"example/01_gemm/gemm_dl_int8.cpp" did not exist on "7db48f900829980712d020b7d400ed137743c164"
Unverified Commit 1f8b5b27 authored by Simon Geisler's avatar Simon Geisler Committed by GitHub
Browse files

Merge branch 'master' into master

parents 0eeeaf98 8fcf177e
* @tensorflow/tf-garden-team @tensorflow/tf-model-garden-team
* @tensorflow/tf-model-garden-team
/official/ @rachellj218 @saberkun @jaeyounkim
/official/nlp/ @saberkun @lehougoogle @rachellj218 @jaeyounkim
/official/recommendation/ranking/ @gagika
/official/vision/ @xianzhidu @yeqingli @arashwan @saberkun @rachellj218 @jaeyounkim
/official/vision/beta/projects/assemblenet/ @mryoo
/official/vision/beta/projects/assemblenet/ @mryoo @yeqingli
/official/vision/beta/projects/deepmac_maskrcnn/ @vighneshbirodkar
/official/vision/beta/projects/movinet/ @hyperparticle @yuanliangzhe @yeqingli
/official/vision/beta/projects/simclr/ @luotigerlsx @chentingpc @saxenasaurabh
/official/vision/beta/projects/video_ssl/ @richardaecn @yeqingli
/research/adversarial_text/ @rsepassi @a-dai
/research/attention_ocr/ @xavigibert
/research/audioset/ @plakal @dpwe
......
......@@ -82,9 +82,9 @@ built from the
as tagged branches or [downloadable releases](https://github.com/tensorflow/models/releases).
* Model repository version numbers match the target TensorFlow release,
such that
[release v2.2.0](https://github.com/tensorflow/models/releases/tag/v2.2.0)
[release v2.5.0](https://github.com/tensorflow/models/releases/tag/v2.5.0)
are compatible with
[TensorFlow v2.2.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.2.0).
[TensorFlow v2.5.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.5.0).
Please follow the below steps before running models in this repository.
......@@ -98,6 +98,11 @@ upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/
pip3 install tf-nightly
```
* Python 3.7+
Our integration tests run with Python 3.7. Although Python 3.6 should work, we
don't recommend earlier versions.
### Installation
#### Method 1: Install the TensorFlow Model Garden pip package
......
......@@ -49,6 +49,11 @@ class Config(params_dict.ParamsDict):
default_params: dataclasses.InitVar[Optional[Mapping[str, Any]]] = None
restrictions: dataclasses.InitVar[Optional[List[str]]] = None
def __post_init__(self, default_params, restrictions):
super().__init__(
default_params=default_params,
restrictions=restrictions)
@classmethod
def _isvalidsequence(cls, v):
"""Check if the input values are valid sequences.
......@@ -140,13 +145,6 @@ class Config(params_dict.ParamsDict):
else subconfig_type)
return subconfig_type
def __post_init__(self, default_params, restrictions, *args, **kwargs):
super().__init__(
default_params=default_params,
restrictions=restrictions,
*args,
**kwargs)
def _set(self, k, v):
"""Overrides same method in ParamsDict.
......
......@@ -22,7 +22,7 @@ from absl import logging
import tensorflow as tf
from tensorflow.python.util import deprecation
from official.common import distribute_utils
from official.staging.training import grad_utils
from official.modeling import grad_utils
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
......
......@@ -175,7 +175,7 @@ def _convert_index(index, pos, m=None, is_start=True):
front -= 1
assert index[front] is not None or index[rear] is not None
if index[front] is None:
if index[rear] >= 1:
if index[rear] >= 1: # pytype: disable=unsupported-operands
if is_start:
return 0
else:
......
......@@ -64,14 +64,28 @@ class ClassificationHead(tf.keras.layers.Layer):
self.out_proj = tf.keras.layers.Dense(
units=num_classes, kernel_initializer=self.initializer, name="logits")
def call(self, features):
def call(self, features: tf.Tensor, only_project: bool = False):
"""Implements call().
Args:
features: a rank-3 Tensor when self.inner_dim is specified, otherwise
it is a rank-2 Tensor.
only_project: a boolean. If True, we return the intermediate Tensor
before projecting to class logits.
Returns:
a Tensor, if only_project is True, shape= [batch size, hidden size].
If only_project is False, shape= [batch size, num classes].
"""
if not self.inner_dim:
x = features
else:
x = features[:, self.cls_token_idx, :] # take <CLS> token.
x = self.dense(x)
x = self.dropout(x)
if only_project:
return x
x = self.dropout(x)
x = self.out_proj(x)
return x
......@@ -142,12 +156,27 @@ class MultiClsHeads(tf.keras.layers.Layer):
units=num_classes, kernel_initializer=self.initializer,
name=name))
def call(self, features):
def call(self, features: tf.Tensor, only_project: bool = False):
"""Implements call().
Args:
features: a rank-3 Tensor when self.inner_dim is specified, otherwise
it is a rank-2 Tensor.
only_project: a boolean. If True, we return the intermediate Tensor
before projecting to class logits.
Returns:
If only_project is True, a Tensor with shape= [batch size, hidden size].
If only_project is False, a dictionary of Tensors.
"""
if not self.inner_dim:
x = features
else:
x = features[:, self.cls_token_idx, :] # take <CLS> token.
x = self.dense(x)
if only_project:
return x
x = self.dropout(x)
outputs = {}
......
......@@ -39,6 +39,8 @@ class ClassificationHeadTest(tf.test.TestCase, parameterized.TestCase):
self.assertAllClose(output, [[0., 0.], [0., 0.]])
self.assertSameElements(test_layer.checkpoint_items.keys(),
["pooler_dense"])
outputs = test_layer(features, only_project=True)
self.assertEqual(outputs.shape, (2, 5))
def test_layer_serialization(self):
layer = cls_head.ClassificationHead(10, 2)
......@@ -71,6 +73,9 @@ class MultiClsHeadsTest(tf.test.TestCase, parameterized.TestCase):
self.assertSameElements(test_layer.checkpoint_items.keys(),
["pooler_dense", "foo", "bar"])
outputs = test_layer(features, only_project=True)
self.assertEqual(outputs.shape, (2, 5))
def test_layer_serialization(self):
cls_list = [("foo", 2), ("bar", 3)]
test_layer = cls_head.MultiClsHeads(inner_dim=5, cls_list=cls_list)
......
......@@ -16,6 +16,7 @@
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf
from tensorflow.python.util import deprecation
@tf.keras.utils.register_keras_serializable(package='Text')
......@@ -39,6 +40,8 @@ class Classification(tf.keras.Model):
`predictions`.
"""
@deprecation.deprecated(None, 'Classification as a network is deprecated. '
'Please use the layers.ClassificationHead instead.')
def __init__(self,
input_width,
num_classes,
......
......@@ -74,9 +74,12 @@ class EncoderScaffold(tf.keras.Model):
standard pretraining.
num_hidden_instances: The number of times to instantiate and/or invoke the
hidden_cls.
hidden_cls: The class or instance to encode the input data. If `hidden_cls`
is not set, a KerasBERT transformer layer will be used as the encoder
class.
hidden_cls: Three types of input are supported: (1) class (2) instance
(3) list of classes or instances, to encode the input data. If
`hidden_cls` is not set, a KerasBERT transformer layer will be used as the
encoder class. If `hidden_cls` is a list of classes or instances, these
classes (instances) are sequentially instantiated (invoked) on top of
embedding layer. Mixing classes and instances in the list is allowed.
hidden_cfg: A dict of kwargs to pass to the hidden_cls, if it needs to be
instantiated. If hidden_cls is not set, a config dict must be passed to
`hidden_cfg` with the following values:
......@@ -192,15 +195,26 @@ class EncoderScaffold(tf.keras.Model):
layer_output_data = []
hidden_layers = []
hidden_cfg = hidden_cfg if hidden_cfg else {}
if isinstance(hidden_cls, list) and len(hidden_cls) != num_hidden_instances:
raise RuntimeError(
('When input hidden_cls to EncoderScaffold %s is a list, it must '
'contain classes or instances with size specified by '
'num_hidden_instances, got %d vs %d.') % self.name, len(hidden_cls),
num_hidden_instances)
for i in range(num_hidden_instances):
if inspect.isclass(hidden_cls):
if isinstance(hidden_cls, list):
cur_hidden_cls = hidden_cls[i]
else:
cur_hidden_cls = hidden_cls
if inspect.isclass(cur_hidden_cls):
if hidden_cfg and 'attention_cfg' in hidden_cfg and (
layer_idx_as_attention_seed):
hidden_cfg = copy.deepcopy(hidden_cfg)
hidden_cfg['attention_cfg']['seed'] = i
layer = hidden_cls(**hidden_cfg)
layer = cur_hidden_cls(**hidden_cfg)
else:
layer = hidden_cls
layer = cur_hidden_cls
data = layer([data, attention_mask])
layer_output_data.append(data)
hidden_layers.append(layer)
......@@ -347,6 +361,15 @@ class EncoderScaffold(tf.keras.Model):
else:
return self._embedding_data
@property
def embedding_network(self):
if self._embedding_network is None:
raise RuntimeError(
('The EncoderScaffold %s does not have a reference '
'to the embedding network. This is required when you '
'pass a custom embedding network to the scaffold.') % self.name)
return self._embedding_network
@property
def hidden_layers(self):
"""List of hidden layers in the encoder."""
......
......@@ -605,6 +605,98 @@ class EncoderScaffoldHiddenInstanceTest(keras_parameterized.TestCase):
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
def test_hidden_cls_list(self):
hidden_size = 32
sequence_length = 10
vocab_size = 57
embedding_network = Embeddings(vocab_size, hidden_size)
call_list = []
hidden_cfg = {
"num_attention_heads":
2,
"intermediate_size":
3072,
"intermediate_activation":
activations.gelu,
"dropout_rate":
0.1,
"attention_dropout_rate":
0.1,
"kernel_initializer":
tf.keras.initializers.TruncatedNormal(stddev=0.02),
"call_list":
call_list
}
mask_call_list = []
mask_cfg = {
"call_list": mask_call_list
}
# Create a small EncoderScaffold for testing. This time, we pass an already-
# instantiated layer object.
xformer = ValidatedTransformerLayer(**hidden_cfg)
xmask = ValidatedMaskLayer(**mask_cfg)
test_network_a = encoder_scaffold.EncoderScaffold(
num_hidden_instances=3,
pooled_output_dim=hidden_size,
pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
stddev=0.02),
hidden_cls=xformer,
mask_cls=xmask,
embedding_cls=embedding_network)
# Create a network b with same embedding and hidden layers as network a.
test_network_b = encoder_scaffold.EncoderScaffold(
num_hidden_instances=3,
pooled_output_dim=hidden_size,
pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
stddev=0.02),
mask_cls=xmask,
embedding_cls=test_network_a.embedding_network,
hidden_cls=test_network_a.hidden_layers)
# Create a network c with same embedding but fewer hidden layers compared to
# network a and b.
hidden_layers = test_network_a.hidden_layers
hidden_layers.pop()
test_network_c = encoder_scaffold.EncoderScaffold(
num_hidden_instances=2,
pooled_output_dim=hidden_size,
pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
stddev=0.02),
mask_cls=xmask,
embedding_cls=test_network_a.embedding_network,
hidden_cls=hidden_layers)
# Create the inputs (note that the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
# Create model based off of network a:
data_a, pooled_a = test_network_a([word_ids, mask])
model_a = tf.keras.Model([word_ids, mask], [data_a, pooled_a])
# Create model based off of network b:
data_b, pooled_b = test_network_b([word_ids, mask])
model_b = tf.keras.Model([word_ids, mask], [data_b, pooled_b])
# Create model based off of network b:
data_c, pooled_c = test_network_c([word_ids, mask])
model_c = tf.keras.Model([word_ids, mask], [data_c, pooled_c])
batch_size = 3
word_id_data = np.random.randint(
vocab_size, size=(batch_size, sequence_length))
mask_data = np.random.randint(2, size=(batch_size, sequence_length))
output_a, _ = model_a.predict([word_id_data, mask_data])
output_b, _ = model_b.predict([word_id_data, mask_data])
output_c, _ = model_c.predict([word_id_data, mask_data])
# Outputs from model a and b should be the same since they share the same
# embedding and hidden layers.
self.assertAllEqual(output_a, output_b)
# Outputs from model a and c shouldn't be the same since they share the same
# embedding layer but different number of hidden layers.
self.assertNotAllEqual(output_a, output_c)
@parameterized.parameters(True, False)
def test_serialize_deserialize(self, use_hidden_cls_instance):
hidden_size = 32
......
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Funnel Transformer network."""
# pylint: disable=g-classes-have-attributes
from typing import Union, Collection
from absl import logging
import tensorflow as tf
from official.nlp import keras_nlp
def _pool_and_concat(data, unpool_length: int, stride: int,
axes: Union[Collection[int], int]):
"""Pools the data along a given axis with stride.
It also skips first unpool_length elements.
Args:
data: Tensor to be pooled.
unpool_length: Leading elements to be skipped.
stride: Stride for the given axis.
axes: Axes to pool the Tensor.
Returns:
Pooled and concatenated Tensor.
"""
# Wraps the axes as a list.
if isinstance(axes, int):
axes = [axes]
for axis in axes:
# Skips first `unpool_length` tokens.
unpool_tensor_shape = [slice(None)] * axis + [slice(None, unpool_length)]
unpool_tensor = data[unpool_tensor_shape]
# Pools the second half.
pool_tensor_shape = [slice(None)] * axis + [
slice(unpool_length, None, stride)
]
pool_tensor = data[pool_tensor_shape]
data = tf.concat((unpool_tensor, pool_tensor), axis=axis)
return data
@tf.keras.utils.register_keras_serializable(package='Text')
class FunnelTransformerEncoder(tf.keras.layers.Layer):
"""Funnel Transformer-based encoder network.
Funnel Transformer Implementation of https://arxiv.org/abs/2006.03236.
This implementation utilizes the base framework with Bert
(https://arxiv.org/abs/1810.04805).
Its output is compatible with `BertEncoder`.
Args:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network for each transformer.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network for each transformer.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: The dropout rate to use for the attention layers within
the transformer layers.
pool_stride: Pooling stride to compress the sequence length.
unpool_length: Leading n tokens to be skipped from pooling.
initializer: The initialzer to use for all weights in this encoder.
output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yields the full
output.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
embedding_layer: An optional Layer instance which will be called to generate
embeddings for the input word IDs.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
"""
def __init__(
self,
vocab_size,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_sequence_length=512,
type_vocab_size=16,
inner_dim=3072,
inner_activation=lambda x: tf.keras.activations.gelu(x, approximate=True),
output_dropout=0.1,
attention_dropout=0.1,
pool_stride=2,
unpool_length=0,
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
output_range=None,
embedding_width=None,
embedding_layer=None,
norm_first=False,
**kwargs):
super().__init__(**kwargs)
activation = tf.keras.activations.get(inner_activation)
initializer = tf.keras.initializers.get(initializer)
if embedding_width is None:
embedding_width = hidden_size
if embedding_layer is None:
self._embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=initializer,
name='word_embeddings')
else:
self._embedding_layer = embedding_layer
self._position_embedding_layer = keras_nlp.layers.PositionEmbedding(
initializer=initializer,
max_length=max_sequence_length,
name='position_embedding')
self._type_embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=initializer,
use_one_hot=True,
name='type_embeddings')
self._embedding_norm_layer = tf.keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)
self._embedding_dropout = tf.keras.layers.Dropout(
rate=output_dropout, name='embedding_dropout')
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
self._embedding_projection = None
if embedding_width != hidden_size:
self._embedding_projection = tf.keras.layers.experimental.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=initializer,
name='embedding_projection')
self._transformer_layers = []
self._attention_mask_layer = keras_nlp.layers.SelfAttentionMask(
name='self_attention_mask')
for i in range(num_layers):
layer = keras_nlp.layers.TransformerEncoderBlock(
num_attention_heads=num_attention_heads,
inner_dim=inner_dim,
inner_activation=inner_activation,
output_dropout=output_dropout,
attention_dropout=attention_dropout,
norm_first=norm_first,
output_range=output_range if i == num_layers - 1 else None,
kernel_initializer=initializer,
name='transformer/layer_%d' % i)
self._transformer_layers.append(layer)
self._pooler_layer = tf.keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=initializer,
name='pooler_transform')
self._att_input_pool_layer = tf.keras.layers.MaxPooling1D(
pool_size=pool_stride,
strides=pool_stride,
padding='same',
name='att_input_pool_layer')
self._pool_stride = pool_stride
self._unpool_length = unpool_length
self._config = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'inner_dim': inner_dim,
'inner_activation': tf.keras.activations.serialize(activation),
'output_dropout': output_dropout,
'attention_dropout': attention_dropout,
'initializer': tf.keras.initializers.serialize(initializer),
'output_range': output_range,
'embedding_width': embedding_width,
'embedding_layer': embedding_layer,
'norm_first': norm_first,
'pool_stride': pool_stride,
'unpool_length': unpool_length,
}
def call(self, inputs):
# inputs are [word_ids, mask, type_ids]
if isinstance(inputs, (list, tuple)):
logging.warning('List inputs to %s are discouraged.', self.__class__)
if len(inputs) == 3:
word_ids, mask, type_ids = inputs
else:
raise ValueError('Unexpected inputs to %s with length at %d.' %
(self.__class__, len(inputs)))
elif isinstance(inputs, dict):
word_ids = inputs.get('input_word_ids')
mask = inputs.get('input_mask')
type_ids = inputs.get('input_type_ids')
else:
raise ValueError('Unexpected inputs type to %s.' % self.__class__)
word_embeddings = self._embedding_layer(word_ids)
# absolute position embeddings
position_embeddings = self._position_embedding_layer(word_embeddings)
type_embeddings = self._type_embedding_layer(type_ids)
embeddings = tf.keras.layers.add(
[word_embeddings, position_embeddings, type_embeddings])
embeddings = self._embedding_norm_layer(embeddings)
embeddings = self._embedding_dropout(embeddings)
if self._embedding_projection is not None:
embeddings = self._embedding_projection(embeddings)
attention_mask = self._attention_mask_layer(embeddings, mask)
encoder_outputs = []
x = embeddings
# TODO(b/195972228): attention_mask can be co-generated with pooling.
attention_mask = _pool_and_concat(
attention_mask,
unpool_length=self._unpool_length,
stride=self._pool_stride,
axes=[1])
for layer in self._transformer_layers:
# Pools layer for compressing the query length.
pooled_inputs = self._att_input_pool_layer(x[:, self._unpool_length:, :])
query_inputs = tf.concat(
values=(tf.cast(
x[:, :self._unpool_length, :],
dtype=pooled_inputs.dtype), pooled_inputs),
axis=1)
x = layer([query_inputs, x, attention_mask])
# Pools the corresponding attention_mask.
attention_mask = _pool_and_concat(
attention_mask,
unpool_length=self._unpool_length,
stride=self._pool_stride,
axes=[1, 2])
encoder_outputs.append(x)
last_encoder_output = encoder_outputs[-1]
first_token_tensor = last_encoder_output[:, 0, :]
pooled_output = self._pooler_layer(first_token_tensor)
return dict(
sequence_output=encoder_outputs[-1],
pooled_output=pooled_output,
encoder_outputs=encoder_outputs)
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return dict(self._config)
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
if 'embedding_layer' in config and config['embedding_layer'] is not None:
warn_string = (
'You are reloading a model that was saved with a '
'potentially-shared embedding layer object. If you contine to '
'train this model, the embedding layer will no longer be shared. '
'To work around this, load the model outside of the Keras API.')
print('WARNING: ' + warn_string)
logging.warn(warn_string)
return cls(**config)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for transformer-based bert encoder network."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from official.nlp.modeling.networks import funnel_transformer
class SingleLayerModel(tf.keras.Model):
def __init__(self, layer):
super().__init__()
self.layer = layer
def call(self, inputs):
return self.layer(inputs)
class FunnelTransformerEncoderTest(parameterized.TestCase, tf.test.TestCase):
def tearDown(self):
super(FunnelTransformerEncoderTest, self).tearDown()
tf.keras.mixed_precision.set_global_policy("float32")
@parameterized.named_parameters(("mix", "mixed_float16", tf.float16),
("float32", "float32", tf.float32))
def test_network_creation(self, policy, pooled_dtype):
tf.keras.mixed_precision.set_global_policy(policy)
hidden_size = 32
sequence_length = 21
pool_stride = 2
num_layers = 3
# Create a small FunnelTransformerEncoder for testing.
test_network = funnel_transformer.FunnelTransformerEncoder(
vocab_size=100,
hidden_size=hidden_size,
num_attention_heads=2,
num_layers=num_layers,
pool_stride=pool_stride,
unpool_length=0)
# Create the inputs (note that the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
dict_outputs = test_network([word_ids, mask, type_ids])
data = dict_outputs["sequence_output"]
pooled = dict_outputs["pooled_output"]
self.assertIsInstance(test_network.transformer_layers, list)
self.assertLen(test_network.transformer_layers, num_layers)
self.assertIsInstance(test_network.pooler_layer, tf.keras.layers.Dense)
# Stride=2 compresses sequence length to half the size at each layer.
# This configuration gives each layer of seq length: 21->11->6->3.
expected_data_shape = [None, 3, hidden_size]
expected_pooled_shape = [None, hidden_size]
self.assertAllEqual(expected_data_shape, data.shape.as_list())
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())
# The default output dtype is float32.
# If float_dtype is set to float16, the data output is float32 (from a layer
# norm) and pool output should be float16.
self.assertAllEqual(tf.float32, data.dtype)
self.assertAllEqual(pooled_dtype, pooled.dtype)
@parameterized.named_parameters(
("no_stride_no_unpool", 1, 0),
("large_stride_with_unpool", 3, 1),
("large_stride_with_large_unpool", 5, 10),
("no_stride_with_unpool", 1, 1),
)
def test_all_encoder_outputs_network_creation(self, pool_stride,
unpool_length):
hidden_size = 32
sequence_length = 21
num_layers = 3
# Create a small FunnelTransformerEncoder for testing.
test_network = funnel_transformer.FunnelTransformerEncoder(
vocab_size=100,
hidden_size=hidden_size,
num_attention_heads=2,
num_layers=num_layers,
pool_stride=pool_stride,
unpool_length=unpool_length)
# Create the inputs (note that the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
dict_outputs = test_network([word_ids, mask, type_ids])
all_encoder_outputs = dict_outputs["encoder_outputs"]
pooled = dict_outputs["pooled_output"]
expected_data_shape = [None, sequence_length, hidden_size]
expected_pooled_shape = [None, hidden_size]
self.assertLen(all_encoder_outputs, num_layers)
for data in all_encoder_outputs:
expected_data_shape[1] = unpool_length + (expected_data_shape[1] +
pool_stride - 1 -
unpool_length) // pool_stride
print("shapes:", expected_data_shape, data.shape.as_list())
self.assertAllEqual(expected_data_shape, data.shape.as_list())
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())
# The default output dtype is float32.
self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype)
self.assertAllEqual(tf.float32, pooled.dtype)
@parameterized.named_parameters(
("all_sequence", None, 3, 0),
("output_range", 1, 1, 0),
("all_sequence_wit_unpool", None, 4, 1),
("output_range_with_unpool", 1, 1, 1),
("output_range_with_large_unpool", 1, 1, 2),
)
def test_network_invocation(self, output_range, out_seq_len, unpool_length):
hidden_size = 32
sequence_length = 21
vocab_size = 57
num_types = 7
pool_stride = 2
# Create a small FunnelTransformerEncoder for testing.
test_network = funnel_transformer.FunnelTransformerEncoder(
vocab_size=vocab_size,
hidden_size=hidden_size,
num_attention_heads=2,
num_layers=3,
type_vocab_size=num_types,
output_range=output_range,
pool_stride=pool_stride,
unpool_length=unpool_length)
# Create the inputs (note that the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
dict_outputs = test_network([word_ids, mask, type_ids])
data = dict_outputs["sequence_output"]
pooled = dict_outputs["pooled_output"]
# Create a model based off of this network:
model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
# Invoke the model. We can't validate the output data here (the model is too
# complex) but this will catch structural runtime errors.
batch_size = 3
word_id_data = np.random.randint(
vocab_size, size=(batch_size, sequence_length))
mask_data = np.random.randint(2, size=(batch_size, sequence_length))
type_id_data = np.random.randint(
num_types, size=(batch_size, sequence_length))
outputs = model.predict([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs[0].shape[1], out_seq_len) # output_range
# Creates a FunnelTransformerEncoder with max_sequence_length !=
# sequence_length
max_sequence_length = 128
test_network = funnel_transformer.FunnelTransformerEncoder(
vocab_size=vocab_size,
hidden_size=hidden_size,
max_sequence_length=max_sequence_length,
num_attention_heads=2,
num_layers=3,
type_vocab_size=num_types,
pool_stride=pool_stride)
dict_outputs = test_network([word_ids, mask, type_ids])
data = dict_outputs["sequence_output"]
pooled = dict_outputs["pooled_output"]
model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
outputs = model.predict([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs[0].shape[1], 3)
# Creates a FunnelTransformerEncoder with embedding_width != hidden_size
test_network = funnel_transformer.FunnelTransformerEncoder(
vocab_size=vocab_size,
hidden_size=hidden_size,
max_sequence_length=max_sequence_length,
num_attention_heads=2,
num_layers=3,
type_vocab_size=num_types,
embedding_width=16,
pool_stride=pool_stride)
dict_outputs = test_network([word_ids, mask, type_ids])
data = dict_outputs["sequence_output"]
pooled = dict_outputs["pooled_output"]
model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
outputs = model.predict([word_id_data, mask_data, type_id_data])
self.assertEqual(outputs[0].shape[-1], hidden_size)
self.assertTrue(hasattr(test_network, "_embedding_projection"))
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
vocab_size=100,
hidden_size=32,
num_layers=3,
num_attention_heads=2,
max_sequence_length=21,
type_vocab_size=12,
inner_dim=1223,
inner_activation="relu",
output_dropout=0.05,
attention_dropout=0.22,
initializer="glorot_uniform",
output_range=-1,
embedding_width=16,
embedding_layer=None,
norm_first=False,
pool_stride=2,
unpool_length=0)
network = funnel_transformer.FunnelTransformerEncoder(**kwargs)
expected_config = dict(kwargs)
expected_config["inner_activation"] = tf.keras.activations.serialize(
tf.keras.activations.get(expected_config["inner_activation"]))
expected_config["initializer"] = tf.keras.initializers.serialize(
tf.keras.initializers.get(expected_config["initializer"]))
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = funnel_transformer.FunnelTransformerEncoder.from_config(
network.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
# Tests model saving/loading.
model_path = self.get_temp_dir() + "/model"
network_wrapper = SingleLayerModel(network)
# One forward-path to ensure input_shape.
batch_size = 3
sequence_length = 21
vocab_size = 100
num_types = 12
word_id_data = np.random.randint(
vocab_size, size=(batch_size, sequence_length))
mask_data = np.random.randint(2, size=(batch_size, sequence_length))
type_id_data = np.random.randint(
num_types, size=(batch_size, sequence_length))
_ = network_wrapper.predict([word_id_data, mask_data, type_id_data])
network_wrapper.save(model_path)
_ = tf.keras.models.load_model(model_path)
if __name__ == "__main__":
tf.test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TEAMS model configurations and instantiation methods."""
import dataclasses
import gin
import tensorflow as tf
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.modeling import layers
from official.nlp.modeling import networks
@dataclasses.dataclass
class TeamsPretrainerConfig(base_config.Config):
"""Teams pretrainer configuration."""
# Candidate size for multi-word selection task, including the correct word.
candidate_size: int = 5
# Weight for the generator masked language model task.
generator_loss_weight: float = 1.0
# Weight for the replaced token detection task.
discriminator_rtd_loss_weight: float = 5.0
# Weight for the multi-word selection task.
discriminator_mws_loss_weight: float = 2.0
# Whether share embedding network between generator and discriminator.
tie_embeddings: bool = True
# Number of bottom layers shared between generator and discriminator.
# Non-positive value implies no sharing.
num_shared_generator_hidden_layers: int = 3
# Number of bottom layers shared between different discriminator tasks.
num_discriminator_task_agnostic_layers: int = 11
generator: encoders.BertEncoderConfig = encoders.BertEncoderConfig()
discriminator: encoders.BertEncoderConfig = encoders.BertEncoderConfig()
# Used for compatibility with continuous finetuning where common BERT config
# is used.
encoder: encoders.EncoderConfig = encoders.EncoderConfig()
@gin.configurable
def get_encoder(bert_config,
embedding_network=None,
hidden_layers=layers.Transformer):
"""Gets a 'EncoderScaffold' object.
Args:
bert_config: A 'modeling.BertConfig'.
embedding_network: Embedding network instance.
hidden_layers: List of hidden layer instances.
Returns:
A encoder object.
"""
# embedding_size is required for PackedSequenceEmbedding.
if bert_config.embedding_size is None:
bert_config.embedding_size = bert_config.hidden_size
embedding_cfg = dict(
vocab_size=bert_config.vocab_size,
type_vocab_size=bert_config.type_vocab_size,
hidden_size=bert_config.hidden_size,
embedding_width=bert_config.embedding_size,
max_seq_length=bert_config.max_position_embeddings,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range),
dropout_rate=bert_config.dropout_rate,
)
hidden_cfg = dict(
num_attention_heads=bert_config.num_attention_heads,
intermediate_size=bert_config.intermediate_size,
intermediate_activation=tf_utils.get_activation(
bert_config.hidden_activation),
dropout_rate=bert_config.dropout_rate,
attention_dropout_rate=bert_config.attention_dropout_rate,
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range),
)
if embedding_network is None:
embedding_network = networks.PackedSequenceEmbedding(**embedding_cfg)
kwargs = dict(
embedding_cfg=embedding_cfg,
embedding_cls=embedding_network,
hidden_cls=hidden_layers,
hidden_cfg=hidden_cfg,
num_hidden_instances=bert_config.num_layers,
pooled_output_dim=bert_config.hidden_size,
pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range),
dict_outputs=True)
# Relies on gin configuration to define the Transformer encoder arguments.
return networks.encoder_scaffold.EncoderScaffold(**kwargs)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer network for ELECTRA models."""
# pylint: disable=g-classes-have-attributes
import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling import models
class ReplacedTokenDetectionHead(tf.keras.layers.Layer):
"""Replaced token detection discriminator head.
Arguments:
encoder_cfg: Encoder config, used to create hidden layers and head.
num_task_agnostic_layers: Number of task agnostic layers in the
discriminator.
output: The output style for this network. Can be either 'logits' or
'predictions'.
"""
def __init__(self,
encoder_cfg,
num_task_agnostic_layers,
output='logits',
name='rtd',
**kwargs):
super(ReplacedTokenDetectionHead, self).__init__(name=name, **kwargs)
self.num_task_agnostic_layers = num_task_agnostic_layers
self.hidden_size = encoder_cfg['embedding_cfg']['hidden_size']
self.num_hidden_instances = encoder_cfg['num_hidden_instances']
self.hidden_cfg = encoder_cfg['hidden_cfg']
self.activation = self.hidden_cfg['intermediate_activation']
self.initializer = self.hidden_cfg['kernel_initializer']
if output not in ('predictions', 'logits'):
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
self._output_type = output
def build(self, input_shape):
self.hidden_layers = []
for i in range(self.num_task_agnostic_layers, self.num_hidden_instances):
self.hidden_layers.append(
layers.Transformer(
num_attention_heads=self.hidden_cfg['num_attention_heads'],
intermediate_size=self.hidden_cfg['intermediate_size'],
intermediate_activation=self.activation,
dropout_rate=self.hidden_cfg['dropout_rate'],
attention_dropout_rate=self.hidden_cfg['attention_dropout_rate'],
kernel_initializer=self.initializer,
name='transformer/layer_%d_rtd' % i))
self.dense = tf.keras.layers.Dense(
self.hidden_size,
activation=self.activation,
kernel_initializer=self.initializer,
name='transform/rtd_dense')
self.rtd_head = tf.keras.layers.Dense(
units=1, kernel_initializer=self.initializer,
name='transform/rtd_head')
def call(self, sequence_data, input_mask):
"""Compute inner-products of hidden vectors with sampled element embeddings.
Args:
sequence_data: A [batch_size, seq_length, num_hidden] tensor.
input_mask: A [batch_size, seq_length] binary mask to separate the input
from the padding.
Returns:
A [batch_size, seq_length] tensor.
"""
attention_mask = layers.SelfAttentionMask()([sequence_data, input_mask])
data = sequence_data
for hidden_layer in self.hidden_layers:
data = hidden_layer([sequence_data, attention_mask])
rtd_logits = self.rtd_head(self.dense(data))
return tf.squeeze(rtd_logits, axis=-1)
class MultiWordSelectionHead(tf.keras.layers.Layer):
"""Multi-word selection discriminator head.
Arguments:
embedding_table: The embedding table.
activation: The activation, if any, for the dense layer.
initializer: The intializer for the dense layer. Defaults to a Glorot
uniform initializer.
output: The output style for this network. Can be either 'logits' or
'predictions'.
"""
def __init__(self,
embedding_table,
activation=None,
initializer='glorot_uniform',
output='logits',
name='mws',
**kwargs):
super(MultiWordSelectionHead, self).__init__(name=name, **kwargs)
self.embedding_table = embedding_table
self.activation = activation
self.initializer = tf.keras.initializers.get(initializer)
if output not in ('predictions', 'logits'):
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
self._output_type = output
def build(self, input_shape):
self._vocab_size, self.embed_size = self.embedding_table.shape
self.dense = tf.keras.layers.Dense(
self.embed_size,
activation=self.activation,
kernel_initializer=self.initializer,
name='transform/mws_dense')
self.layer_norm = tf.keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name='transform/mws_layernorm')
super(MultiWordSelectionHead, self).build(input_shape)
def call(self, sequence_data, masked_positions, candidate_sets):
"""Compute inner-products of hidden vectors with sampled element embeddings.
Args:
sequence_data: A [batch_size, seq_length, num_hidden] tensor.
masked_positions: A [batch_size, num_prediction] tensor.
candidate_sets: A [batch_size, num_prediction, k] tensor.
Returns:
A [batch_size, num_prediction, k] tensor.
"""
# Gets shapes for later usage
candidate_set_shape = tf_utils.get_shape_list(candidate_sets)
num_prediction = candidate_set_shape[1]
# Gathers hidden vectors -> (batch_size, num_prediction, 1, embed_size)
masked_lm_input = self._gather_indexes(sequence_data, masked_positions)
lm_data = self.dense(masked_lm_input)
lm_data = self.layer_norm(lm_data)
lm_data = tf.expand_dims(
tf.reshape(lm_data, [-1, num_prediction, self.embed_size]), 2)
# Gathers embeddings -> (batch_size, num_prediction, embed_size, k)
flat_candidate_sets = tf.reshape(candidate_sets, [-1])
candidate_embeddings = tf.gather(self.embedding_table, flat_candidate_sets)
candidate_embeddings = tf.reshape(
candidate_embeddings,
tf.concat([tf.shape(candidate_sets), [self.embed_size]], axis=0)
)
candidate_embeddings.set_shape(
candidate_sets.shape.as_list() + [self.embed_size])
candidate_embeddings = tf.transpose(candidate_embeddings, [0, 1, 3, 2])
# matrix multiplication + squeeze -> (batch_size, num_prediction, k)
logits = tf.matmul(lm_data, candidate_embeddings)
logits = tf.squeeze(logits, 2)
if self._output_type == 'logits':
return logits
return tf.nn.log_softmax(logits)
def _gather_indexes(self, sequence_tensor, positions):
"""Gathers the vectors at the specific positions.
Args:
sequence_tensor: Sequence output of shape
(`batch_size`, `seq_length`, `num_hidden`) where `num_hidden` is
number of hidden units.
positions: Positions ids of tokens in batched sequences.
Returns:
Sequence tensor of shape (batch_size * num_predictions,
num_hidden).
"""
sequence_shape = tf_utils.get_shape_list(
sequence_tensor, name='sequence_output_tensor')
batch_size, seq_length, width = sequence_shape
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
@tf.keras.utils.register_keras_serializable(package='Text')
class TeamsPretrainer(tf.keras.Model):
"""TEAMS network training model.
This is an implementation of the network structure described in "Training
ELECTRA Augmented with Multi-word Selection"
(https://arxiv.org/abs/2106.00139).
The TeamsPretrainer allows a user to pass in two transformer encoders, one
for generator, the other for discriminator (multi-word selection). The
pretrainer then instantiates the masked language model (at generator side) and
classification networks (including both multi-word selection head and replaced
token detection head) that are used to create the training objectives.
*Note* that the model is constructed by Keras Subclass API, where layers are
defined inside `__init__` and `call()` implements the computation.
Args:
generator_network: A transformer encoder for generator, this network should
output a sequence output.
discriminator_mws_network: A transformer encoder for multi-word selection
discriminator, this network should output a sequence output.
num_discriminator_task_agnostic_layers: Number of layers shared between
multi-word selection and random token detection discriminators.
vocab_size: Size of generator output vocabulary
candidate_size: Candidate size for multi-word selection task,
including the correct word.
mlm_activation: The activation (if any) to use in the masked LM and
classification networks. If None, no activation will be used.
mlm_initializer: The initializer (if any) to use in the masked LM and
classification networks. Defaults to a Glorot uniform initializer.
output_type: The output style for this network. Can be either `logits` or
`predictions`.
"""
def __init__(self,
generator_network,
discriminator_mws_network,
num_discriminator_task_agnostic_layers,
vocab_size,
candidate_size=5,
mlm_activation=None,
mlm_initializer='glorot_uniform',
output_type='logits',
**kwargs):
super().__init__()
self._config = {
'generator_network':
generator_network,
'discriminator_mws_network':
discriminator_mws_network,
'num_discriminator_task_agnostic_layers':
num_discriminator_task_agnostic_layers,
'vocab_size':
vocab_size,
'candidate_size':
candidate_size,
'mlm_activation':
mlm_activation,
'mlm_initializer':
mlm_initializer,
'output_type':
output_type,
}
for k, v in kwargs.items():
self._config[k] = v
self.generator_network = generator_network
self.discriminator_mws_network = discriminator_mws_network
self.vocab_size = vocab_size
self.candidate_size = candidate_size
self.mlm_activation = mlm_activation
self.mlm_initializer = mlm_initializer
self.output_type = output_type
embedding_table = generator_network.embedding_network.get_embedding_table()
self.masked_lm = layers.MaskedLM(
embedding_table=embedding_table,
activation=mlm_activation,
initializer=mlm_initializer,
output=output_type,
name='generator_masked_lm')
discriminator_cfg = self.discriminator_mws_network.get_config()
self.discriminator_rtd_head = ReplacedTokenDetectionHead(
encoder_cfg=discriminator_cfg,
num_task_agnostic_layers=num_discriminator_task_agnostic_layers,
output=output_type,
name='discriminator_rtd')
hidden_cfg = discriminator_cfg['hidden_cfg']
self.discriminator_mws_head = MultiWordSelectionHead(
embedding_table=embedding_table,
activation=hidden_cfg['intermediate_activation'],
initializer=hidden_cfg['kernel_initializer'],
output=output_type,
name='discriminator_mws')
self.num_task_agnostic_layers = num_discriminator_task_agnostic_layers
def call(self, inputs):
"""TEAMS forward pass.
Args:
inputs: A dict of all inputs, same as the standard BERT model.
Returns:
outputs: A dict of pretrainer model outputs, including
(1) lm_outputs: A `[batch_size, num_token_predictions, vocab_size]`
tensor indicating logits on masked positions.
(2) disc_rtd_logits: A `[batch_size, sequence_length]` tensor indicating
logits for discriminator replaced token detection task.
(3) disc_rtd_label: A `[batch_size, sequence_length]` tensor indicating
target labels for discriminator replaced token detection task.
(4) disc_mws_logits: A `[batch_size, num_token_predictions,
candidate_size]` tensor indicating logits for discriminator multi-word
selection task.
(5) disc_mws_labels: A `[batch_size, num_token_predictions]` tensor
indicating target labels for discriminator multi-word selection task.
"""
input_word_ids = inputs['input_word_ids']
input_mask = inputs['input_mask']
input_type_ids = inputs['input_type_ids']
masked_lm_positions = inputs['masked_lm_positions']
# Runs generator.
sequence_output = self.generator_network(
[input_word_ids, input_mask, input_type_ids])['sequence_output']
lm_outputs = self.masked_lm(sequence_output, masked_lm_positions)
# Samples tokens from generator.
fake_data = self._get_fake_data(inputs, lm_outputs)
# Runs discriminator.
disc_input = fake_data['inputs']
disc_rtd_label = fake_data['is_fake_tokens']
disc_mws_candidates = fake_data['candidate_set']
mws_sequence_outputs = self.discriminator_mws_network([
disc_input['input_word_ids'], disc_input['input_mask'],
disc_input['input_type_ids']
])['encoder_outputs']
# Applies replaced token detection with input selected based on
# self.num_discriminator_task_agnostic_layers
disc_rtd_logits = self.discriminator_rtd_head(
mws_sequence_outputs[self.num_task_agnostic_layers - 1], input_mask)
# Applies multi-word selection.
disc_mws_logits = self.discriminator_mws_head(mws_sequence_outputs[-1],
masked_lm_positions,
disc_mws_candidates)
disc_mws_label = tf.zeros_like(masked_lm_positions, dtype=tf.int32)
outputs = {
'lm_outputs': lm_outputs,
'disc_rtd_logits': disc_rtd_logits,
'disc_rtd_label': disc_rtd_label,
'disc_mws_logits': disc_mws_logits,
'disc_mws_label': disc_mws_label,
}
return outputs
def _get_fake_data(self, inputs, mlm_logits):
"""Generate corrupted data for discriminator.
Note it is poosible for sampled token to be the same as the correct one.
Args:
inputs: A dict of all inputs, same as the input of `call()` function
mlm_logits: The generator's output logits
Returns:
A dict of generated fake data
"""
inputs = models.electra_pretrainer.unmask(inputs, duplicate=True)
# Samples replaced token.
sampled_tokens = tf.stop_gradient(
models.electra_pretrainer.sample_from_softmax(
mlm_logits, disallow=None))
sampled_tokids = tf.argmax(sampled_tokens, -1, output_type=tf.int32)
# Prepares input and label for replaced token detection task.
updated_input_ids, masked = models.electra_pretrainer.scatter_update(
inputs['input_word_ids'], sampled_tokids, inputs['masked_lm_positions'])
rtd_labels = masked * (1 - tf.cast(
tf.equal(updated_input_ids, inputs['input_word_ids']), tf.int32))
updated_inputs = models.electra_pretrainer.get_updated_inputs(
inputs, duplicate=True, input_word_ids=updated_input_ids)
# Samples (candidate_size-1) negatives and concat with true tokens
disallow = tf.one_hot(
inputs['masked_lm_ids'], depth=self.vocab_size, dtype=tf.float32)
sampled_candidates = tf.stop_gradient(
sample_k_from_softmax(mlm_logits, k=self.candidate_size-1,
disallow=disallow))
true_token_id = tf.expand_dims(inputs['masked_lm_ids'], -1)
candidate_set = tf.concat([true_token_id, sampled_candidates], -1)
return {
'inputs': updated_inputs,
'is_fake_tokens': rtd_labels,
'sampled_tokens': sampled_tokens,
'candidate_set': candidate_set
}
@property
def checkpoint_items(self):
"""Returns a dictionary of items to be additionally checkpointed."""
items = dict(encoder=self.discriminator_mws_network)
return items
def get_config(self):
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
def sample_k_from_softmax(logits, k, disallow=None, use_topk=False):
"""Implement softmax sampling using gumbel softmax trick to select k items.
Args:
logits: A [batch_size, num_token_predictions, vocab_size] tensor indicating
the generator output logits for each masked position.
k: Number of samples
disallow: If `None`, we directly sample tokens from the logits. Otherwise,
this is a tensor of size [batch_size, num_token_predictions, vocab_size]
indicating the true word id in each masked position.
use_topk: Whether to use tf.nn.top_k or using iterative approach where the
latter is empirically faster.
Returns:
sampled_tokens: A [batch_size, num_token_predictions, k] tensor indicating
the sampled word id in each masked position.
"""
if use_topk:
if disallow is not None:
logits -= 10000.0 * disallow
uniform_noise = tf.random.uniform(
tf_utils.get_shape_list(logits), minval=0, maxval=1)
gumbel_noise = -tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9)
_, sampled_tokens = tf.nn.top_k(logits + gumbel_noise, k=k, sorted=False)
else:
sampled_tokens_list = []
vocab_size = tf_utils.get_shape_list(logits)[-1]
if disallow is not None:
logits -= 10000.0 * disallow
uniform_noise = tf.random.uniform(
tf_utils.get_shape_list(logits), minval=0, maxval=1)
gumbel_noise = -tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9)
logits += gumbel_noise
for _ in range(k):
token_ids = tf.argmax(logits, -1, output_type=tf.int32)
sampled_tokens_list.append(token_ids)
logits -= 10000.0 * tf.one_hot(
token_ids, depth=vocab_size, dtype=tf.float32)
sampled_tokens = tf.stack(sampled_tokens_list, -1)
return sampled_tokens
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for TEAMS pre trainer network."""
import tensorflow as tf
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.modeling import activations
from official.nlp.modeling.networks import encoder_scaffold
from official.nlp.modeling.networks import packed_sequence_embedding
from official.nlp.projects.teams import teams_pretrainer
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class TeamsPretrainerTest(keras_parameterized.TestCase):
# Build a transformer network to use within the TEAMS trainer.
def _get_network(self, vocab_size):
sequence_length = 512
hidden_size = 50
embedding_cfg = {
'vocab_size': vocab_size,
'type_vocab_size': 1,
'hidden_size': hidden_size,
'embedding_width': hidden_size,
'max_seq_length': sequence_length,
'initializer': tf.keras.initializers.TruncatedNormal(stddev=0.02),
'dropout_rate': 0.1,
}
embedding_inst = packed_sequence_embedding.PackedSequenceEmbedding(
**embedding_cfg)
hidden_cfg = {
'num_attention_heads':
2,
'intermediate_size':
3072,
'intermediate_activation':
activations.gelu,
'dropout_rate':
0.1,
'attention_dropout_rate':
0.1,
'kernel_initializer':
tf.keras.initializers.TruncatedNormal(stddev=0.02),
}
return encoder_scaffold.EncoderScaffold(
num_hidden_instances=2,
pooled_output_dim=hidden_size,
embedding_cfg=embedding_cfg,
embedding_cls=embedding_inst,
hidden_cfg=hidden_cfg,
dict_outputs=True)
def test_teams_pretrainer(self):
"""Validate that the Keras object can be created."""
vocab_size = 100
test_generator_network = self._get_network(vocab_size)
test_discriminator_network = self._get_network(vocab_size)
# Create a TEAMS trainer with the created network.
candidate_size = 3
teams_trainer_model = teams_pretrainer.TeamsPretrainer(
generator_network=test_generator_network,
discriminator_mws_network=test_discriminator_network,
num_discriminator_task_agnostic_layers=1,
vocab_size=vocab_size,
candidate_size=candidate_size)
# Create a set of 2-dimensional inputs (the first dimension is implicit).
num_token_predictions = 2
sequence_length = 128
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
lm_positions = tf.keras.Input(
shape=(num_token_predictions,), dtype=tf.int32)
lm_ids = tf.keras.Input(shape=(num_token_predictions,), dtype=tf.int32)
inputs = {
'input_word_ids': word_ids,
'input_mask': mask,
'input_type_ids': type_ids,
'masked_lm_positions': lm_positions,
'masked_lm_ids': lm_ids
}
# Invoke the trainer model on the inputs. This causes the layer to be built.
outputs = teams_trainer_model(inputs)
lm_outs = outputs['lm_outputs']
disc_rtd_logits = outputs['disc_rtd_logits']
disc_rtd_label = outputs['disc_rtd_label']
disc_mws_logits = outputs['disc_mws_logits']
disc_mws_label = outputs['disc_mws_label']
# Validate that the outputs are of the expected shape.
expected_lm_shape = [None, num_token_predictions, vocab_size]
expected_disc_rtd_logits_shape = [None, sequence_length]
expected_disc_rtd_label_shape = [None, sequence_length]
expected_disc_disc_mws_logits_shape = [
None, num_token_predictions, candidate_size
]
expected_disc_disc_mws_label_shape = [None, num_token_predictions]
self.assertAllEqual(expected_lm_shape, lm_outs.shape.as_list())
self.assertAllEqual(expected_disc_rtd_logits_shape,
disc_rtd_logits.shape.as_list())
self.assertAllEqual(expected_disc_rtd_label_shape,
disc_rtd_label.shape.as_list())
self.assertAllEqual(expected_disc_disc_mws_logits_shape,
disc_mws_logits.shape.as_list())
self.assertAllEqual(expected_disc_disc_mws_label_shape,
disc_mws_label.shape.as_list())
def test_teams_trainer_tensor_call(self):
"""Validate that the Keras object can be invoked."""
vocab_size = 100
test_generator_network = self._get_network(vocab_size)
test_discriminator_network = self._get_network(vocab_size)
# Create a TEAMS trainer with the created network.
teams_trainer_model = teams_pretrainer.TeamsPretrainer(
generator_network=test_generator_network,
discriminator_mws_network=test_discriminator_network,
num_discriminator_task_agnostic_layers=2,
vocab_size=vocab_size,
candidate_size=2)
# Create a set of 2-dimensional data tensors to feed into the model.
word_ids = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.int32)
mask = tf.constant([[1, 1, 1], [1, 0, 0]], dtype=tf.int32)
type_ids = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.int32)
lm_positions = tf.constant([[0, 1], [0, 2]], dtype=tf.int32)
lm_ids = tf.constant([[10, 20], [20, 30]], dtype=tf.int32)
inputs = {
'input_word_ids': word_ids,
'input_mask': mask,
'input_type_ids': type_ids,
'masked_lm_positions': lm_positions,
'masked_lm_ids': lm_ids
}
# Invoke the trainer model on the tensors. In Eager mode, this does the
# actual calculation. (We can't validate the outputs, since the network is
# too complex: this simply ensures we're not hitting runtime errors.)
_ = teams_trainer_model(inputs)
def test_serialize_deserialize(self):
"""Validate that the TEAMS trainer can be serialized and deserialized."""
vocab_size = 100
test_generator_network = self._get_network(vocab_size)
test_discriminator_network = self._get_network(vocab_size)
# Create a TEAMS trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
teams_trainer_model = teams_pretrainer.TeamsPretrainer(
generator_network=test_generator_network,
discriminator_mws_network=test_discriminator_network,
num_discriminator_task_agnostic_layers=2,
vocab_size=vocab_size,
candidate_size=2)
# Create another TEAMS trainer via serialization and deserialization.
config = teams_trainer_model.get_config()
new_teams_trainer_model = teams_pretrainer.TeamsPretrainer.from_config(
config)
# Validate that the config can be forced to JSON.
_ = new_teams_trainer_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(teams_trainer_model.get_config(),
new_teams_trainer_model.get_config())
if __name__ == '__main__':
tf.test.main()
......@@ -48,15 +48,15 @@ def _flatten_dims(tensor: tf.Tensor,
rank = tensor.shape.rank
if rank is None:
raise ValueError('Static rank of `tensor` must be known.')
if first_dim < 0:
if first_dim < 0: # pytype: disable=unsupported-operands
first_dim += rank
if first_dim < 0 or first_dim >= rank:
if first_dim < 0 or first_dim >= rank: # pytype: disable=unsupported-operands
raise ValueError('`first_dim` out of bounds for `tensor` rank.')
if last_dim < 0:
if last_dim < 0: # pytype: disable=unsupported-operands
last_dim += rank
if last_dim < 0 or last_dim >= rank:
if last_dim < 0 or last_dim >= rank: # pytype: disable=unsupported-operands
raise ValueError('`last_dim` out of bounds for `tensor` rank.')
if first_dim > last_dim:
if first_dim > last_dim: # pytype: disable=unsupported-operands
raise ValueError('`first_dim` must not be larger than `last_dim`.')
# Try to calculate static flattened dim size if all input sizes to flatten
......
......@@ -80,12 +80,10 @@ class SentencePrediction(export_base.ExportModule):
lower_case=params.lower_case,
preprocessing_hub_module_url=params.preprocessing_hub_module_url)
@tf.function
def serve(self,
def _serve_tokenized_input(self,
input_word_ids,
input_mask=None,
input_type_ids=None,
use_prob=False) -> Dict[str, tf.Tensor]:
input_type_ids=None) -> tf.Tensor:
if input_type_ids is None:
# Requires CLS token is the first token of inputs.
input_type_ids = tf.zeros_like(input_word_ids)
......@@ -98,10 +96,26 @@ class SentencePrediction(export_base.ExportModule):
input_word_ids=input_word_ids,
input_mask=input_mask,
input_type_ids=input_type_ids)
if not use_prob:
return dict(outputs=self.inference_step(inputs))
else:
return dict(outputs=tf.nn.softmax(self.inference_step(inputs)))
return self.inference_step(inputs)
@tf.function
def serve(self,
input_word_ids,
input_mask=None,
input_type_ids=None) -> Dict[str, tf.Tensor]:
return dict(
outputs=self._serve_tokenized_input(input_word_ids, input_mask,
input_type_ids))
@tf.function
def serve_probability(self,
input_word_ids,
input_mask=None,
input_type_ids=None) -> Dict[str, tf.Tensor]:
return dict(
outputs=tf.nn.softmax(
self._serve_tokenized_input(input_word_ids, input_mask,
input_type_ids)))
@tf.function
def serve_examples(self, inputs) -> Dict[str, tf.Tensor]:
......
......@@ -81,6 +81,7 @@ setup(
'official.pip_package*',
'official.benchmark*',
'official.colab*',
'official.recommendation.ranking.data.preprocessing*',
]),
exclude_package_data={
'': ['*_test.py',],
......
......@@ -68,6 +68,9 @@ Note that the dataset is large (~1TB).
### Preprocess the data
Follow the instructions in [Data Preprocessing](data/preprocessing) to
preprocess the Criteo Terabyte dataset.
Data preprocessing steps are summarized below.
Integer feature processing steps, sequentially:
......@@ -93,9 +96,9 @@ Training and eval datasets are expected to be saved in many tab-separated values
(TSV) files in the following format: numberical fetures, categorical features
and label.
On each row of the TSV file first `num_dense_features` inputs are numerical
features, then `vocab_sizes` categorical features and the last one is the label
(either 0 or 1). Each i-th categorical feature is expected to be an integer in
On each row of the TSV file, the first one is the label
(either 0 or 1), the next `num_dense_features` inputs are numerical
features, then `vocab_sizes` categorical features. Each i-th categorical feature is expected to be an integer in
the range of `[0, vocab_sizes[i])`.
## Train and Evaluate
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment