Commit 213125e3 authored by Derek Chow's avatar Derek Chow
Browse files

Change exporter interface and give it a few new abilities.

parent 4f14cb62
......@@ -16,8 +16,9 @@
r"""Tool to export an object detection model for inference.
Prepares an object detection tensorflow graph for inference using model
configuration and an optional trained checkpoint. Outputs either an inference
graph or a SavedModel (https://tensorflow.github.io/serving/serving_basic.html).
configuration and an optional trained checkpoint. Outputs inference
graph, associated checkpoint files, a frozen inference graph and a
SavedModel (https://tensorflow.github.io/serving/serving_basic.html).
The inference graph contains one of three input nodes depending on the user
specified option.
......@@ -41,23 +42,28 @@ and the following output nodes returned by the model.postprocess(..):
masks for each box if its present in the dictionary of postprocessed
tensors returned by the model.
Note that currently `batch` is always 1, but we will support `batch` > 1 in
the future.
Optionally, one can freeze the graph by converting the weights in the provided
checkpoint as graph constants thereby eliminating the need to use a checkpoint
file during inference.
Note that this tool uses `use_moving_averages` from eval_config to decide
which weights to freeze.
Notes:
* Currently `batch` is always 1, but we will support `batch` > 1 in the future.
* This tool uses `use_moving_averages` from eval_config to decide which
weights to freeze.
Example Usage:
--------------
python export_inference_graph \
--input_type image_tensor \
--pipeline_config_path path/to/ssd_inception_v2.config \
--checkpoint_path path/to/model-ckpt \
--inference_graph_path path/to/inference_graph.pb
--trained_checkpoint_prefix path/to/model.ckpt \
--output_directory path/to/exported_model_directory
The expected output would be in the directory
path/to/exported_model_directory (which is created if it does not exist)
with contents:
- graph.pbtxt
- model.ckpt.data-00000-of-00001
- model.ckpt.info
- model.ckpt.meta
- frozen_inference_graph.pb
+ saved_model (a directory)
"""
import tensorflow as tf
from google.protobuf import text_format
......@@ -70,31 +76,27 @@ flags = tf.app.flags
flags.DEFINE_string('input_type', 'image_tensor', 'Type of input node. Can be '
'one of [`image_tensor`, `encoded_image_string_tensor`, '
'`tf_example`]')
flags.DEFINE_string('pipeline_config_path', '',
flags.DEFINE_string('pipeline_config_path', None,
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file.')
flags.DEFINE_string('checkpoint_path', '', 'Optional path to checkpoint file. '
'If provided, bakes the weights from the checkpoint into '
'the graph.')
flags.DEFINE_string('inference_graph_path', '', 'Path to write the output '
'inference graph.')
flags.DEFINE_bool('export_as_saved_model', False, 'Whether the exported graph '
'should be saved as a SavedModel')
flags.DEFINE_string('trained_checkpoint_prefix', None,
'Path to trained checkpoint, typically of the form '
'path/to/model.ckpt')
flags.DEFINE_string('output_directory', None, 'Path to write outputs.')
tf.app.flags.MarkFlagAsRequired('pipeline_config_path')
tf.app.flags.MarkFlagAsRequired('trained_checkpoint_prefix')
tf.app.flags.MarkFlagAsRequired('output_directory')
FLAGS = flags.FLAGS
def main(_):
assert FLAGS.pipeline_config_path, 'TrainEvalPipelineConfig missing.'
assert FLAGS.inference_graph_path, 'Inference graph path missing.'
assert FLAGS.input_type, 'Input type missing.'
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
text_format.Merge(f.read(), pipeline_config)
exporter.export_inference_graph(FLAGS.input_type, pipeline_config,
FLAGS.checkpoint_path,
FLAGS.inference_graph_path,
FLAGS.export_as_saved_model)
exporter.export_inference_graph(
FLAGS.input_type, pipeline_config, FLAGS.trained_checkpoint_prefix,
FLAGS.output_directory)
if __name__ == '__main__':
......
......@@ -17,6 +17,7 @@
import logging
import os
import tensorflow as tf
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.client import session
from tensorflow.python.framework import graph_util
......@@ -42,6 +43,7 @@ def freeze_graph_with_def_protos(
filename_tensor_name,
clear_devices,
initializer_nodes,
optimize_graph=True,
variable_names_blacklist=''):
"""Converts all variables in a graph and checkpoint into constants."""
del restore_op_name, filename_tensor_name # Unused by updated loading code.
......@@ -61,9 +63,23 @@ def freeze_graph_with_def_protos(
for node in input_graph_def.node:
node.device = ''
_ = importer.import_graph_def(input_graph_def, name='')
with session.Session() as sess:
with tf.Graph().as_default():
tf.import_graph_def(input_graph_def, name='')
if optimize_graph:
logging.info('Graph Rewriter optimizations enabled')
rewrite_options = rewriter_config_pb2.RewriterConfig(
optimize_tensor_layout=True)
rewrite_options.optimizers.append('pruning')
rewrite_options.optimizers.append('constfold')
rewrite_options.optimizers.append('layout')
graph_options = tf.GraphOptions(
rewrite_options=rewrite_options, infer_shapes=True)
else:
logging.info('Graph Rewriter optimizations disabled')
graph_options = tf.GraphOptions()
config = tf.ConfigProto(graph_options=graph_options)
with session.Session(config=config) as sess:
if input_saver_def:
saver = saver_lib.Saver(saver_def=input_saver_def)
saver.restore(sess, input_checkpoint)
......@@ -95,29 +111,6 @@ def freeze_graph_with_def_protos(
return output_graph_def
def get_frozen_graph_def(inference_graph_def, use_moving_averages,
input_checkpoint, output_node_names):
"""Freezes all variables in a graph definition."""
saver = None
if use_moving_averages:
variable_averages = tf.train.ExponentialMovingAverage(0.0)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
else:
saver = tf.train.Saver()
frozen_graph_def = freeze_graph_with_def_protos(
input_graph_def=inference_graph_def,
input_saver_def=saver.as_saver_def(),
input_checkpoint=input_checkpoint,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
clear_devices=True,
initializer_nodes='')
return frozen_graph_def
# TODO: Support batch tf example inputs.
def _tf_example_input_placeholder():
tf_example_placeholder = tf.placeholder(
......@@ -151,7 +144,8 @@ input_placeholder_fn_map = {
}
def _add_output_tensor_nodes(postprocessed_tensors):
def _add_output_tensor_nodes(postprocessed_tensors,
output_collection_name='inference_op'):
"""Adds output nodes for detection boxes and scores.
Adds the following nodes for output tensors -
......@@ -174,6 +168,7 @@ def _add_output_tensor_nodes(postprocessed_tensors):
'detection_masks': [batch, max_detections, mask_height, mask_width]
(optional).
'num_detections': [batch]
output_collection_name: Name of collection to add output tensors to.
Returns:
A tensor dict containing the added output tensor nodes.
......@@ -191,53 +186,29 @@ def _add_output_tensor_nodes(postprocessed_tensors):
outputs['num_detections'] = tf.identity(num_detections, name='num_detections')
if masks is not None:
outputs['detection_masks'] = tf.identity(masks, name='detection_masks')
for output_key in outputs:
tf.add_to_collection(output_collection_name, outputs[output_key])
if masks is not None:
tf.add_to_collection(output_collection_name, outputs['detection_masks'])
return outputs
def _write_inference_graph(inference_graph_path,
checkpoint_path=None,
use_moving_averages=False,
output_node_names=(
'num_detections,detection_scores,'
'detection_boxes,detection_classes')):
"""Writes inference graph to disk with the option to bake in weights.
If checkpoint_path is not None bakes the weights into the graph thereby
eliminating the need of checkpoint files during inference. If the model
was trained with moving averages, setting use_moving_averages to true
restores the moving averages, otherwise the original set of variables
is restored.
def _write_frozen_graph(frozen_graph_path, frozen_graph_def):
"""Writes frozen graph to disk.
Args:
inference_graph_path: Path to write inference graph.
checkpoint_path: Optional path to the checkpoint file.
use_moving_averages: Whether to export the original or the moving averages
of the trainable variables from the checkpoint.
output_node_names: Output tensor names, defaults are: num_detections,
detection_scores, detection_boxes, detection_classes.
frozen_graph_path: Path to write inference graph.
frozen_graph_def: tf.GraphDef holding frozen graph.
"""
inference_graph_def = tf.get_default_graph().as_graph_def()
if checkpoint_path:
output_graph_def = get_frozen_graph_def(
inference_graph_def=inference_graph_def,
use_moving_averages=use_moving_averages,
input_checkpoint=checkpoint_path,
output_node_names=output_node_names,
)
with gfile.GFile(frozen_graph_path, 'wb') as f:
f.write(frozen_graph_def.SerializeToString())
logging.info('%d ops in the final graph.', len(frozen_graph_def.node))
with gfile.GFile(inference_graph_path, 'wb') as f:
f.write(output_graph_def.SerializeToString())
logging.info('%d ops in the final graph.', len(output_graph_def.node))
return
tf.train.write_graph(inference_graph_def,
os.path.dirname(inference_graph_path),
os.path.basename(inference_graph_path),
as_text=False)
def _write_saved_model(inference_graph_path, inputs, outputs,
checkpoint_path=None, use_moving_averages=False):
def _write_saved_model(saved_model_path,
frozen_graph_def,
inputs,
outputs):
"""Writes SavedModel to disk.
If checkpoint_path is not None bakes the weights into the graph thereby
......@@ -247,30 +218,17 @@ def _write_saved_model(inference_graph_path, inputs, outputs,
is restored.
Args:
inference_graph_path: Path to write inference graph.
saved_model_path: Path to write SavedModel.
frozen_graph_def: tf.GraphDef holding frozen graph.
inputs: The input image tensor to use for detection.
outputs: A tensor dictionary containing the outputs of a DetectionModel.
checkpoint_path: Optional path to the checkpoint file.
use_moving_averages: Whether to export the original or the moving averages
of the trainable variables from the checkpoint.
"""
inference_graph_def = tf.get_default_graph().as_graph_def()
checkpoint_graph_def = None
if checkpoint_path:
output_node_names = ','.join(outputs.keys())
checkpoint_graph_def = get_frozen_graph_def(
inference_graph_def=inference_graph_def,
use_moving_averages=use_moving_averages,
input_checkpoint=checkpoint_path,
output_node_names=output_node_names
)
with tf.Graph().as_default():
with session.Session() as sess:
tf.import_graph_def(checkpoint_graph_def)
tf.import_graph_def(frozen_graph_def, name='')
builder = tf.saved_model.builder.SavedModelBuilder(inference_graph_path)
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
tensor_info_inputs = {
'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
......@@ -287,53 +245,101 @@ def _write_saved_model(inference_graph_path, inputs, outputs,
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
'signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY':
detection_signature,
},
)
builder.save()
def _write_graph_and_checkpoint(inference_graph_def,
model_path,
input_saver_def,
trained_checkpoint_prefix):
for node in inference_graph_def.node:
node.device = ''
with tf.Graph().as_default():
tf.import_graph_def(inference_graph_def, name='')
with session.Session() as sess:
saver = saver_lib.Saver(saver_def=input_saver_def,
save_relative_paths=True)
saver.restore(sess, trained_checkpoint_prefix)
saver.save(sess, model_path)
def _export_inference_graph(input_type,
detection_model,
use_moving_averages,
checkpoint_path,
inference_graph_path,
export_as_saved_model=False):
trained_checkpoint_prefix,
output_directory,
optimize_graph=True,
output_collection_name='inference_op'):
"""Export helper."""
tf.gfile.MakeDirs(output_directory)
frozen_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
saved_model_path = os.path.join(output_directory, 'saved_model')
model_path = os.path.join(output_directory, 'model.ckpt')
if input_type not in input_placeholder_fn_map:
raise ValueError('Unknown input type: {}'.format(input_type))
inputs = tf.to_float(input_placeholder_fn_map[input_type]())
preprocessed_inputs = detection_model.preprocess(inputs)
output_tensors = detection_model.predict(preprocessed_inputs)
postprocessed_tensors = detection_model.postprocess(output_tensors)
outputs = _add_output_tensor_nodes(postprocessed_tensors)
out_node_names = list(outputs.keys())
if export_as_saved_model:
_write_saved_model(inference_graph_path, inputs, outputs, checkpoint_path,
use_moving_averages)
outputs = _add_output_tensor_nodes(postprocessed_tensors,
output_collection_name)
saver = None
if use_moving_averages:
variable_averages = tf.train.ExponentialMovingAverage(0.0)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
else:
_write_inference_graph(inference_graph_path, checkpoint_path,
use_moving_averages,
output_node_names=','.join(out_node_names))
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
_write_graph_and_checkpoint(
inference_graph_def=tf.get_default_graph().as_graph_def(),
model_path=model_path,
input_saver_def=input_saver_def,
trained_checkpoint_prefix=trained_checkpoint_prefix)
frozen_graph_def = freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=trained_checkpoint_prefix,
output_node_names=','.join(outputs.keys()),
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
clear_devices=True,
optimize_graph=optimize_graph,
initializer_nodes='')
_write_frozen_graph(frozen_graph_path, frozen_graph_def)
_write_saved_model(saved_model_path, frozen_graph_def, inputs, outputs)
def export_inference_graph(input_type, pipeline_config, checkpoint_path,
inference_graph_path, export_as_saved_model=False):
def export_inference_graph(input_type,
pipeline_config,
trained_checkpoint_prefix,
output_directory,
optimize_graph=True,
output_collection_name='inference_op'):
"""Exports inference graph for the model specified in the pipeline config.
Args:
input_type: Type of input for the graph. Can be one of [`image_tensor`,
`tf_example`].
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
checkpoint_path: Path to the checkpoint file to freeze.
inference_graph_path: Path to write inference graph to.
export_as_saved_model: If the model should be exported as a SavedModel. If
false, it is saved as an inference graph.
trained_checkpoint_prefix: Path to the trained checkpoint file.
output_directory: Path to write outputs.
optimize_graph: Whether to optimize graph using Grappler.
output_collection_name: Name of collection to add output tensors to.
If None, does not add output tensors to a collection.
"""
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
_export_inference_graph(input_type, detection_model,
pipeline_config.eval_config.use_moving_averages,
checkpoint_path, inference_graph_path,
export_as_saved_model)
trained_checkpoint_prefix, output_directory,
optimize_graph, output_collection_name)
......@@ -103,71 +103,62 @@ class ExportInferenceGraphTest(tf.test.TestCase):
return example
def test_export_graph_with_image_tensor_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pbtxt')
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=None,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
def test_export_graph_with_tf_example_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pbtxt')
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
checkpoint_path=None,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
def test_export_graph_with_encoded_image_string_input(self):
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pbtxt')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
checkpoint_path=None,
inference_graph_path=inference_graph_path)
def test_export_frozen_graph(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
def test_export_frozen_graph_with_moving_averages(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
def test_export_graph_with_moving_averages(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
......@@ -176,15 +167,17 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
def test_export_model_with_all_output_nodes(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
......@@ -192,8 +185,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
......@@ -204,11 +197,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
inference_graph.get_tensor_by_name('num_detections:0')
def test_export_model_with_detection_only_nodes(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=False)
......@@ -216,8 +211,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
......@@ -229,11 +224,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
inference_graph.get_tensor_by_name('detection_masks:0')
def test_export_and_run_inference_with_image_tensor(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
......@@ -242,8 +239,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph) as sess:
......@@ -276,11 +273,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
return encoded_string.eval()
def test_export_and_run_inference_with_encoded_image_string_tensor(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
......@@ -289,8 +288,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
jpg_image_str = self._create_encoded_image_string(
......@@ -318,11 +317,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
self.assertAllClose(num_detections_np, [2])
def test_export_and_run_inference_with_tf_example(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
......@@ -331,8 +332,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph) as sess:
......@@ -354,11 +355,12 @@ class ExportInferenceGraphTest(tf.test.TestCase):
self.assertAllClose(num_detections, [2])
def test_export_saved_model_and_run_inference(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'saved_model')
output_directory = os.path.join(tmp_dir, 'output')
saved_model_path = os.path.join(output_directory, 'saved_model')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
......@@ -368,20 +370,19 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path,
export_as_saved_model=True)
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], inference_graph_path)
tf_example = od_graph.get_tensor_by_name('import/tf_example:0')
boxes = od_graph.get_tensor_by_name('import/detection_boxes:0')
scores = od_graph.get_tensor_by_name('import/detection_scores:0')
classes = od_graph.get_tensor_by_name('import/detection_classes:0')
masks = od_graph.get_tensor_by_name('import/detection_masks:0')
num_detections = od_graph.get_tensor_by_name('import/num_detections:0')
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
tf_example = od_graph.get_tensor_by_name('tf_example:0')
boxes = od_graph.get_tensor_by_name('detection_boxes:0')
scores = od_graph.get_tensor_by_name('detection_scores:0')
classes = od_graph.get_tensor_by_name('detection_classes:0')
masks = od_graph.get_tensor_by_name('detection_masks:0')
num_detections = od_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, masks, num_detections) = sess.run(
[boxes, scores, classes, masks, num_detections],
feed_dict={tf_example: self._create_tf_example(
......@@ -393,5 +394,48 @@ class ExportInferenceGraphTest(tf.test.TestCase):
self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
self.assertAllClose(num_detections, [2])
def test_export_checkpoint_and_run_inference(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
model_path = os.path.join(output_directory, 'model.ckpt')
meta_graph_path = model_path + '.meta'
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
new_saver = tf.train.import_meta_graph(meta_graph_path)
new_saver.restore(sess, model_path)
tf_example = od_graph.get_tensor_by_name('tf_example:0')
boxes = od_graph.get_tensor_by_name('detection_boxes:0')
scores = od_graph.get_tensor_by_name('detection_scores:0')
classes = od_graph.get_tensor_by_name('detection_classes:0')
masks = od_graph.get_tensor_by_name('detection_masks:0')
num_detections = od_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, masks, num_detections) = sess.run(
[boxes, scores, classes, masks, num_detections],
feed_dict={tf_example: self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))})
self.assertAllClose(boxes, [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]])
self.assertAllClose(scores, [[0.7, 0.6]])
self.assertAllClose(classes, [[1, 2]])
self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
self.assertAllClose(num_detections, [2])
if __name__ == '__main__':
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment