layers.ClassificationHead(
inner_dim=last_hidden_dim, inner_dim=generator_network._config_dict['hidden_size'],
num_classes=num_classes, num_classes=num_classes,
initializer=mlm_initializer, initializer=mlm_initializer,
name='generator_classification_head') name='generator_classification_head')
self.discriminator_projection = tf.keras.layers.Dense(
units=discriminator_network._config_dict['hidden_size'],
activation=mlm_activation,
kernel_initializer=mlm_initializer,
name='discriminator_projection_head')
self.discriminator_head = tf.keras.layers.Dense( self.discriminator_head = tf.keras.layers.Dense(
units=1, kernel_initializer=mlm_initializer) units=1, kernel_initializer=mlm_initializer)
def call(self, inputs): def call(self, inputs):
"""ELECTRA forward pass.
Args:
inputs: A dict of all inputs, same as the standard BERT model.
Returns:
outputs: A dict of pretrainer model outputs, including
(1) lm_outputs: a [batch_size, num_token_predictions, vocab_size] tensor
indicating logits on masked positions.
(2) sentence_outputs: a [batch_size, num_classes] tensor indicating
logits for nsp task.
(3) disc_logits: a [batch_size, sequence_length] tensor indicating
logits for discriminator replaced token detection task.
(4) disc_label: a [batch_size, sequence_length] tensor indicating
target labels for discriminator replaced token detection task.
"""
input_word_ids = inputs['input_word_ids'] input_word_ids = inputs['input_word_ids']
input_mask = inputs['input_mask'] input_mask = inputs['input_mask']
input_type_ids = inputs['input_type_ids'] input_type_ids = inputs['input_type_ids']
...@@ -149,10 +169,18 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -149,10 +169,18 @@ class ElectraPretrainer(tf.keras.Model):
if isinstance(disc_sequence_output, list): if isinstance(disc_sequence_output, list):
disc_sequence_output = disc_sequence_output[-1] disc_sequence_output = disc_sequence_output[-1]
disc_logits = self.discriminator_head(disc_sequence_output) disc_logits = self.discriminator_head(
self.discriminator_projection(disc_sequence_output))
disc_logits = tf.squeeze(disc_logits, axis=-1) disc_logits = tf.squeeze(disc_logits, axis=-1)
return lm_outputs, sentence_outputs, disc_logits, disc_label outputs = {
'lm_outputs': lm_outputs,
'sentence_outputs': sentence_outputs,
'disc_logits': disc_logits,
'disc_label': disc_label,
}
return outputs
def _get_fake_data(self, inputs, mlm_logits, duplicate=True): def _get_fake_data(self, inputs, mlm_logits, duplicate=True):
"""Generate corrupted data for discriminator. """Generate corrupted data for discriminator.
...@@ -191,6 +219,12 @@ class ElectraPretrainer(tf.keras.Model): ...@@ -191,6 +219,12 @@ class ElectraPretrainer(tf.keras.Model):
'sampled_tokens': sampled_tokens 'sampled_tokens': sampled_tokens
} }
@property
def checkpoint_items(self):
"""Returns a dictionary of items to be additionally checkpointed."""
items = dict(encoder=self.discriminator_network)
return items
def get_config(self): def get_config(self):
return self._config return self._config
......
...@@ -49,7 +49,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -49,7 +49,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
vocab_size=vocab_size, vocab_size=vocab_size,
num_classes=num_classes, num_classes=num_classes,
sequence_length=sequence_length, sequence_length=sequence_length,
last_hidden_dim=768,
num_token_predictions=num_token_predictions, num_token_predictions=num_token_predictions,
disallow_correct=True) disallow_correct=True)
...@@ -69,7 +68,11 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -69,7 +68,11 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
} }
# Invoke the trainer model on the inputs. This causes the layer to be built. # Invoke the trainer model on the inputs. This causes the layer to be built.
lm_outs, cls_outs, disc_logits, disc_label = eletrca_trainer_model(inputs) outputs = eletrca_trainer_model(inputs)
lm_outs = outputs['lm_outputs']
cls_outs = outputs['sentence_outputs']
disc_logits = outputs['disc_logits']
disc_label = outputs['disc_label']
# Validate that the outputs are of the expected shape. # Validate that the outputs are of the expected shape.
expected_lm_shape = [None, num_token_predictions, vocab_size] expected_lm_shape = [None, num_token_predictions, vocab_size]
...@@ -97,7 +100,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -97,7 +100,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
vocab_size=100, vocab_size=100,
num_classes=2, num_classes=2,
sequence_length=3, sequence_length=3,
last_hidden_dim=768,
num_token_predictions=2) num_token_predictions=2)
# Create a set of 2-dimensional data tensors to feed into the model. # Create a set of 2-dimensional data tensors to feed into the model.
...@@ -117,7 +119,7 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -117,7 +119,7 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
# Invoke the trainer model on the tensors. In Eager mode, this does the # Invoke the trainer model on the tensors. In Eager mode, this does the
# actual calculation. (We can't validate the outputs, since the network is # actual calculation. (We can't validate the outputs, since the network is
# too complex: this simply ensures we're not hitting runtime errors.) # too complex: this simply ensures we're not hitting runtime errors.)
_, _, _, _ = eletrca_trainer_model(inputs) _ = eletrca_trainer_model(inputs)
def test_serialize_deserialize(self): def test_serialize_deserialize(self):
"""Validate that the ELECTRA trainer can be serialized and deserialized.""" """Validate that the ELECTRA trainer can be serialized and deserialized."""
...@@ -136,7 +138,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -136,7 +138,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
vocab_size=100, vocab_size=100,
num_classes=2, num_classes=2,
sequence_length=3, sequence_length=3,
last_hidden_dim=768,
num_token_predictions=2) num_token_predictions=2)
# Create another BERT trainer via serialization and deserialization. # Create another BERT trainer via serialization and deserialization.
......
...@@ -40,6 +40,8 @@ class AlbertTransformerEncoder(tf.keras.Model): ...@@ -40,6 +40,8 @@ class AlbertTransformerEncoder(tf.keras.Model):
The default values for this object are taken from the ALBERT-Base The default values for this object are taken from the ALBERT-Base
implementation described in the paper. implementation described in the paper.
*Note* that the network is constructed by Keras Functional API.
Arguments: Arguments:
vocab_size: The size of the token vocabulary. vocab_size: The size of the token vocabulary.
embedding_width: The width of the word embeddings. If the embedding width is embedding_width: The width of the word embeddings. If the embedding width is
......
...@@ -29,6 +29,9 @@ class Classification(tf.keras.Model): ...@@ -29,6 +29,9 @@ class Classification(tf.keras.Model):
This network implements a simple classifier head based on a dense layer. If This network implements a simple classifier head based on a dense layer. If
num_classes is one, it can be considered as a regression problem. num_classes is one, it can be considered as a regression problem.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
input_width: The innermost dimension of the input tensor to this network. input_width: The innermost dimension of the input tensor to this network.
num_classes: The number of classes that this network should classify to. If num_classes: The number of classes that this network should classify to. If
......
...@@ -49,6 +49,9 @@ class EncoderScaffold(tf.keras.Model): ...@@ -49,6 +49,9 @@ class EncoderScaffold(tf.keras.Model):
If the hidden_cls is not overridden, a default transformer layer will be If the hidden_cls is not overridden, a default transformer layer will be
instantiated. instantiated.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
pooled_output_dim: The dimension of pooled output. pooled_output_dim: The dimension of pooled output.
pooler_layer_initializer: The initializer for the classification pooler_layer_initializer: The initializer for the classification
......
...@@ -323,6 +323,28 @@ class EncoderScaffoldLayerClassTest(keras_parameterized.TestCase): ...@@ -323,6 +323,28 @@ class EncoderScaffoldLayerClassTest(keras_parameterized.TestCase):
self.assertAllEqual(network.get_config(), new_network.get_config()) self.assertAllEqual(network.get_config(), new_network.get_config())
class Embeddings(tf.keras.Model):
def __init__(self, vocab_size, hidden_size):
super().__init__()
self.inputs = [
tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name="input_word_ids"),
tf.keras.layers.Input(shape=(None,), dtype=tf.int32, name="input_mask")
]
self.attention_mask = layers.SelfAttentionMask()
self.embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=hidden_size,
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
name="word_embeddings")
def call(self, inputs):
word_ids, mask = inputs
word_embeddings = self.embedding_layer(word_ids)
return word_embeddings, self.attention_mask([word_embeddings, mask])
@keras_parameterized.run_all_keras_modes @keras_parameterized.run_all_keras_modes
class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase): class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase):
...@@ -334,20 +356,7 @@ class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase): ...@@ -334,20 +356,7 @@ class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase):
# Build an embedding network to swap in for the default network. This one # Build an embedding network to swap in for the default network. This one
# will have 2 inputs (mask and word_ids) instead of 3, and won't use # will have 2 inputs (mask and word_ids) instead of 3, and won't use
# positional embeddings. # positional embeddings.
network = Embeddings(vocab_size, hidden_size)
word_ids = tf.keras.layers.Input(
shape=(sequence_length,), dtype=tf.int32, name="input_word_ids")
mask = tf.keras.layers.Input(
shape=(sequence_length,), dtype=tf.int32, name="input_mask")
embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=hidden_size,
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
name="word_embeddings")
word_embeddings = embedding_layer(word_ids)
attention_mask = layers.SelfAttentionMask()([word_embeddings, mask])
network = tf.keras.Model([word_ids, mask],
[word_embeddings, attention_mask])
hidden_cfg = { hidden_cfg = {
"num_attention_heads": "num_attention_heads":
...@@ -371,8 +380,7 @@ class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase): ...@@ -371,8 +380,7 @@ class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase):
pooler_layer_initializer=tf.keras.initializers.TruncatedNormal( pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
stddev=0.02), stddev=0.02),
hidden_cfg=hidden_cfg, hidden_cfg=hidden_cfg,
embedding_cls=network, embedding_cls=network)
embedding_data=embedding_layer.embeddings)
# Create the inputs (note that the first dimension is implicit). # Create the inputs (note that the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32) word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
...@@ -390,11 +398,6 @@ class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase): ...@@ -390,11 +398,6 @@ class EncoderScaffoldEmbeddingNetworkTest(keras_parameterized.TestCase):
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length))
_ = model.predict([word_id_data, mask_data]) _ = model.predict([word_id_data, mask_data])
# Test that we can get the embedding data that we passed to the object. This
# is necessary to support standard language model training.
self.assertIs(embedding_layer.embeddings,
test_network.get_embedding_table())
def test_serialize_deserialize(self): def test_serialize_deserialize(self):
hidden_size = 32 hidden_size = 32
sequence_length = 21 sequence_length = 21
......
...@@ -27,6 +27,8 @@ class SpanLabeling(tf.keras.Model): ...@@ -27,6 +27,8 @@ class SpanLabeling(tf.keras.Model):
"""Span labeling network head for BERT modeling. """Span labeling network head for BERT modeling.
This network implements a simple single-span labeler based on a dense layer. This network implements a simple single-span labeler based on a dense layer.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
input_width: The innermost dimension of the input tensor to this network. input_width: The innermost dimension of the input tensor to this network.
......
...@@ -27,6 +27,8 @@ class TokenClassification(tf.keras.Model): ...@@ -27,6 +27,8 @@ class TokenClassification(tf.keras.Model):
"""TokenClassification network head for BERT modeling. """TokenClassification network head for BERT modeling.
This network implements a simple token classifier head based on a dense layer. This network implements a simple token classifier head based on a dense layer.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
input_width: The innermost dimension of the input tensor to this network. input_width: The innermost dimension of the input tensor to this network.
......
...@@ -39,6 +39,9 @@ class TransformerEncoder(tf.keras.Model): ...@@ -39,6 +39,9 @@ class TransformerEncoder(tf.keras.Model):
in "BERT: Pre-training of Deep Bidirectional Transformers for Language in "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding". Understanding".
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Arguments: Arguments:
vocab_size: The size of the token vocabulary. vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers. hidden_size: The size of the transformer hidden layers.
......
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Beam search to find the translated sequence with the highest probability."""
import numpy as np
import tensorflow as tf
def inf(dtype):
"""Returns a value close to infinity, but is still finite in `dtype`.
This is useful to get a very large value that is still zero when multiplied by
zero. The floating-point "Inf" value is NaN when multiplied by zero.
Args:
dtype: A dtype. The returned value will be finite when casted to this dtype.
Returns:
A very large value.
"""
if dtype == "float32" or dtype == "bfloat16":
return 1e7
elif dtype == "float16":
# Disable no-member lint error, as the linter thinks np.float16 does not
# exist for some reason.
return np.finfo(np.float16).max # pylint: disable=no-member
else:
raise AssertionError("Invalid dtype: %s" % dtype)
class _StateKeys(object):
"""Keys to dictionary storing the state of the beam search loop."""
# Variable storing the loop index.
CUR_INDEX = "CUR_INDEX"
# Top sequences that are alive for each batch item. Alive sequences are ones
# that have not generated an EOS token. Sequences that reach EOS are marked as
# finished and moved to the FINISHED_SEQ tensor.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]
ALIVE_SEQ = "ALIVE_SEQ"
# Log probabilities of each alive sequence. Shape [batch_size, beam_size]
ALIVE_LOG_PROBS = "ALIVE_LOG_PROBS"
# Dictionary of cached values for each alive sequence. The cache stores
# the encoder output, attention bias, and the decoder attention output from
# the previous iteration.
ALIVE_CACHE = "ALIVE_CACHE"
# Top finished sequences for each batch item.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]. Sequences that are
# shorter than CUR_INDEX + 1 are padded with 0s.
FINISHED_SEQ = "FINISHED_SEQ"
# Scores for each finished sequence. Score = log probability / length norm
# Shape [batch_size, beam_size]
FINISHED_SCORES = "FINISHED_SCORES"
# Flags indicating which sequences in the finished sequences are finished.
# At the beginning, all of the sequences in FINISHED_SEQ are filler values.
# True -> finished sequence, False -> filler. Shape [batch_size, beam_size]
FINISHED_FLAGS = "FINISHED_FLAGS"
def _expand_to_same_rank(tensor, target):
"""Expands a given tensor to target's rank to be broadcastable.
Args:
tensor: input tensor to tile. Shape: [b, d1, ..., da]
target: target tensor. Shape: [b, d1, ..., da, ..., dn]
Returns:
Tiled tensor of shape [b, d1, ..., da, 1, ..., 1] with same rank of target.
Raises:
ValueError, if the shape rank of rank tensor/target is None.
"""
if tensor.shape.rank is None:
raise ValueError("Expect rank for tensor shape, but got None.")
if target.shape.rank is None:
raise ValueError("Expect rank for target shape, but got None.")
with tf.name_scope("expand_rank"):
diff_rank = target.shape.rank - tensor.shape.rank
for _ in range(diff_rank):
tensor = tf.expand_dims(tensor, -1)
return tensor
class SequenceBeamSearch(tf.Module):
"""Implementation of beam search loop."""
def __init__(self,
symbols_to_logits_fn,
vocab_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode,
dtype=tf.float32):
"""Initialize sequence beam search.
Args:
symbols_to_logits_fn: A function to provide logits, which is the
interface to the Transformer model. The passed in arguments are: ids ->
A tensor with shape [batch_size * beam_size, index]. index -> A
scalar. cache -> A nested dictionary of tensors [batch_size *
beam_size, ...].
The function must return a tuple of logits and the updated cache: logits
-> A tensor with shape [batch * beam_size, vocab_size]. updated cache
-> A nested dictionary with the same structure as the input cache.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
beam_size: An integer, number of beams for beam search.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum number of steps to decode a
sequence.
eos_id: An integer. ID of end of sentence token.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
"""
self.symbols_to_logits_fn = symbols_to_logits_fn
self.vocab_size = vocab_size
self.beam_size = beam_size
self.alpha = alpha
self.max_decode_length = max_decode_length
self.eos_id = eos_id
self.padded_decode = padded_decode
self.dtype = tf.as_dtype(dtype)
def search(self, initial_ids, initial_cache):
"""Beam search for sequences with highest scores.
Args:
initial_ids: initial ids to pass into the symbols_to_logits_fn. int tensor
with shape [batch_size, 1]
initial_cache: dictionary storing values to be passed into the
symbols_to_logits_fn.
Returns:
finished_seq and finished_scores.
"""
batch_size = (
initial_ids.shape.as_list()[0]
if self.padded_decode else tf.shape(initial_ids)[0])
state, state_shapes = self._create_initial_state(initial_ids, initial_cache,
batch_size)
def _grow_alive_seq(state):
"""Grow alive sequences by one token, collect top 2*beam_size sequences.
2*beam_size sequences are collected because some sequences may have
reached the EOS token. 2*beam_size ensures that at least beam_size
sequences are still alive.
Args:
state: A dictionary with the current loop state.
Returns:
Tuple of
(Top 2*beam_size sequences [batch_size, 2 * beam_size, cur_index + 1],
Scores of returned sequences [batch_size, 2 * beam_size],
New alive cache, for each of the 2 * beam_size sequences)
"""
i = state[_StateKeys.CUR_INDEX]
alive_seq = state[_StateKeys.ALIVE_SEQ]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
alive_cache = state[_StateKeys.ALIVE_CACHE]
beams_to_keep = 2 * self.beam_size
# Get logits for the next candidate IDs for the alive sequences. Get the
# new cache values at the same time.
if self.padded_decode:
flat_ids = tf.reshape(
tf.slice(alive_seq, [0, 0, i], [batch_size, self.beam_size, 1]),
[batch_size * self.beam_size, -1])
else:
flat_ids = _flatten_beam_dim(alive_seq) # [batch_size * beam_size]
flat_cache = tf.nest.map_structure(_flatten_beam_dim, alive_cache)
flat_logits, flat_cache = self.symbols_to_logits_fn(
flat_ids, i, flat_cache)
# Unflatten logits to shape [batch_size, beam_size, vocab_size]
logits = _unflatten_beam_dim(flat_logits, batch_size, self.beam_size)
new_cache = tf.nest.map_structure(
lambda t: _unflatten_beam_dim(t, batch_size, self.beam_size),
flat_cache)
# Convert logits to normalized log probs
candidate_log_probs = _log_prob_from_logits(logits)
# Calculate new log probabilities if each of the alive sequences were
# extended # by the the candidate IDs.
# Shape [batch_size, beam_size, vocab_size]
log_probs = candidate_log_probs + tf.expand_dims(alive_log_probs, axis=2)
# Each batch item has beam_size * vocab_size candidate sequences. For each
# batch item, get the k candidates with the highest log probabilities.
flat_log_probs = tf.reshape(log_probs,
[-1, self.beam_size * self.vocab_size])
topk_log_probs, topk_indices = tf.nn.top_k(
flat_log_probs, k=beams_to_keep)
# Extract the alive sequences that generate the highest log probabilities
# after being extended.
topk_beam_indices = topk_indices // self.vocab_size
topk_seq, new_cache = _gather_beams([alive_seq, new_cache],
topk_beam_indices, batch_size,
beams_to_keep)
# Append the most probable IDs to the topk sequences
topk_ids = topk_indices % self.vocab_size
if self.padded_decode:
topk_seq = tf.transpose(topk_seq, perm=[2, 0, 1])
# TODO(b/145533236, hongkuny): Reverts once TF fix the validation.
topk_seq = tf.tensor_scatter_nd_update(topk_seq, [[i + 1]],
tf.expand_dims(topk_ids, axis=0))
topk_seq = tf.transpose(topk_seq, perm=[1, 2, 0])
else:
topk_seq = tf.concat(
[topk_seq, tf.expand_dims(topk_ids, axis=2)], axis=2)
return topk_seq, topk_log_probs, topk_ids, new_cache
def _get_new_alive_state(new_seq, new_log_probs, new_finished_flags,
new_cache):
"""Gather the top k sequences that are still alive.
Args:
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, 2 * beam_size, cur_index + 1]
new_log_probs: Log probabilities of new sequences float32 tensor with
shape [batch_size, beam_size]
new_finished_flags: A boolean Tensor indicates which sequences are live
inside the beam.
new_cache: Dict of cached values for each sequence.
Returns:
Dictionary with alive keys from _StateKeys:
{Top beam_size sequences that are still alive (don't end with eos_id)
Log probabilities of top alive sequences
Dict cache storing decoder states for top alive sequences}
"""
# To prevent finished sequences from being considered, set log probs to
# -inf.
new_log_probs += tf.cast(new_finished_flags,
self.dtype) * -inf(self.dtype)
top_alive_seq, top_alive_log_probs, top_alive_cache = _gather_topk_beams(
[new_seq, new_log_probs, new_cache], new_log_probs, batch_size,
self.beam_size)
return {
_StateKeys.ALIVE_SEQ: top_alive_seq,
_StateKeys.ALIVE_LOG_PROBS: top_alive_log_probs,
_StateKeys.ALIVE_CACHE: top_alive_cache
}
def _get_new_finished_state(state, new_seq, new_log_probs,
new_finished_flags):
"""Combine new and old finished sequences, and gather the top k sequences.
Args:
state: A dictionary with the current loop state.
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, beam_size, i + 1]
new_log_probs: Log probabilities of new sequences float32 tensor with
shape [batch_size, beam_size]
new_finished_flags: A boolean Tensor indicates which sequences are live
inside the beam.
Returns:
Dictionary with finished keys from _StateKeys:
{Top beam_size finished sequences based on score,
Scores of finished sequences,
Finished flags of finished sequences}
"""
i = state[_StateKeys.CUR_INDEX]
finished_seq = state[_StateKeys.FINISHED_SEQ]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
# First append a column of 0-ids to finished_seq to increment the length.
# New shape of finished_seq: [batch_size, beam_size, i + 1]
if not self.padded_decode:
finished_seq = tf.concat(
[finished_seq,
tf.zeros([batch_size, self.beam_size, 1], tf.int32)],
axis=2)
# Calculate new seq scores from log probabilities.
length_norm = _length_normalization(self.alpha, i + 1, dtype=self.dtype)
new_scores = new_log_probs / length_norm
# Set the scores of the still-alive seq in new_seq to large negative
# values.
new_scores += ((1. - tf.cast(new_finished_flags, self.dtype)) *
-inf(self.dtype))
# Combine sequences, scores, and flags.
finished_seq = tf.concat([finished_seq, new_seq], axis=1)
finished_scores = tf.concat([finished_scores, new_scores], axis=1)
finished_flags = tf.concat([finished_flags, new_finished_flags], axis=1)
# Return the finished sequences with the best scores.
top_finished_seq, top_finished_scores, top_finished_flags = (
_gather_topk_beams([finished_seq, finished_scores, finished_flags],
finished_scores, batch_size, self.beam_size))
return {
_StateKeys.FINISHED_SEQ: top_finished_seq,
_StateKeys.FINISHED_SCORES: top_finished_scores,
_StateKeys.FINISHED_FLAGS: top_finished_flags
}
def _search_step(state):
"""Beam search loop body.
Grow alive sequences by a single ID. Sequences that have reached the EOS
token are marked as finished. The alive and finished sequences with the
highest log probabilities and scores are returned.
A sequence's finished score is calculating by dividing the log probability
by the length normalization factor. Without length normalization, the
search is more likely to return shorter sequences.
Args:
state: A dictionary with the current loop state.
Returns:
new state dictionary.
"""
# Grow alive sequences by one token.
new_seq, new_log_probs, topk_ids, new_cache = _grow_alive_seq(state)
new_finished_flags = tf.equal(topk_ids, self.eos_id)
# Collect top beam_size alive sequences
alive_state = _get_new_alive_state(new_seq, new_log_probs,
new_finished_flags, new_cache)
# Combine newly finished sequences with existing finished sequences, and
# collect the top k scoring sequences.
finished_state = _get_new_finished_state(state, new_seq, new_log_probs,
new_finished_flags)
# Increment loop index and create new state dictionary
new_state = {_StateKeys.CUR_INDEX: state[_StateKeys.CUR_INDEX] + 1}
new_state.update(alive_state)
new_state.update(finished_state)
return [new_state]
finished_state = tf.nest.map_structure(
tf.stop_gradient,
tf.while_loop(
self._continue_search,
_search_step,
loop_vars=[state],
shape_invariants=[state_shapes],
parallel_iterations=1))
finished_state = finished_state[0]
return self._process_finished_state(finished_state)
def _process_finished_state(self, finished_state):
alive_seq = finished_state[_StateKeys.ALIVE_SEQ]
alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS]
finished_seq = finished_state[_StateKeys.FINISHED_SEQ]
finished_scores = finished_state[_StateKeys.FINISHED_SCORES]
finished_flags = finished_state[_StateKeys.FINISHED_FLAGS]
# TF2 changes tf.where behavior. Should make parameters broadcastable.
finished_cond = tf.reduce_any(finished_flags, 1, name="finished_cond")
seq_cond = _expand_to_same_rank(finished_cond, finished_seq)
score_cond = _expand_to_same_rank(finished_cond, finished_scores)
# Account for corner case where there are no finished sequences for a
# particular batch item. In that case, return alive sequences for that batch
# item.
finished_seq = tf.where(seq_cond, finished_seq, alive_seq)
finished_scores = tf.where(score_cond, finished_scores, alive_log_probs)
return finished_seq, finished_scores
def _create_initial_state(self, initial_ids, initial_cache, batch_size):
"""Return initial state dictionary and its shape invariants."""
for key, value in initial_cache.items():
for inner_value in tf.nest.flatten(value):
if inner_value.dtype != self.dtype:
raise TypeError(
"initial_cache element for key '%s' has dtype %s that does not "
"match SequenceBeamSearch's dtype of %s. Value: %s" %
(key, value.dtype.name, self.dtype.name, inner_value))
# Current loop index (starts at 0)
cur_index = tf.constant(0)
# Create alive sequence with shape [batch_size, beam_size, 1]
alive_seq = _expand_to_beam_size(initial_ids, self.beam_size)
alive_seq = tf.expand_dims(alive_seq, axis=2)
if self.padded_decode:
alive_seq = tf.tile(alive_seq, [1, 1, self.max_decode_length + 1])
# Create tensor for storing initial log probabilities.
# Assume initial_ids are prob 1.0
initial_log_probs = tf.constant([[0.] + [-float("inf")] *
(self.beam_size - 1)],
dtype=self.dtype)
alive_log_probs = tf.tile(initial_log_probs, [batch_size, 1])
# Expand all values stored in the dictionary to the beam size, so that each
# beam has a separate cache.
alive_cache = tf.nest.map_structure(
lambda t: _expand_to_beam_size(t, self.beam_size), initial_cache)
# Initialize tensor storing finished sequences with filler values.
finished_seq = tf.zeros(tf.shape(alive_seq), tf.int32)
# Set scores of the initial finished seqs to negative infinity.
finished_scores = tf.ones([batch_size, self.beam_size],
dtype=self.dtype) * -inf(self.dtype)
# Initialize finished flags with all False values.
finished_flags = tf.zeros([batch_size, self.beam_size], tf.bool)
# Create state dictionary
state = {
_StateKeys.CUR_INDEX: cur_index,
_StateKeys.ALIVE_SEQ: alive_seq,
_StateKeys.ALIVE_LOG_PROBS: alive_log_probs,
_StateKeys.ALIVE_CACHE: alive_cache,
_StateKeys.FINISHED_SEQ: finished_seq,
_StateKeys.FINISHED_SCORES: finished_scores,
_StateKeys.FINISHED_FLAGS: finished_flags
}
# Create state invariants for each value in the state dictionary. Each
# dimension must be a constant or None. A None dimension means either:
# 1) the dimension's value is a tensor that remains the same but may
# depend on the input sequence to the model (e.g. batch size).
# 2) the dimension may have different values on different iterations.
if self.padded_decode:
state_shape_invariants = {
_StateKeys.CUR_INDEX:
tf.TensorShape([]),
_StateKeys.ALIVE_SEQ:
tf.TensorShape(
[batch_size, self.beam_size, self.max_decode_length + 1]),
_StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([batch_size, self.beam_size]),
_StateKeys.ALIVE_CACHE:
tf.nest.map_structure(_get_shape, alive_cache),
_StateKeys.FINISHED_SEQ:
tf.TensorShape(
[batch_size, self.beam_size, self.max_decode_length + 1]),
_StateKeys.FINISHED_SCORES:
tf.TensorShape([batch_size, self.beam_size]),
_StateKeys.FINISHED_FLAGS:
tf.TensorShape([batch_size, self.beam_size])
}
else:
state_shape_invariants = {
_StateKeys.CUR_INDEX:
tf.TensorShape([]),
_StateKeys.ALIVE_SEQ:
tf.TensorShape([None, self.beam_size, None]),
_StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([None, self.beam_size]),
_StateKeys.ALIVE_CACHE:
tf.nest.map_structure(_get_shape_keep_last_dim, alive_cache),
_StateKeys.FINISHED_SEQ:
tf.TensorShape([None, self.beam_size, None]),
_StateKeys.FINISHED_SCORES:
tf.TensorShape([None, self.beam_size]),
_StateKeys.FINISHED_FLAGS:
tf.TensorShape([None, self.beam_size])
}
return state, state_shape_invariants
def _continue_search(self, state):
"""Return whether to continue the search loop.
The loops should terminate when
1) when decode length has been reached, or
2) when the worst score in the finished sequences is better than the best
score in the alive sequences (i.e. the finished sequences are provably
unchanging)
Args:
state: A dictionary with the current loop state.
Returns:
Bool tensor with value True if loop should continue, False if loop should
terminate.
"""
i = state[_StateKeys.CUR_INDEX]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
not_at_max_decode_length = tf.less(i, self.max_decode_length)
# Calculate largest length penalty (the larger penalty, the better score).
max_length_norm = _length_normalization(
self.alpha, self.max_decode_length, dtype=self.dtype)
# Get the best possible scores from alive sequences.
best_alive_scores = alive_log_probs[:, 0] / max_length_norm
# Compute worst score in finished sequences for each batch element
finished_scores *= tf.cast(finished_flags,
self.dtype) # set filler scores to zero
lowest_finished_scores = tf.reduce_min(finished_scores, axis=1)
# If there are no finished sequences in a batch element, then set the lowest
# finished score to -INF for that element.
finished_batches = tf.reduce_any(finished_flags, 1)
lowest_finished_scores += ((1.0 - tf.cast(finished_batches, self.dtype)) *
-inf(self.dtype))
worst_finished_score_better_than_best_alive_score = tf.reduce_all(
tf.greater(lowest_finished_scores, best_alive_scores))
return tf.logical_and(
not_at_max_decode_length,
tf.logical_not(worst_finished_score_better_than_best_alive_score))
def sequence_beam_search(symbols_to_logits_fn,
initial_ids,
initial_cache,
vocab_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode=False,
dtype="float32"):
"""Search for sequence of subtoken ids with the largest probability.
Args:
symbols_to_logits_fn: A function that takes in ids, index, and cache as
arguments. The passed in arguments will have shape: ids -> A tensor with
shape [batch_size * beam_size, index]. index -> A scalar. cache -> A
nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and new cache: logits -> A
tensor with shape [batch * beam_size, vocab_size]. new cache -> A nested
dictionary with the same shape/structure as the inputted cache.
initial_ids: An int32 tensor with shape [batch_size]. Starting ids for each
batch item.
initial_cache: A dictionary, containing starting decoder variables
information.
vocab_size: An integer, the size of tokens.
beam_size: An integer, the number of beams.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum length to decoded a sequence.
eos_id: An integer, ID of eos token, used to determine when a sequence has
finished.
padded_decode: A bool, indicating if max_sequence_length padding is used for
beam search.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
Returns:
Top decoded sequences [batch_size, beam_size, max_decode_length]
sequence scores [batch_size, beam_size]
"""
sbs = SequenceBeamSearch(symbols_to_logits_fn, vocab_size, beam_size, alpha,
max_decode_length, eos_id, padded_decode, dtype)
return sbs.search(initial_ids, initial_cache)
def _log_prob_from_logits(logits):
return logits - tf.reduce_logsumexp(logits, axis=2, keepdims=True)
def _length_normalization(alpha, length, dtype=tf.float32):
"""Return length normalization factor."""
return tf.pow(((5. + tf.cast(length, dtype)) / 6.), alpha)
def _expand_to_beam_size(tensor, beam_size):
"""Tiles a given tensor by beam_size.
Args:
tensor: tensor to tile [batch_size, ...]
beam_size: How much to tile the tensor by.
Returns:
Tiled tensor [batch_size, beam_size, ...]
"""
tensor = tf.expand_dims(tensor, axis=1)
tile_dims = [1] * tensor.shape.ndims
tile_dims[1] = beam_size
return tf.tile(tensor, tile_dims)
def _shape_list(tensor):
"""Return a list of the tensor's shape, and ensure no None values in list."""
# Get statically known shape (may contain None's for unknown dimensions)
shape = tensor.get_shape().as_list()
# Ensure that the shape values are not None
dynamic_shape = tf.shape(tensor)
for i in range(len(shape)): # pylint: disable=consider-using-enumerate
if shape[i] is None:
shape[i] = dynamic_shape[i]
return shape
def _get_shape_keep_last_dim(tensor):
shape_list = _shape_list(tensor)
# Only the last
for i in range(len(shape_list) - 1):
shape_list[i] = None
if isinstance(shape_list[-1], tf.Tensor):
shape_list[-1] = None
return tf.TensorShape(shape_list)
def _get_shape(tensor):
"""Return the shape of the input tensor."""
return tf.TensorShape(_shape_list(tensor))
def _flatten_beam_dim(tensor):
"""Reshapes first two dimensions in to single dimension.
Args:
tensor: Tensor to reshape of shape [A, B, ...]
Returns:
Reshaped tensor of shape [A*B, ...]
"""
shape = _shape_list(tensor)
shape[0] *= shape[1]
shape.pop(1) # Remove beam dim
return tf.reshape(tensor, shape)
def _unflatten_beam_dim(tensor, batch_size, beam_size):
"""Reshapes first dimension back to [batch_size, beam_size].
Args:
tensor: Tensor to reshape of shape [batch_size*beam_size, ...]
batch_size: Tensor, original batch size.
beam_size: int, original beam size.
Returns:
Reshaped tensor of shape [batch_size, beam_size, ...]
"""
shape = _shape_list(tensor)
new_shape = [batch_size, beam_size] + shape[1:]
return tf.reshape(tensor, new_shape)
def _gather_beams(nested, beam_indices, batch_size, new_beam_size):
"""Gather beams from nested structure of tensors.
Each tensor in nested represents a batch of beams, where beam refers to a
single search state (beam search involves searching through multiple states
in parallel).
This function is used to gather the top beams, specified by
beam_indices, from the nested tensors.
Args:
nested: Nested structure (tensor, list, tuple or dict) containing tensors
with shape [batch_size, beam_size, ...].
beam_indices: int32 tensor with shape [batch_size, new_beam_size]. Each
value in beam_indices must be between [0, beam_size), and are not
necessarily unique.
batch_size: int size of batch
new_beam_size: int number of beams to be pulled from the nested tensors.
Returns:
Nested structure containing tensors with shape
[batch_size, new_beam_size, ...]
"""
# Computes the i'th coodinate that contains the batch index for gather_nd.
# Batch pos is a tensor like [[0,0,0,0,],[1,1,1,1],..].
batch_pos = tf.range(batch_size * new_beam_size) // new_beam_size
batch_pos = tf.reshape(batch_pos, [batch_size, new_beam_size])
# Create coordinates to be passed to tf.gather_nd. Stacking creates a tensor
# with shape [batch_size, beam_size, 2], where the last dimension contains
# the (i, j) gathering coordinates.
coordinates = tf.stack([batch_pos, beam_indices], axis=2)
return tf.nest.map_structure(lambda state: tf.gather_nd(state, coordinates),
nested)
def _gather_topk_beams(nested, score_or_log_prob, batch_size, beam_size):
"""Gather top beams from nested structure."""
_, topk_indexes = tf.nn.top_k(score_or_log_prob, k=beam_size)
return _gather_beams(nested, topk_indexes, batch_size, beam_size)
...@@ -14,33 +14,19 @@ ...@@ -14,33 +14,19 @@
# ============================================================================== # ==============================================================================
"""Test beam search helper methods.""" """Test beam search helper methods."""
import tensorflow.compat.v1 as tf import tensorflow as tf
from official.nlp.transformer import beam_search_v1 as beam_search from official.nlp.modeling.ops import beam_search
class BeamSearchHelperTests(tf.test.TestCase): class BeamSearchHelperTests(tf.test.TestCase):
def setUp(self):
super(BeamSearchHelperTests, self).setUp()
tf.compat.v1.disable_eager_execution()
def test_expand_to_beam_size(self): def test_expand_to_beam_size(self):
x = tf.ones([7, 4, 2, 5]) x = tf.ones([7, 4, 2, 5])
x = beam_search._expand_to_beam_size(x, 3) x = beam_search._expand_to_beam_size(x, 3)
with self.session() as sess: shape = tf.shape(x)
shape = sess.run(tf.shape(x))
self.assertAllEqual([7, 3, 4, 2, 5], shape) self.assertAllEqual([7, 3, 4, 2, 5], shape)
def test_shape_list(self):
y = tf.compat.v1.placeholder(dtype=tf.int32, shape=[])
x = tf.ones([7, y, 2, 5])
shape = beam_search._shape_list(x)
self.assertIsInstance(shape[0], int)
self.assertIsInstance(shape[1], tf.Tensor)
self.assertIsInstance(shape[2], int)
self.assertIsInstance(shape[3], int)
def test_get_shape_keep_last_dim(self): def test_get_shape_keep_last_dim(self):
y = tf.constant(4.0) y = tf.constant(4.0)
x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5]) x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5])
...@@ -51,16 +37,12 @@ class BeamSearchHelperTests(tf.test.TestCase): ...@@ -51,16 +37,12 @@ class BeamSearchHelperTests(tf.test.TestCase):
def test_flatten_beam_dim(self): def test_flatten_beam_dim(self):
x = tf.ones([7, 4, 2, 5]) x = tf.ones([7, 4, 2, 5])
x = beam_search._flatten_beam_dim(x) x = beam_search._flatten_beam_dim(x)
with self.session() as sess: self.assertAllEqual([28, 2, 5], tf.shape(x))
shape = sess.run(tf.shape(x))
self.assertAllEqual([28, 2, 5], shape)
def test_unflatten_beam_dim(self): def test_unflatten_beam_dim(self):
x = tf.ones([28, 2, 5]) x = tf.ones([28, 2, 5])
x = beam_search._unflatten_beam_dim(x, 7, 4) x = beam_search._unflatten_beam_dim(x, 7, 4)
with self.session() as sess: self.assertAllEqual([7, 4, 2, 5], tf.shape(x))
shape = sess.run(tf.shape(x))
self.assertAllEqual([7, 4, 2, 5], shape)
def test_gather_beams(self): def test_gather_beams(self):
x = tf.reshape(tf.range(24), [2, 3, 4]) x = tf.reshape(tf.range(24), [2, 3, 4])
...@@ -73,9 +55,6 @@ class BeamSearchHelperTests(tf.test.TestCase): ...@@ -73,9 +55,6 @@ class BeamSearchHelperTests(tf.test.TestCase):
# [20 21 22 23]]] # [20 21 22 23]]]
y = beam_search._gather_beams(x, [[1, 2], [0, 2]], 2, 2) y = beam_search._gather_beams(x, [[1, 2], [0, 2]], 2, 2)
with self.session() as sess:
y = sess.run(y)
self.assertAllEqual([[[4, 5, 6, 7], self.assertAllEqual([[[4, 5, 6, 7],
[8, 9, 10, 11]], [8, 9, 10, 11]],
[[12, 13, 14, 15], [[12, 13, 14, 15],
...@@ -87,9 +66,6 @@ class BeamSearchHelperTests(tf.test.TestCase): ...@@ -87,9 +66,6 @@ class BeamSearchHelperTests(tf.test.TestCase):
x_scores = [[0, 1, 1], [1, 0, 1]] x_scores = [[0, 1, 1], [1, 0, 1]]
y = beam_search._gather_topk_beams(x, x_scores, 2, 2) y = beam_search._gather_topk_beams(x, x_scores, 2, 2)
with self.session() as sess:
y = sess.run(y)
self.assertAllEqual([[[4, 5, 6, 7], self.assertAllEqual([[[4, 5, 6, 7],
[8, 9, 10, 11]], [8, 9, 10, 11]],
[[12, 13, 14, 15], [[12, 13, 14, 15],
......
...@@ -31,7 +31,7 @@ from official.nlp.modeling.layers import multi_channel_attention ...@@ -31,7 +31,7 @@ from official.nlp.modeling.layers import multi_channel_attention
from official.nlp.nhnet import configs from official.nlp.nhnet import configs
from official.nlp.nhnet import decoder from official.nlp.nhnet import decoder
from official.nlp.nhnet import utils from official.nlp.nhnet import utils
from official.nlp.transformer import beam_search from official.nlp.modeling.ops import beam_search
def embedding_linear(embedding_matrix, x): def embedding_linear(embedding_matrix, x):
......
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ELECTRA pretraining task (Joint Masked LM and Replaced Token Detection)."""
import dataclasses
import tensorflow as tf
from official.core import base_task
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
from official.nlp.configs import electra
from official.nlp.data import pretrain_dataloader
@dataclasses.dataclass
class ELECTRAPretrainConfig(cfg.TaskConfig):
"""The model config."""
model: electra.ELECTRAPretrainerConfig = electra.ELECTRAPretrainerConfig(
cls_heads=[
bert.ClsHeadConfig(
inner_dim=768,
num_classes=2,
dropout_rate=0.1,
name='next_sentence')
])
train_data: cfg.DataConfig = cfg.DataConfig()
validation_data: cfg.DataConfig = cfg.DataConfig()
@base_task.register_task_cls(ELECTRAPretrainConfig)
class ELECTRAPretrainTask(base_task.Task):
"""ELECTRA Pretrain Task (Masked LM + Replaced Token Detection)."""
def build_model(self):
return electra.instantiate_pretrainer_from_cfg(
self.task_config.model)
def build_losses(self,
labels,
model_outputs,
metrics,
aux_losses=None) -> tf.Tensor:
metrics = dict([(metric.name, metric) for metric in metrics])
# generator lm and (optional) nsp loss.
lm_prediction_losses = tf.keras.losses.sparse_categorical_crossentropy(
labels['masked_lm_ids'],
tf.cast(model_outputs['lm_outputs'], tf.float32),
from_logits=True)
lm_label_weights = labels['masked_lm_weights']
lm_numerator_loss = tf.reduce_sum(lm_prediction_losses * lm_label_weights)
lm_denominator_loss = tf.reduce_sum(lm_label_weights)
mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss)
metrics['lm_example_loss'].update_state(mlm_loss)
if 'next_sentence_labels' in labels:
sentence_labels = labels['next_sentence_labels']
sentence_outputs = tf.cast(
model_outputs['sentence_outputs'], dtype=tf.float32)
sentence_loss = tf.keras.losses.sparse_categorical_crossentropy(
sentence_labels,
sentence_outputs,
from_logits=True)
metrics['next_sentence_loss'].update_state(sentence_loss)
total_loss = mlm_loss + sentence_loss
else:
total_loss = mlm_loss
# discriminator replaced token detection (rtd) loss.
rtd_logits = model_outputs['disc_logits']
rtd_labels = tf.cast(model_outputs['disc_label'], tf.float32)
input_mask = tf.cast(labels['input_mask'], tf.float32)
rtd_ind_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=rtd_logits, labels=rtd_labels)
rtd_numerator = tf.reduce_sum(input_mask * rtd_ind_loss)
rtd_denominator = tf.reduce_sum(input_mask)
rtd_loss = tf.math.divide_no_nan(rtd_numerator, rtd_denominator)
metrics['discriminator_loss'].update_state(rtd_loss)
total_loss = total_loss + \
self.task_config.model.discriminator_loss_weight * rtd_loss
if aux_losses:
total_loss += tf.add_n(aux_losses)
metrics['total_loss'].update_state(total_loss)
return total_loss
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for pretraining."""
if params.input_path == 'dummy':
def dummy_data(_):
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
return dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids,
masked_lm_positions=dummy_lm,
masked_lm_ids=dummy_lm,
masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
return pretrain_dataloader.BertPretrainDataLoader(params).load(
input_context)
def build_metrics(self, training=None):
del training
metrics = [
tf.keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
tf.keras.metrics.Mean(name='lm_example_loss'),
tf.keras.metrics.SparseCategoricalAccuracy(
name='discriminator_accuracy'),
]
if self.task_config.train_data.use_next_sentence_label:
metrics.append(
tf.keras.metrics.SparseCategoricalAccuracy(
name='next_sentence_accuracy'))
metrics.append(tf.keras.metrics.Mean(name='next_sentence_loss'))
metrics.append(tf.keras.metrics.Mean(name='discriminator_loss'))
metrics.append(tf.keras.metrics.Mean(name='total_loss'))
return metrics
def process_metrics(self, metrics, labels, model_outputs):
metrics = dict([(metric.name, metric) for metric in metrics])
if 'masked_lm_accuracy' in metrics:
metrics['masked_lm_accuracy'].update_state(labels['masked_lm_ids'],
model_outputs['lm_outputs'],
labels['masked_lm_weights'])
if 'next_sentence_accuracy' in metrics:
metrics['next_sentence_accuracy'].update_state(
labels['next_sentence_labels'], model_outputs['sentence_outputs'])
if 'discriminator_accuracy' in metrics:
disc_logits_expanded = tf.expand_dims(model_outputs['disc_logits'], -1)
discrim_full_logits = tf.concat(
[-1.0 * disc_logits_expanded, disc_logits_expanded], -1)
metrics['discriminator_accuracy'].update_state(
model_outputs['disc_label'], discrim_full_logits,
labels['input_mask'])
def train_step(self, inputs, model: tf.keras.Model,
optimizer: tf.keras.optimizers.Optimizer, metrics):
"""Does forward and backward.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
with tf.GradientTape() as tape:
outputs = model(inputs, training=True)
# Computes per-replica loss.
loss = self.build_losses(
labels=inputs,
model_outputs=outputs,
metrics=metrics,
aux_losses=model.losses)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
# TODO(b/154564893): enable loss scaling.
scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
optimizer.apply_gradients(list(zip(grads, tvars)))
self.process_metrics(metrics, inputs, outputs)
return {self.loss: loss}
def validation_step(self, inputs, model: tf.keras.Model, metrics):
"""Validatation step.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
outputs = model(inputs, training=False)
loss = self.build_losses(
labels=inputs,
model_outputs=outputs,
metrics=metrics,
aux_losses=model.losses)
self.process_metrics(metrics, inputs, outputs)
return {self.loss: loss}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment