Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
2ff0a3fe
"backends/v2/src/client/mod.rs" did not exist on "9af454142a34536ab1f3c149cc8764b7ab460c0d"
Commit
2ff0a3fe
authored
Apr 07, 2020
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 305332859
parent
ce8dd972
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
39 additions
and
14 deletions
+39
-14
official/nlp/bert/run_squad.py
official/nlp/bert/run_squad.py
+4
-2
official/nlp/bert/run_squad_helper.py
official/nlp/bert/run_squad_helper.py
+35
-12
No files found.
official/nlp/bert/run_squad.py
View file @
2ff0a3fe
...
...
@@ -47,11 +47,13 @@ FLAGS = flags.FLAGS
def
train_squad
(
strategy
,
input_meta_data
,
custom_callbacks
=
None
,
run_eagerly
=
False
):
run_eagerly
=
False
,
init_checkpoint
=
None
):
"""Run bert squad training."""
bert_config
=
bert_configs
.
BertConfig
.
from_json_file
(
FLAGS
.
bert_config_file
)
init_checkpoint
=
init_checkpoint
or
FLAGS
.
init_checkpoint
run_squad_helper
.
train_squad
(
strategy
,
input_meta_data
,
bert_config
,
custom_callbacks
,
run_eagerly
)
custom_callbacks
,
run_eagerly
,
init_checkpoint
)
def
predict_squad
(
strategy
,
input_meta_data
):
...
...
official/nlp/bert/run_squad_helper.py
View file @
2ff0a3fe
...
...
@@ -159,8 +159,12 @@ def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
return
_dataset_fn
def
predict_squad_customized
(
strategy
,
input_meta_data
,
bert_config
,
predict_tfrecord_path
,
num_steps
):
def
predict_squad_customized
(
strategy
,
input_meta_data
,
bert_config
,
checkpoint_path
,
predict_tfrecord_path
,
num_steps
):
"""Make predictions using a Bert-based squad model."""
predict_dataset_fn
=
get_dataset_fn
(
predict_tfrecord_path
,
...
...
@@ -179,6 +183,7 @@ def predict_squad_customized(strategy, input_meta_data, bert_config,
input_meta_data
[
'max_seq_length'
],
hub_module_url
=
FLAGS
.
hub_module_url
)
if
checkpoint_path
is
None
:
checkpoint_path
=
tf
.
train
.
latest_checkpoint
(
FLAGS
.
model_dir
)
logging
.
info
(
'Restoring checkpoints from %s'
,
checkpoint_path
)
checkpoint
=
tf
.
train
.
Checkpoint
(
model
=
squad_model
)
...
...
@@ -215,7 +220,8 @@ def train_squad(strategy,
input_meta_data
,
bert_config
,
custom_callbacks
=
None
,
run_eagerly
=
False
):
run_eagerly
=
False
,
init_checkpoint
=
None
):
"""Run bert squad training."""
if
strategy
:
logging
.
info
(
'Training using customized training loop with distribution'
...
...
@@ -271,7 +277,7 @@ def train_squad(strategy,
steps_per_loop
=
FLAGS
.
steps_per_loop
,
epochs
=
epochs
,
train_input_fn
=
train_input_fn
,
init_checkpoint
=
FLAGS
.
init_checkpoint
,
init_checkpoint
=
init_checkpoint
or
FLAGS
.
init_checkpoint
,
run_eagerly
=
run_eagerly
,
custom_callbacks
=
custom_callbacks
,
explicit_allreduce
=
False
,
...
...
@@ -279,7 +285,7 @@ def train_squad(strategy,
def
prediction_output_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
):
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
,
checkpoint
):
"""Makes predictions for a squad dataset."""
doc_stride
=
input_meta_data
[
'doc_stride'
]
max_query_length
=
input_meta_data
[
'max_query_length'
]
...
...
@@ -327,8 +333,9 @@ def prediction_output_squad(
logging
.
info
(
' Batch size = %d'
,
FLAGS
.
predict_batch_size
)
num_steps
=
int
(
dataset_size
/
FLAGS
.
predict_batch_size
)
all_results
=
predict_squad_customized
(
strategy
,
input_meta_data
,
bert_config
,
eval_writer
.
filename
,
num_steps
)
all_results
=
predict_squad_customized
(
strategy
,
input_meta_data
,
bert_config
,
checkpoint
,
eval_writer
.
filename
,
num_steps
)
all_predictions
,
all_nbest_json
,
scores_diff_json
=
(
squad_lib
.
postprocess_output
(
...
...
@@ -360,18 +367,34 @@ def dump_to_files(all_predictions, all_nbest_json, scores_diff_json,
squad_lib
.
write_to_json_files
(
scores_diff_json
,
output_null_log_odds_file
)
def
predict_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
):
def
predict_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
,
init_checkpoint
=
None
):
"""Get prediction results and evaluate them to hard drive."""
if
init_checkpoint
is
None
:
init_checkpoint
=
tf
.
train
.
latest_checkpoint
(
FLAGS
.
model_dir
)
all_predictions
,
all_nbest_json
,
scores_diff_json
=
prediction_output_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
)
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
,
init_checkpoint
)
dump_to_files
(
all_predictions
,
all_nbest_json
,
scores_diff_json
,
squad_lib
,
input_meta_data
.
get
(
'version_2_with_negative'
,
False
))
def
eval_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
):
def
eval_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
,
init_checkpoint
=
None
):
"""Get prediction results and evaluate them against ground truth."""
if
init_checkpoint
is
None
:
init_checkpoint
=
tf
.
train
.
latest_checkpoint
(
FLAGS
.
model_dir
)
all_predictions
,
all_nbest_json
,
scores_diff_json
=
prediction_output_squad
(
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
)
strategy
,
input_meta_data
,
tokenizer
,
bert_config
,
squad_lib
,
init_checkpoint
)
dump_to_files
(
all_predictions
,
all_nbest_json
,
scores_diff_json
,
squad_lib
,
input_meta_data
.
get
(
'version_2_with_negative'
,
False
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment