Commit 2b21ab96 authored by Yukun Zhu's avatar Yukun Zhu Committed by aquariusjay
Browse files

Update model_zoo to add mobilenet v3 checkpoints (#7846)

parent dfffd623
...@@ -10,9 +10,9 @@ models. ...@@ -10,9 +10,9 @@ models.
Un-tar'ed directory includes: Un-tar'ed directory includes:
* a frozen inference graph (`frozen_inference_graph.pb`). All frozen inference * a frozen inference graph (`frozen_inference_graph.pb`). All frozen inference
graphs use output stride of 8 and a single eval scale of 1.0. No left-right graphs by default use output stride of 8, a single eval scale of 1.0 and
flips are used, and MobileNet-v2 based models do not include the decoder no left-right flips, unless otherwise specified. MobileNet-v2 based models
module. do not include the decoder module.
* a checkpoint (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`) * a checkpoint (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`)
...@@ -28,12 +28,12 @@ employ ASPP and decoder modules for fast computation. ...@@ -28,12 +28,12 @@ employ ASPP and decoder modules for fast computation.
Checkpoint name | Network backbone | Pretrained dataset | ASPP | Decoder Checkpoint name | Network backbone | Pretrained dataset | ASPP | Decoder
--------------------------- | :--------------: | :-----------------: | :---: | :-----: --------------------------- | :--------------: | :-----------------: | :---: | :-----:
mobilenetv2_dm05_coco_voc_trainaug | MobileNet-v2 <br> Depth-Multiplier = 0.5 | MS-COCO <br> VOC 2012 train_aug set| N/A | N/A mobilenetv2_dm05_coco_voc_trainaug | MobileNet-v2 <br> Depth-Multiplier = 0.5 | ImageNet <br> MS-COCO <br> VOC 2012 train_aug set| N/A | N/A
mobilenetv2_dm05_coco_voc_trainval | MobileNet-v2 <br> Depth-Multiplier = 0.5 | MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A mobilenetv2_dm05_coco_voc_trainval | MobileNet-v2 <br> Depth-Multiplier = 0.5 | ImageNet <br> MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A
mobilenetv2_coco_voc_trainaug | MobileNet-v2 | MS-COCO <br> VOC 2012 train_aug set| N/A | N/A mobilenetv2_coco_voc_trainaug | MobileNet-v2 | ImageNet <br> MS-COCO <br> VOC 2012 train_aug set| N/A | N/A
mobilenetv2_coco_voc_trainval | MobileNet-v2 | MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A mobilenetv2_coco_voc_trainval | MobileNet-v2 | ImageNet <br> MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A
xception65_coco_voc_trainaug | Xception_65 | MS-COCO <br> VOC 2012 train_aug set| [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4 xception65_coco_voc_trainaug | Xception_65 | ImageNet <br> MS-COCO <br> VOC 2012 train_aug set| [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4
xception65_coco_voc_trainval | Xception_65 | MS-COCO <br> VOC 2012 train_aug + trainval sets | [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4 xception65_coco_voc_trainval | Xception_65 | ImageNet <br> MS-COCO <br> VOC 2012 train_aug + trainval sets | [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4
In the table, **OS** denotes output stride. In the table, **OS** denotes output stride.
...@@ -64,7 +64,9 @@ dataset and does not employ ASPP and decoder modules for fast computation. ...@@ -64,7 +64,9 @@ dataset and does not employ ASPP and decoder modules for fast computation.
Checkpoint name | Network backbone | Pretrained dataset | ASPP | Decoder Checkpoint name | Network backbone | Pretrained dataset | ASPP | Decoder
------------------------------------- | :--------------: | :-------------------------------------: | :----------------------------------------------: | :-----: ------------------------------------- | :--------------: | :-------------------------------------: | :----------------------------------------------: | :-----:
mobilenetv2_coco_cityscapes_trainfine | MobileNet-v2 | MS-COCO <br> Cityscapes train_fine set | N/A | N/A mobilenetv2_coco_cityscapes_trainfine | MobileNet-v2 | ImageNet <br> MS-COCO <br> Cityscapes train_fine set | N/A | N/A
mobilenetv3_large_cityscapes_trainfine | MobileNet-v3 Large | Cityscapes train_fine set <br> (No ImageNet) | N/A | OS = 8
mobilenetv3_small_cityscapes_trainfine | MobileNet-v3 Small | Cityscapes train_fine set <br> (No ImageNet) | N/A | OS = 8
xception65_cityscapes_trainfine | Xception_65 | ImageNet <br> Cityscapes train_fine set | [6, 12, 18] for OS=16 <br> [12, 24, 36] for OS=8 | OS = 4 xception65_cityscapes_trainfine | Xception_65 | ImageNet <br> Cityscapes train_fine set | [6, 12, 18] for OS=16 <br> [12, 24, 36] for OS=8 | OS = 4
xception71_dpc_cityscapes_trainfine | Xception_71 | ImageNet <br> MS-COCO <br> Cityscapes train_fine set | Dense Prediction Cell | OS = 4 xception71_dpc_cityscapes_trainfine | Xception_71 | ImageNet <br> MS-COCO <br> Cityscapes train_fine set | Dense Prediction Cell | OS = 4
xception71_dpc_cityscapes_trainval | Xception_71 | ImageNet <br> MS-COCO <br> Cityscapes trainval_fine and coarse set | Dense Prediction Cell | OS = 4 xception71_dpc_cityscapes_trainval | Xception_71 | ImageNet <br> MS-COCO <br> Cityscapes trainval_fine and coarse set | Dense Prediction Cell | OS = 4
...@@ -74,6 +76,8 @@ In the table, **OS** denotes output stride. ...@@ -74,6 +76,8 @@ In the table, **OS** denotes output stride.
Checkpoint name | Eval OS | Eval scales | Left-right Flip | Multiply-Adds | Runtime (sec) | Cityscapes mIOU | File Size Checkpoint name | Eval OS | Eval scales | Left-right Flip | Multiply-Adds | Runtime (sec) | Cityscapes mIOU | File Size
-------------------------------------------------------------------------------------------------------------------------------- | :-------: | :-------------------------: | :-------------: | :-------------------: | :------------: | :----------------------------: | :-------: -------------------------------------------------------------------------------------------------------------------------------- | :-------: | :-------------------------: | :-------------: | :-------------------: | :------------: | :----------------------------: | :-------:
[mobilenetv2_coco_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz) | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes | 21.27B <br> 433.24B | 0.8 <br> 51.12 | 70.71% (val) <br> 73.57% (val) | 23MB [mobilenetv2_coco_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz) | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes | 21.27B <br> 433.24B | 0.8 <br> 51.12 | 70.71% (val) <br> 73.57% (val) | 23MB
[mobilenetv3_large_cityscapes_trainfine](http://download.tensorflow.org/models/deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz) | 32 | [1.0] | No | 15.95B | 0.6 | 72.41% (val) | 17MB
[mobilenetv3_small_cityscapes_trainfine](http://download.tensorflow.org/models/deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz) | 32 | [1.0] | No | 4.63B | 0.4 | 68.99% (val) | 5MB
[xception65_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz) | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes | 418.64B <br> 8677.92B | 5.0 <br> 422.8 | 78.79% (val) <br> 80.42% (val) | 439MB [xception65_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz) | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes | 418.64B <br> 8677.92B | 5.0 <br> 422.8 | 78.79% (val) <br> 80.42% (val) | 439MB
[xception71_dpc_cityscapes_trainfine](http://download.tensorflow.org/models/deeplab_cityscapes_xception71_trainfine_2018_09_08.tar.gz) | 16 | [1.0] | No | 502.07B | - | 80.31% (val) | 445MB [xception71_dpc_cityscapes_trainfine](http://download.tensorflow.org/models/deeplab_cityscapes_xception71_trainfine_2018_09_08.tar.gz) | 16 | [1.0] | No | 502.07B | - | 80.31% (val) | 445MB
[xception71_dpc_cityscapes_trainval](http://download.tensorflow.org/models/deeplab_cityscapes_xception71_trainvalfine_2018_09_08.tar.gz) | 8 | [0.75:0.25:2] | Yes | - | - | 82.66% (**test**) | 446MB [xception71_dpc_cityscapes_trainval](http://download.tensorflow.org/models/deeplab_cityscapes_xception71_trainvalfine_2018_09_08.tar.gz) | 8 | [0.75:0.25:2] | Yes | - | - | 82.66% (**test**) | 446MB
...@@ -188,3 +192,7 @@ Model name ...@@ -188,3 +192,7 @@ Model name
Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, Antonio Torralba<br /> Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, Antonio Torralba<br />
[[link]](http://groups.csail.mit.edu/vision/datasets/ADE20K/). In CVPR, [[link]](http://groups.csail.mit.edu/vision/datasets/ADE20K/). In CVPR,
2017. 2017.
13. **Searching for MobileNetV3**<br />
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam<br />
[[link]](https://arxiv.org/abs/1905.02244). In ICCV, 2019.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment