Commit 1924dde7 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 300654832
parent 7abe53af
......@@ -61,18 +61,6 @@ class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
super(Resnet50KerasAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods)
def benchmark_graph_8_gpu(self):
"""Test Keras model with Keras fit/dist_strat and 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def benchmark_8_gpu(self):
"""Test Keras model with eager, dist_strat and 8 GPUs."""
self._setup()
......@@ -135,30 +123,6 @@ class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_mlperf_like(self):
"""Test similar to the rules for MLPerf 0.5.
Listed below are reasons this comparison is not to the MLSpec, but this is
still a decent directional measurement:
- Eval is every 4 epochs and again at the end. ~2 extra times.
- Learning rate is not tuned to hit 75%, but we know the model is correct.
- We measure total time and MLPerf 0.5 excluded some startup time.
- Eval is not on the total set, need to set eval batch_size where
8*batch_size/50K is even. 250 is a good number.
- Not sure if we are doing any extra or too few steps due to epoch bleed.
"""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 256 * 8
FLAGS.train_epochs = 61
FLAGS.epochs_between_evals = 4
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like')
FLAGS.dtype = 'fp16'
FLAGS.enable_eager = True
FLAGS.enable_xla = True
self._run_and_report_benchmark(top_1_min=0.736)
def benchmark_xla_8_gpu_fp16_dynamic(self):
"""Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
self._setup()
......@@ -976,76 +940,6 @@ class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
FLAGS.train_steps = 700
self._run_and_report_benchmark()
def benchmark_1_gpu(self):
"""Test trivial Keras model (input pipeline) with 1 GPU."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = True
FLAGS.enable_xla = True
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
FLAGS.batch_size = 256
self._run_and_report_benchmark()
def benchmark_graph_1_gpu(self):
"""Test trivial Keras model (input pipeline) with 1 GPU."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = False
FLAGS.enable_xla = True
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
FLAGS.batch_size = 256
self._run_and_report_benchmark()
def benchmark_8_gpu(self):
"""Test trivial Keras model (input pipeline) with 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.enable_eager = True
FLAGS.enable_xla = True
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
FLAGS.batch_size = 256 * 8
self._run_and_report_benchmark()
def benchmark_8_gpu_tweaked(self):
"""Test trivial Keras model with tuning and 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.enable_eager = True
FLAGS.enable_xla = True
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
FLAGS.batch_size = 256 * 8
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.datasets_num_private_threads = 48
self._run_and_report_benchmark()
def benchmark_graph_8_gpu(self):
"""Test trivial Keras model in legacy graph mode with 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.enable_eager = False
FLAGS.enable_xla = True
FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
FLAGS.batch_size = 256 * 8
self._run_and_report_benchmark()
def benchmark_graph_8_gpu_tweaked(self):
"""Test trivial Keras model in legacy graph mode with tuning and 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.enable_eager = False
FLAGS.enable_xla = True
FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
FLAGS.batch_size = 256 * 8
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.datasets_num_private_threads = 48
self._run_and_report_benchmark()
def fill_report_object(self, stats):
super(TrivialKerasBenchmarkReal, self).fill_report_object(
stats,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment