Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
1016fce9
"docs/source/en/api/models/controlnet_flux.md" did not exist on "174dcd697faf88370f1e7b2eeabb059dd8f1b2f4"
Commit
1016fce9
authored
Sep 11, 2017
by
Aditya Paliwal
Browse files
Fixed tensor dimensionality typos in meta_architectures/
parent
aab9f1ca
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
21 additions
and
21 deletions
+21
-21
object_detection/meta_architectures/faster_rcnn_meta_arch.py
object_detection/meta_architectures/faster_rcnn_meta_arch.py
+10
-10
object_detection/meta_architectures/rfcn_meta_arch.py
object_detection/meta_architectures/rfcn_meta_arch.py
+2
-2
object_detection/meta_architectures/ssd_meta_arch.py
object_detection/meta_architectures/ssd_meta_arch.py
+9
-9
No files found.
object_detection/meta_architectures/faster_rcnn_meta_arch.py
View file @
1016fce9
...
@@ -491,7 +491,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -491,7 +491,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
[total_num_proposals, num_classes, 4] representing predicted
[total_num_proposals, num_classes, 4] representing predicted
(final) refined box encodings, where
(final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals
total_num_proposals=batch_size*self._max_num_proposals
8) class_predictions_with_background: a
3
-D tensor with shape
8) class_predictions_with_background: a
2
-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
total_num_proposals=batch_size*self._max_num_proposals.
...
@@ -553,10 +553,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -553,10 +553,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
"""Predicts the output tensors from second stage of Faster R-CNN.
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
Args:
rpn_box_encodings:
4
-D float tensor of shape
rpn_box_encodings:
3
-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
predicted boxes.
rpn_objectness_predictions_with_background:
2
-D float tensor of shape
rpn_objectness_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
tensor *includes* background class predictions (at class index 0).
...
@@ -573,7 +573,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -573,7 +573,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
[total_num_proposals, num_classes, 4] representing predicted
[total_num_proposals, num_classes, 4] representing predicted
(final) refined box encodings, where
(final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals
total_num_proposals=batch_size*self._max_num_proposals
2) class_predictions_with_background: a
3
-D tensor with shape
2) class_predictions_with_background: a
2
-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
total_num_proposals=batch_size*self._max_num_proposals.
...
@@ -729,10 +729,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -729,10 +729,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
extent of the window to clip/prune to.
extent of the window to clip/prune to.
Returns:
Returns:
box_encodings:
4
-D float tensor of shape
box_encodings:
3
-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes, where num_valid_anchors <= num_anchors
predicted boxes, where num_valid_anchors <= num_anchors
objectness_predictions_with_background:
2
-D float tensor of shape
objectness_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors, where
predictions (logits) for each of the anchors, where
num_valid_anchors <= num_anchors. Note that this
num_valid_anchors <= num_anchors. Note that this
...
@@ -1182,7 +1182,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -1182,7 +1182,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
"""Decode tensor of refined box encodings.
"""Decode tensor of refined box encodings.
Args:
Args:
refined_box_encodings: a
3
-D tensor with shape
refined_box_encodings: a
4
-D tensor with shape
[batch_size, max_num_proposals, num_classes, self._box_coder.code_size]
[batch_size, max_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings.
representing predicted (final) refined box encodings.
proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
...
@@ -1278,10 +1278,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -1278,10 +1278,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
participate in the loss computation, and returns the RPN losses.
participate in the loss computation, and returns the RPN losses.
Args:
Args:
rpn_box_encodings: A
4
-D float tensor of shape
rpn_box_encodings: A
3
-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted proposal box encodings.
predicted proposal box encodings.
rpn_objectness_predictions_with_background: A
2
-D float tensor of shape
rpn_objectness_predictions_with_background: A
3
-D float tensor of shape
[batch_size, num_anchors, 2] containing objectness predictions
[batch_size, num_anchors, 2] containing objectness predictions
(logits) for each of the anchors with 0 corresponding to background
(logits) for each of the anchors with 0 corresponding to background
and 1 corresponding to object.
and 1 corresponding to object.
...
@@ -1363,7 +1363,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
...
@@ -1363,7 +1363,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
refined_box_encodings: a 3-D tensor with shape
refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, box_coder.code_size] representing
[total_num_proposals, num_classes, box_coder.code_size] representing
predicted (final) refined box encodings.
predicted (final) refined box encodings.
class_predictions_with_background: a
3
-D tensor with shape
class_predictions_with_background: a
2
-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors. Note that this tensor
predictions (logits) for each of the anchors. Note that this tensor
*includes* background class predictions (at class index 0).
*includes* background class predictions (at class index 0).
...
...
object_detection/meta_architectures/rfcn_meta_arch.py
View file @
1016fce9
...
@@ -198,10 +198,10 @@ class RFCNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
...
@@ -198,10 +198,10 @@ class RFCNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
"""Predicts the output tensors from 2nd stage of FasterRCNN.
"""Predicts the output tensors from 2nd stage of FasterRCNN.
Args:
Args:
rpn_box_encodings:
4
-D float tensor of shape
rpn_box_encodings:
3
-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
predicted boxes.
rpn_objectness_predictions_with_background:
2
-D float tensor of shape
rpn_objectness_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
tensor *includes* background class predictions (at class index 0).
...
...
object_detection/meta_architectures/ssd_meta_arch.py
View file @
1016fce9
...
@@ -226,7 +226,7 @@ class SSDMetaArch(model.DetectionModel):
...
@@ -226,7 +226,7 @@ class SSDMetaArch(model.DetectionModel):
Returns:
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) box_encodings:
4
-D float tensor of shape [batch_size, num_anchors,
1) box_encodings:
3
-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 3-D float tensor of shape
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
[batch_size, num_anchors, num_classes+1] containing class predictions
...
@@ -258,9 +258,9 @@ class SSDMetaArch(model.DetectionModel):
...
@@ -258,9 +258,9 @@ class SSDMetaArch(model.DetectionModel):
[batch, height_i, width_i, depth_i]
[batch, height_i, width_i, depth_i]
Returns:
Returns:
box_encodings:
4
-D float tensor of shape [batch_size, num_anchors,
box_encodings:
3
-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
box_code_dimension] containing predicted boxes.
class_predictions_with_background:
2
-D float tensor of shape
class_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
background class predictions (at class index 0).
...
@@ -342,9 +342,9 @@ class SSDMetaArch(model.DetectionModel):
...
@@ -342,9 +342,9 @@ class SSDMetaArch(model.DetectionModel):
Args:
Args:
prediction_dict: a dictionary holding prediction tensors with
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings:
4
-D float tensor of shape [batch_size, num_anchors,
1) box_encodings:
3
-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background:
2
-D float tensor of shape
2) class_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
background class predictions.
...
@@ -391,9 +391,9 @@ class SSDMetaArch(model.DetectionModel):
...
@@ -391,9 +391,9 @@ class SSDMetaArch(model.DetectionModel):
Args:
Args:
prediction_dict: a dictionary holding prediction tensors with
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings:
4
-D float tensor of shape [batch_size, num_anchors,
1) box_encodings:
3
-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background:
2
-D float tensor of shape
2) class_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
background class predictions.
...
@@ -527,9 +527,9 @@ class SSDMetaArch(model.DetectionModel):
...
@@ -527,9 +527,9 @@ class SSDMetaArch(model.DetectionModel):
cls_losses: Float tensor of shape [batch_size, num_anchors]
cls_losses: Float tensor of shape [batch_size, num_anchors]
representing anchorwise classification losses.
representing anchorwise classification losses.
prediction_dict: p a dictionary holding prediction tensors with
prediction_dict: p a dictionary holding prediction tensors with
1) box_encodings:
4
-D float tensor of shape [batch_size, num_anchors,
1) box_encodings:
3
-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background:
2
-D float tensor of shape
2) class_predictions_with_background:
3
-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
background class predictions.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment