### (Optional) Running on Google Cloud Machine Learning Engine
This example can be run on Google Cloud Machine Learning Engine (ML Engine), which will configure the environment and take care of running workers, parameters servers, and masters in a fault tolerant way.
To install the command line tool, and set up a project and billing, see the quickstart [here](https://cloud.google.com/ml-engine/docs/quickstarts/command-line).
You'll also need a Google Cloud Storage bucket for the data. If you followed the instructions above, you can just run:
```
MY_BUCKET=gs://<my-bucket-name>
gsutil cp -r cifar-10-batches-py $MY_BUCKET/
```
Then run the following command from the `tutorials/image` directory of this repository (the parent directory of this README):
```
gcloud ml-engine jobs submit training cifarmultigpu \