Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
0fe89de9
Commit
0fe89de9
authored
Jan 12, 2021
by
Frederick Liu
Committed by
A. Unique TensorFlower
Jan 12, 2021
Browse files
Opensource translation task.
PiperOrigin-RevId: 351379789
parent
04af8d35
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
963 additions
and
0 deletions
+963
-0
official/nlp/data/wmt_dataloader.py
official/nlp/data/wmt_dataloader.py
+295
-0
official/nlp/data/wmt_dataloader_test.py
official/nlp/data/wmt_dataloader_test.py
+131
-0
official/nlp/tasks/translation.py
official/nlp/tasks/translation.py
+369
-0
official/nlp/tasks/translation_test.py
official/nlp/tasks/translation_test.py
+168
-0
No files found.
official/nlp/data/wmt_dataloader.py
0 → 100644
View file @
0fe89de9
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input pipeline for the transformer model to read, filter, and batch examples.
1. Batching scheme
Prior to batching, elements in the dataset are grouped by length (max between
'inputs' and 'targets' length). Each group is then batched such that:
group_batch_size * length <= batch_size.
Another way to view batch_size is the maximum number of tokens in each batch.
Once batched, each element in the dataset will have the shape:
{'inputs': [group_batch_size, padded_input_length],
'targets': [group_batch_size, padded_target_length]}
Lengths are padded to the longest 'inputs' or 'targets' sequence in the batch
(padded_input_length and padded_target_length can be different).
This batching scheme decreases the fraction of padding tokens per training
batch, thus improving the training speed significantly.
"""
from
typing
import
Dict
,
Optional
import
dataclasses
import
tensorflow
as
tf
import
tensorflow_text
as
tftxt
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.nlp.data
import
data_loader
from
official.nlp.data
import
data_loader_factory
# Example grouping constants. Defines length boundaries for each group.
# These values are the defaults used in Tensor2Tensor.
_MIN_BOUNDARY
=
8
_BOUNDARY_SCALE
=
1.1
def
_get_example_length
(
example
):
"""Returns the maximum length between the example inputs and targets."""
length
=
tf
.
maximum
(
tf
.
shape
(
example
[
0
])[
0
],
tf
.
shape
(
example
[
1
])[
0
])
return
length
def
_create_min_max_boundaries
(
max_length
,
min_boundary
=
_MIN_BOUNDARY
,
boundary_scale
=
_BOUNDARY_SCALE
):
"""Create min and max boundary lists up to max_length.
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the
returned values will be:
buckets_min = [0, 4, 8, 16, 24]
buckets_max = [4, 8, 16, 24, 25]
Args:
max_length: The maximum length of example in dataset.
min_boundary: Minimum length in boundary.
boundary_scale: Amount to scale consecutive boundaries in the list.
Returns:
min and max boundary lists
"""
# Create bucket boundaries list by scaling the previous boundary or adding 1
# (to ensure increasing boundary sizes).
bucket_boundaries
=
[]
x
=
min_boundary
while
x
<
max_length
:
bucket_boundaries
.
append
(
x
)
x
=
max
(
x
+
1
,
int
(
x
*
boundary_scale
))
# Create min and max boundary lists from the initial list.
buckets_min
=
[
0
]
+
bucket_boundaries
buckets_max
=
bucket_boundaries
+
[
max_length
+
1
]
return
buckets_min
,
buckets_max
def
_batch_examples
(
dataset
,
batch_size
,
max_length
):
"""Group examples by similar lengths, and return batched dataset.
Each batch of similar-length examples are padded to the same length, and may
have different number of elements in each batch, such that:
group_batch_size * padded_length <= batch_size.
This decreases the number of padding tokens per batch, which improves the
training speed.
Args:
dataset: Dataset of unbatched examples.
batch_size: Max number of tokens per batch of examples.
max_length: Max number of tokens in an example input or target sequence.
Returns:
Dataset of batched examples with similar lengths.
"""
# Get min and max boundary lists for each example. These are used to calculate
# the `bucket_id`, which is the index at which:
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id]
# Note that using both min and max lists improves the performance.
buckets_min
,
buckets_max
=
_create_min_max_boundaries
(
max_length
)
# Create list of batch sizes for each bucket_id, so that
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size
bucket_batch_sizes
=
[
int
(
batch_size
)
//
x
for
x
in
buckets_max
]
# Validates bucket batch sizes.
if
any
([
batch_size
<=
0
for
batch_size
in
bucket_batch_sizes
]):
raise
ValueError
(
'The token budget, global batch size, is too small to yeild 0 bucket '
'window: %s'
%
str
(
bucket_batch_sizes
))
# bucket_id will be a tensor, so convert this list to a tensor as well.
bucket_batch_sizes
=
tf
.
constant
(
bucket_batch_sizes
,
dtype
=
tf
.
int64
)
def
example_to_bucket_id
(
example
):
"""Return int64 bucket id for this example, calculated based on length."""
example_input
=
example
[
'inputs'
]
example_target
=
example
[
'targets'
]
seq_length
=
_get_example_length
((
example_input
,
example_target
))
conditions_c
=
tf
.
logical_and
(
tf
.
less_equal
(
buckets_min
,
seq_length
),
tf
.
less
(
seq_length
,
buckets_max
))
bucket_id
=
tf
.
reduce_min
(
tf
.
where
(
conditions_c
))
return
bucket_id
def
window_size_fn
(
bucket_id
):
"""Return number of examples to be grouped when given a bucket id."""
return
bucket_batch_sizes
[
bucket_id
]
def
batching_fn
(
bucket_id
,
grouped_dataset
):
"""Batch and add padding to a dataset of elements with similar lengths."""
bucket_batch_size
=
window_size_fn
(
bucket_id
)
# Batch the dataset and add padding so that all input sequences in the
# examples have the same length, and all target sequences have the same
# lengths as well. Resulting lengths of inputs and targets can differ.
padded_shapes
=
dict
([
(
name
,
[
None
]
*
len
(
spec
.
shape
))
for
name
,
spec
in
grouped_dataset
.
element_spec
.
items
()
])
return
grouped_dataset
.
padded_batch
(
bucket_batch_size
,
padded_shapes
)
return
dataset
.
apply
(
tf
.
data
.
experimental
.
group_by_window
(
key_func
=
example_to_bucket_id
,
reduce_func
=
batching_fn
,
window_size
=
None
,
window_size_func
=
window_size_fn
))
@
dataclasses
.
dataclass
class
WMTDataConfig
(
cfg
.
DataConfig
):
"""Data config for WMT translation."""
max_seq_length
:
int
=
64
static_batch
:
bool
=
False
sentencepiece_model_path
:
str
=
''
src_lang
:
str
=
''
tgt_lang
:
str
=
''
transform_and_batch
:
bool
=
True
has_unique_id
:
bool
=
False
@
data_loader_factory
.
register_data_loader_cls
(
WMTDataConfig
)
class
WMTDataLoader
(
data_loader
.
DataLoader
):
"""A class to load dataset for WMT translation task."""
def
__init__
(
self
,
params
:
WMTDataConfig
):
self
.
_params
=
params
self
.
_max_seq_length
=
params
.
max_seq_length
self
.
_static_batch
=
params
.
static_batch
self
.
_global_batch_size
=
params
.
global_batch_size
if
self
.
_params
.
transform_and_batch
:
self
.
_tokenizer
=
tftxt
.
SentencepieceTokenizer
(
model
=
tf
.
io
.
gfile
.
GFile
(
params
.
sentencepiece_model_path
,
'rb'
).
read
(),
add_eos
=
True
)
def
_decode
(
self
,
record
:
tf
.
Tensor
):
"""Decodes a serialized tf.Example."""
name_to_features
=
{
self
.
_params
.
src_lang
:
tf
.
io
.
FixedLenFeature
([],
tf
.
string
),
self
.
_params
.
tgt_lang
:
tf
.
io
.
FixedLenFeature
([],
tf
.
string
),
}
if
self
.
_params
.
has_unique_id
:
name_to_features
[
'unique_id'
]
=
tf
.
io
.
FixedLenFeature
([],
tf
.
int64
)
example
=
tf
.
io
.
parse_single_example
(
record
,
name_to_features
)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for
name
in
example
:
t
=
example
[
name
]
if
t
.
dtype
==
tf
.
int64
:
t
=
tf
.
cast
(
t
,
tf
.
int32
)
example
[
name
]
=
t
return
example
def
_tokenize
(
self
,
inputs
)
->
Dict
[
str
,
tf
.
Tensor
]:
tokenized_inputs
=
{}
for
k
,
v
in
inputs
.
items
():
if
k
==
self
.
_params
.
src_lang
:
tokenized_inputs
[
'inputs'
]
=
self
.
_tokenizer
.
tokenize
(
v
)
elif
k
==
self
.
_params
.
tgt_lang
:
tokenized_inputs
[
'targets'
]
=
self
.
_tokenizer
.
tokenize
(
v
)
else
:
tokenized_inputs
[
k
]
=
v
print
(
tokenized_inputs
)
return
tokenized_inputs
def
_filter_max_length
(
self
,
inputs
):
# return tf.constant(True)
return
tf
.
logical_and
(
tf
.
shape
(
inputs
[
'inputs'
])[
0
]
<=
self
.
_max_seq_length
,
tf
.
shape
(
inputs
[
'targets'
])[
0
]
<=
self
.
_max_seq_length
)
def
_maybe_truncate
(
self
,
inputs
):
truncated_inputs
=
{}
for
k
,
v
in
inputs
.
items
():
if
k
==
'inputs'
or
k
==
'targets'
:
truncated_inputs
[
k
]
=
tf
.
pad
(
v
[:
self
.
_max_seq_length
-
1
],
[[
0
,
1
]],
constant_values
=
1
)
if
tf
.
shape
(
v
)[
0
]
>
self
.
_max_seq_length
else
v
else
:
truncated_inputs
[
k
]
=
v
return
truncated_inputs
def
_tokenize_bucketize_and_batch
(
self
,
dataset
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
dataset
=
dataset
.
map
(
self
.
_tokenize
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
if
self
.
_params
.
is_training
:
dataset
=
dataset
.
filter
(
self
.
_filter_max_length
)
else
:
dataset
=
dataset
.
map
(
self
.
_maybe_truncate
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
per_replica_batch_size
=
input_context
.
get_per_replica_batch_size
(
self
.
_global_batch_size
)
if
input_context
else
self
.
_global_batch_size
if
self
.
_static_batch
:
padded_shapes
=
{}
for
name
,
_
in
dataset
.
element_spec
.
items
():
if
name
==
'unique_id'
:
padded_shapes
[
name
]
=
[]
else
:
padded_shapes
[
name
]
=
[
self
.
_max_seq_length
]
if
self
.
_static_batch
else
[
None
]
batch_size
=
per_replica_batch_size
if
self
.
_params
.
is_training
:
batch_size
=
int
(
batch_size
//
self
.
_max_seq_length
)
dataset
=
dataset
.
padded_batch
(
batch_size
,
padded_shapes
,
drop_remainder
=
True
)
else
:
# Group and batch such that each batch has examples of similar length.
dataset
=
_batch_examples
(
dataset
,
per_replica_batch_size
,
self
.
_max_seq_length
)
# Prefetch the next element to improve speed of input pipeline.
dataset
=
dataset
.
prefetch
(
buffer_size
=
tf
.
data
.
experimental
.
AUTOTUNE
)
return
dataset
def
load
(
self
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
"""Returns a tf.dataset.Dataset."""
decoder_fn
=
None
# Only decode for TFRecords.
if
self
.
_params
.
input_path
:
decoder_fn
=
self
.
_decode
def
_identity
(
dataset
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
del
input_context
return
dataset
transform_and_batch_fn
=
_identity
if
self
.
_params
.
transform_and_batch
:
transform_and_batch_fn
=
self
.
_tokenize_bucketize_and_batch
reader
=
input_reader
.
InputReader
(
params
=
self
.
_params
,
decoder_fn
=
decoder_fn
,
transform_and_batch_fn
=
transform_and_batch_fn
)
return
reader
.
read
(
input_context
)
official/nlp/data/wmt_dataloader_test.py
0 → 100644
View file @
0fe89de9
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.data.wmt_dataloader."""
import
os
from
absl.testing
import
parameterized
import
tensorflow
as
tf
from
sentencepiece
import
SentencePieceTrainer
from
official.nlp.data
import
wmt_dataloader
def
_generate_line_file
(
filepath
,
lines
):
with
tf
.
io
.
gfile
.
GFile
(
filepath
,
'w'
)
as
f
:
for
l
in
lines
:
f
.
write
(
'{}
\n
'
.
format
(
l
))
def
_generate_record_file
(
filepath
,
src_lines
,
tgt_lines
,
unique_id
=
False
):
writer
=
tf
.
io
.
TFRecordWriter
(
filepath
)
for
i
,
(
src
,
tgt
)
in
enumerate
(
zip
(
src_lines
,
tgt_lines
)):
features
=
{
'en'
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
src
.
encode
()])),
'reverse_en'
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
tgt
.
encode
()])),
}
if
unique_id
:
features
[
'unique_id'
]
=
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
i
])),
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
features
))
writer
.
write
(
example
.
SerializeToString
())
writer
.
close
()
def
_train_sentencepiece
(
input_path
,
vocab_size
,
model_path
,
eos_id
=
1
):
argstr
=
' '
.
join
([
f
'--input=
{
input_path
}
'
,
f
'--vocab_size=
{
vocab_size
}
'
,
'--character_coverage=0.995'
,
f
'--model_prefix=
{
model_path
}
'
,
'--model_type=bpe'
,
'--bos_id=-1'
,
'--pad_id=0'
,
f
'--eos_id=
{
eos_id
}
'
,
'--unk_id=2'
])
SentencePieceTrainer
.
Train
(
argstr
)
class
WMTDataLoaderTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
setUp
(
self
):
super
(
WMTDataLoaderTest
,
self
).
setUp
()
self
.
_temp_dir
=
self
.
get_temp_dir
()
src_lines
=
[
'abc ede fg'
,
'bbcd ef a g'
,
'de f a a g'
]
tgt_lines
=
[
'dd cc a ef g'
,
'bcd ef a g'
,
'gef cd ba'
]
self
.
_record_train_input_path
=
os
.
path
.
join
(
self
.
_temp_dir
,
'train.record'
)
_generate_record_file
(
self
.
_record_train_input_path
,
src_lines
,
tgt_lines
)
self
.
_record_test_input_path
=
os
.
path
.
join
(
self
.
_temp_dir
,
'test.record'
)
_generate_record_file
(
self
.
_record_test_input_path
,
src_lines
,
tgt_lines
,
unique_id
=
True
)
self
.
_sentencepeice_input_path
=
os
.
path
.
join
(
self
.
_temp_dir
,
'inputs.txt'
)
_generate_line_file
(
self
.
_sentencepeice_input_path
,
src_lines
+
tgt_lines
)
sentencepeice_model_prefix
=
os
.
path
.
join
(
self
.
_temp_dir
,
'sp'
)
_train_sentencepiece
(
self
.
_sentencepeice_input_path
,
20
,
sentencepeice_model_prefix
)
self
.
_sentencepeice_model_path
=
'{}.model'
.
format
(
sentencepeice_model_prefix
)
@
parameterized
.
named_parameters
(
(
'train_static'
,
True
,
True
,
100
,
(
2
,
35
)),
(
'train_non_static'
,
True
,
False
,
100
,
(
12
,
7
)),
(
'non_train_static'
,
False
,
True
,
3
,
(
3
,
35
)),
(
'non_train_non_static'
,
False
,
False
,
50
,
(
2
,
7
)),)
def
test_load_dataset
(
self
,
is_training
,
static_batch
,
batch_size
,
expected_shape
):
data_config
=
wmt_dataloader
.
WMTDataConfig
(
input_path
=
self
.
_record_train_input_path
if
is_training
else
self
.
_record_test_input_path
,
max_seq_length
=
35
,
global_batch_size
=
batch_size
,
is_training
=
is_training
,
static_batch
=
static_batch
,
src_lang
=
'en'
,
tgt_lang
=
'reverse_en'
,
sentencepiece_model_path
=
self
.
_sentencepeice_model_path
)
dataset
=
wmt_dataloader
.
WMTDataLoader
(
data_config
).
load
()
examples
=
next
(
iter
(
dataset
))
inputs
,
targets
=
examples
[
'inputs'
],
examples
[
'targets'
]
self
.
assertEqual
(
inputs
.
shape
,
expected_shape
)
self
.
assertEqual
(
targets
.
shape
,
expected_shape
)
def
test_load_dataset_raise_invalid_window
(
self
):
batch_tokens_size
=
10
# this is too small to form buckets.
data_config
=
wmt_dataloader
.
WMTDataConfig
(
input_path
=
self
.
_record_train_input_path
,
max_seq_length
=
100
,
global_batch_size
=
batch_tokens_size
,
is_training
=
True
,
static_batch
=
False
,
src_lang
=
'en'
,
tgt_lang
=
'reverse_en'
,
sentencepiece_model_path
=
self
.
_sentencepeice_model_path
)
with
self
.
assertRaisesRegex
(
ValueError
,
'The token budget, global batch size, is too small.*'
):
_
=
wmt_dataloader
.
WMTDataLoader
(
data_config
).
load
()
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/nlp/tasks/translation.py
0 → 100644
View file @
0fe89de9
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines the translation task."""
import
os
from
typing
import
Optional
from
absl
import
logging
import
dataclasses
import
sacrebleu
import
tensorflow
as
tf
import
tensorflow_text
as
tftxt
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling.hyperparams
import
base_config
from
official.nlp.data
import
data_loader_factory
from
official.nlp.modeling
import
models
from
official.nlp.transformer
import
compute_bleu
def
_pad_tensors_to_same_length
(
x
,
y
):
"""Pad x and y so that the results have the same length (second dimension)."""
x_length
=
tf
.
shape
(
x
)[
1
]
y_length
=
tf
.
shape
(
y
)[
1
]
max_length
=
tf
.
maximum
(
x_length
,
y_length
)
x
=
tf
.
pad
(
x
,
[[
0
,
0
],
[
0
,
max_length
-
x_length
],
[
0
,
0
]])
y
=
tf
.
pad
(
y
,
[[
0
,
0
],
[
0
,
max_length
-
y_length
]])
return
x
,
y
def
_padded_cross_entropy_loss
(
logits
,
labels
,
smoothing
,
vocab_size
):
"""Calculate cross entropy loss while ignoring padding.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
Returns the cross entropy loss and weight tensors: float32 tensors with
shape [batch_size, max(length_logits, length_labels)]
"""
logits
,
labels
=
_pad_tensors_to_same_length
(
logits
,
labels
)
# Calculate smoothing cross entropy
confidence
=
1.0
-
smoothing
low_confidence
=
(
1.0
-
confidence
)
/
tf
.
cast
(
vocab_size
-
1
,
tf
.
float32
)
soft_targets
=
tf
.
one_hot
(
tf
.
cast
(
labels
,
tf
.
int32
),
depth
=
vocab_size
,
on_value
=
confidence
,
off_value
=
low_confidence
)
xentropy
=
tf
.
nn
.
softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
soft_targets
)
# Calculate the best (lowest) possible value of cross entropy, and
# subtract from the cross entropy loss.
normalizing_constant
=
-
(
confidence
*
tf
.
math
.
log
(
confidence
)
+
tf
.
cast
(
vocab_size
-
1
,
tf
.
float32
)
*
low_confidence
*
tf
.
math
.
log
(
low_confidence
+
1e-20
))
xentropy
-=
normalizing_constant
weights
=
tf
.
cast
(
tf
.
not_equal
(
labels
,
0
),
tf
.
float32
)
return
xentropy
*
weights
,
weights
@
dataclasses
.
dataclass
class
EncDecoder
(
base_config
.
Config
):
"""Configurations for Encoder/Decoder."""
num_layers
:
int
=
6
num_attention_heads
:
int
=
8
intermediate_size
:
int
=
2048
activation
:
str
=
"relu"
dropout_rate
:
float
=
0.1
attention_dropout_rate
:
float
=
0.1
intermediate_dropout
:
float
=
0.1
use_bias
:
bool
=
False
norm_first
:
bool
=
True
norm_epsilon
:
float
=
1e-6
@
dataclasses
.
dataclass
class
ModelConfig
(
base_config
.
Config
):
"""A base Seq2Seq model configuration."""
encoder
:
EncDecoder
=
EncDecoder
()
decoder
:
EncDecoder
=
EncDecoder
()
embedding_width
:
int
=
512
dropout_rate
:
float
=
0.1
# Decoding.
padded_decode
:
bool
=
False
decode_max_length
:
Optional
[
int
]
=
None
beam_size
:
int
=
4
alpha
:
float
=
0.6
# Training.
label_smoothing
:
float
=
0.1
@
dataclasses
.
dataclass
class
TranslationConfig
(
cfg
.
TaskConfig
):
"""The translation task config."""
model
:
ModelConfig
=
ModelConfig
()
train_data
:
cfg
.
DataConfig
=
cfg
.
DataConfig
()
validation_data
:
cfg
.
DataConfig
=
cfg
.
DataConfig
()
# Tokenization
sentencepiece_model_path
:
str
=
""
# Evaluation.
print_translations
:
Optional
[
bool
]
=
None
def
write_test_record
(
params
,
model_dir
):
"""Writes the test input to a tfrecord."""
# Get raw data from tfds.
params
=
params
.
replace
(
transform_and_batch
=
False
)
dataset
=
data_loader_factory
.
get_data_loader
(
params
).
load
()
references
=
[]
total_samples
=
0
output_file
=
os
.
path
.
join
(
model_dir
,
"eval.tf_record"
)
writer
=
tf
.
io
.
TFRecordWriter
(
output_file
)
for
d
in
dataset
:
references
.
append
(
d
[
params
.
tgt_lang
].
numpy
().
decode
())
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
{
"unique_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
total_samples
])),
params
.
src_lang
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
d
[
params
.
src_lang
].
numpy
()])),
params
.
tgt_lang
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
d
[
params
.
tgt_lang
].
numpy
()])),
}))
writer
.
write
(
example
.
SerializeToString
())
total_samples
+=
1
batch_size
=
params
.
global_batch_size
num_dummy_example
=
batch_size
-
total_samples
%
batch_size
for
i
in
range
(
num_dummy_example
):
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
{
"unique_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
total_samples
+
i
])),
params
.
src_lang
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
b
""
])),
params
.
tgt_lang
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
b
""
])),
}))
writer
.
write
(
example
.
SerializeToString
())
writer
.
close
()
return
references
,
output_file
@
task_factory
.
register_task_cls
(
TranslationConfig
)
class
TranslationTask
(
base_task
.
Task
):
"""A single-replica view of training procedure.
Tasks provide artifacts for training/evalution procedures, including
loading/iterating over Datasets, initializing the model, calculating the loss
and customized metrics with reduction.
"""
def
__init__
(
self
,
params
:
cfg
.
TaskConfig
,
logging_dir
=
None
,
name
=
None
):
super
().
__init__
(
params
,
logging_dir
,
name
=
name
)
self
.
_sentencepiece_model_path
=
params
.
sentencepiece_model_path
if
params
.
sentencepiece_model_path
:
self
.
_sp_tokenizer
=
tftxt
.
SentencepieceTokenizer
(
model
=
tf
.
io
.
gfile
.
GFile
(
params
.
sentencepiece_model_path
,
"rb"
).
read
(),
add_eos
=
True
)
try
:
empty_str_tokenized
=
self
.
_sp_tokenizer
.
tokenize
(
""
).
numpy
()
except
tf
.
errors
.
InternalError
:
raise
ValueError
(
"EOS token not in tokenizer vocab."
"Please make sure the tokenizer generates a single token for an "
"empty string."
)
self
.
_eos_id
=
empty_str_tokenized
.
item
()
self
.
_vocab_size
=
self
.
_sp_tokenizer
.
vocab_size
().
numpy
()
else
:
raise
ValueError
(
"Setencepiece model path not provided."
)
if
(
params
.
validation_data
.
input_path
or
params
.
validation_data
.
tfds_name
)
and
self
.
_logging_dir
:
self
.
_references
,
self
.
_tf_record_input_path
=
write_test_record
(
params
.
validation_data
,
self
.
logging_dir
)
def
build_model
(
self
)
->
tf
.
keras
.
Model
:
"""Creates model architecture.
Returns:
A model instance.
"""
model_cfg
=
self
.
task_config
.
model
encoder_kwargs
=
model_cfg
.
encoder
.
as_dict
()
encoder_layer
=
models
.
TransformerEncoder
(
**
encoder_kwargs
)
decoder_kwargs
=
model_cfg
.
decoder
.
as_dict
()
decoder_layer
=
models
.
TransformerDecoder
(
**
decoder_kwargs
)
return
models
.
Seq2SeqTransformer
(
vocab_size
=
self
.
_vocab_size
,
embedding_width
=
model_cfg
.
embedding_width
,
dropout_rate
=
model_cfg
.
dropout_rate
,
padded_decode
=
model_cfg
.
padded_decode
,
decode_max_length
=
model_cfg
.
decode_max_length
,
beam_size
=
model_cfg
.
beam_size
,
alpha
=
model_cfg
.
alpha
,
encoder_layer
=
encoder_layer
,
decoder_layer
=
decoder_layer
,
eos_id
=
self
.
_eos_id
)
def
build_inputs
(
self
,
params
:
cfg
.
DataConfig
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
"""Returns a dataset."""
if
params
.
is_training
:
dataloader_params
=
params
else
:
input_path
=
self
.
_tf_record_input_path
# Read from padded tf records instead.
dataloader_params
=
params
.
replace
(
input_path
=
input_path
,
tfds_name
=
""
,
tfds_split
=
""
,
has_unique_id
=
True
)
dataloader_params
=
dataloader_params
.
replace
(
sentencepiece_model_path
=
self
.
_sentencepiece_model_path
)
return
data_loader_factory
.
get_data_loader
(
dataloader_params
).
load
(
input_context
)
def
build_losses
(
self
,
labels
,
model_outputs
,
aux_losses
=
None
)
->
tf
.
Tensor
:
"""Standard interface to compute losses.
Args:
labels: optional label tensors.
model_outputs: a nested structure of output tensors.
aux_losses: auxiliary loss tensors, i.e. `losses` in keras.Model.
Returns:
The total loss tensor.
"""
del
aux_losses
smoothing
=
self
.
task_config
.
model
.
label_smoothing
xentropy
,
weights
=
_padded_cross_entropy_loss
(
model_outputs
,
labels
,
smoothing
,
self
.
_vocab_size
)
return
tf
.
reduce_sum
(
xentropy
)
/
tf
.
reduce_sum
(
weights
)
def
train_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
optimizer
:
tf
.
keras
.
optimizers
.
Optimizer
,
metrics
=
None
):
"""Does forward and backward.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
with
tf
.
GradientTape
()
as
tape
:
outputs
=
model
(
inputs
,
training
=
True
)
# Computes per-replica loss.
loss
=
self
.
build_losses
(
labels
=
inputs
[
"targets"
],
model_outputs
=
outputs
)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss
=
loss
/
tf
.
distribute
.
get_strategy
().
num_replicas_in_sync
# For mixed precision, when a LossScaleOptimizer is used, the loss is
# scaled to avoid numeric underflow.
if
isinstance
(
optimizer
,
tf
.
keras
.
mixed_precision
.
LossScaleOptimizer
):
scaled_loss
=
optimizer
.
get_scaled_loss
(
scaled_loss
)
tvars
=
model
.
trainable_variables
grads
=
tape
.
gradient
(
scaled_loss
,
tvars
)
if
isinstance
(
optimizer
,
tf
.
keras
.
mixed_precision
.
LossScaleOptimizer
):
grads
=
optimizer
.
get_unscaled_gradients
(
grads
)
optimizer
.
apply_gradients
(
list
(
zip
(
grads
,
tvars
)))
logs
=
{
self
.
loss
:
loss
}
if
metrics
:
self
.
process_metrics
(
metrics
,
inputs
[
"targets"
],
outputs
)
logs
.
update
({
m
.
name
:
m
.
result
()
for
m
in
metrics
})
return
logs
def
validation_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
metrics
=
None
):
unique_ids
=
inputs
.
pop
(
"unique_id"
)
# Validation loss
outputs
=
model
(
inputs
,
training
=
False
)
# Computes per-replica loss to help understand if we are overfitting.
loss
=
self
.
build_losses
(
labels
=
inputs
[
"targets"
],
model_outputs
=
outputs
)
inputs
.
pop
(
"targets"
)
# Beam search to calculate metrics.
model_outputs
=
model
(
inputs
,
training
=
False
)
outputs
=
model_outputs
logs
=
{
self
.
loss
:
loss
,
"inputs"
:
inputs
[
"inputs"
],
"unique_ids"
:
unique_ids
,
}
logs
.
update
(
outputs
)
return
logs
def
aggregate_logs
(
self
,
state
=
None
,
step_outputs
=
None
):
"""Aggregates over logs returned from a validation step."""
if
state
is
None
:
state
=
{}
for
in_token_ids
,
out_token_ids
,
unique_ids
in
zip
(
step_outputs
[
"inputs"
],
step_outputs
[
"outputs"
],
step_outputs
[
"unique_ids"
]):
for
in_ids
,
out_ids
,
u_id
in
zip
(
in_token_ids
.
numpy
(),
out_token_ids
.
numpy
(),
unique_ids
.
numpy
()):
state
[
u_id
]
=
(
in_ids
,
out_ids
)
return
state
def
reduce_aggregated_logs
(
self
,
aggregated_logs
):
def
_decode
(
ids
):
return
self
.
_sp_tokenizer
.
detokenize
(
ids
).
numpy
().
decode
()
def
_trim_and_decode
(
ids
):
"""Trim EOS and PAD tokens from ids, and decode to return a string."""
try
:
index
=
list
(
ids
).
index
(
self
.
_eos_id
)
return
_decode
(
ids
[:
index
])
except
ValueError
:
# No EOS found in sequence
return
_decode
(
ids
)
translations
=
[]
for
u_id
in
sorted
(
aggregated_logs
):
if
u_id
>=
len
(
self
.
_references
):
continue
src
=
_trim_and_decode
(
aggregated_logs
[
u_id
][
0
])
translation
=
_trim_and_decode
(
aggregated_logs
[
u_id
][
1
])
translations
.
append
(
translation
)
if
self
.
task_config
.
print_translations
:
# Deccoding the in_ids to reflect what the model sees.
logging
.
info
(
"Translating:
\n\t
Input: %s
\n\t
Output: %s
\n\t
Reference: %s"
,
src
,
translation
,
self
.
_references
[
u_id
])
sacrebleu_score
=
sacrebleu
.
corpus_bleu
(
translations
,
[
self
.
_references
]).
score
bleu_score
=
compute_bleu
.
bleu_on_list
(
self
.
_references
,
translations
)
return
{
"sacrebleu_score"
:
sacrebleu_score
,
"bleu_score"
:
bleu_score
}
official/nlp/tasks/translation_test.py
0 → 100644
View file @
0fe89de9
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.translation."""
import
functools
import
os
import
orbit
import
tensorflow
as
tf
from
sentencepiece
import
SentencePieceTrainer
from
official.nlp.data
import
wmt_dataloader
from
official.nlp.tasks
import
translation
def
_generate_line_file
(
filepath
,
lines
):
with
tf
.
io
.
gfile
.
GFile
(
filepath
,
"w"
)
as
f
:
for
l
in
lines
:
f
.
write
(
"{}
\n
"
.
format
(
l
))
def
_generate_record_file
(
filepath
,
src_lines
,
tgt_lines
):
writer
=
tf
.
io
.
TFRecordWriter
(
filepath
)
for
src
,
tgt
in
zip
(
src_lines
,
tgt_lines
):
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
{
"en"
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
src
.
encode
()])),
"reverse_en"
:
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
tgt
.
encode
()])),
}))
writer
.
write
(
example
.
SerializeToString
())
writer
.
close
()
def
_train_sentencepiece
(
input_path
,
vocab_size
,
model_path
,
eos_id
=
1
):
argstr
=
" "
.
join
([
f
"--input=
{
input_path
}
"
,
f
"--vocab_size=
{
vocab_size
}
"
,
"--character_coverage=0.995"
,
f
"--model_prefix=
{
model_path
}
"
,
"--model_type=bpe"
,
"--bos_id=-1"
,
"--pad_id=0"
,
f
"--eos_id=
{
eos_id
}
"
,
"--unk_id=2"
])
SentencePieceTrainer
.
Train
(
argstr
)
class
TranslationTaskTest
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
super
(
TranslationTaskTest
,
self
).
setUp
()
self
.
_temp_dir
=
self
.
get_temp_dir
()
src_lines
=
[
"abc ede fg"
,
"bbcd ef a g"
,
"de f a a g"
]
tgt_lines
=
[
"dd cc a ef g"
,
"bcd ef a g"
,
"gef cd ba"
]
self
.
_record_input_path
=
os
.
path
.
join
(
self
.
_temp_dir
,
"inputs.record"
)
_generate_record_file
(
self
.
_record_input_path
,
src_lines
,
tgt_lines
)
self
.
_sentencepeice_input_path
=
os
.
path
.
join
(
self
.
_temp_dir
,
"inputs.txt"
)
_generate_line_file
(
self
.
_sentencepeice_input_path
,
src_lines
+
tgt_lines
)
sentencepeice_model_prefix
=
os
.
path
.
join
(
self
.
_temp_dir
,
"sp"
)
_train_sentencepiece
(
self
.
_sentencepeice_input_path
,
11
,
sentencepeice_model_prefix
)
self
.
_sentencepeice_model_path
=
"{}.model"
.
format
(
sentencepeice_model_prefix
)
def
test_task
(
self
):
config
=
translation
.
TranslationConfig
(
model
=
translation
.
ModelConfig
(
encoder
=
translation
.
EncDecoder
(),
decoder
=
translation
.
EncDecoder
()),
train_data
=
wmt_dataloader
.
WMTDataConfig
(
input_path
=
self
.
_record_input_path
,
src_lang
=
"en"
,
tgt_lang
=
"reverse_en"
,
is_training
=
True
,
static_batch
=
True
,
global_batch_size
=
24
,
max_seq_length
=
12
),
sentencepiece_model_path
=
self
.
_sentencepeice_model_path
)
task
=
translation
.
TranslationTask
(
config
)
model
=
task
.
build_model
()
dataset
=
task
.
build_inputs
(
config
.
train_data
)
iterator
=
iter
(
dataset
)
optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
lr
=
0.1
)
task
.
train_step
(
next
(
iterator
),
model
,
optimizer
)
def
test_no_sentencepiece_path
(
self
):
config
=
translation
.
TranslationConfig
(
model
=
translation
.
ModelConfig
(
encoder
=
translation
.
EncDecoder
(),
decoder
=
translation
.
EncDecoder
()),
train_data
=
wmt_dataloader
.
WMTDataConfig
(
input_path
=
self
.
_record_input_path
,
src_lang
=
"en"
,
tgt_lang
=
"reverse_en"
,
is_training
=
True
,
static_batch
=
True
,
global_batch_size
=
4
,
max_seq_length
=
4
),
sentencepiece_model_path
=
None
)
with
self
.
assertRaisesRegex
(
ValueError
,
"Setencepiece model path not provided."
):
translation
.
TranslationTask
(
config
)
def
test_sentencepiece_no_eos
(
self
):
sentencepeice_model_prefix
=
os
.
path
.
join
(
self
.
_temp_dir
,
"sp_no_eos"
)
_train_sentencepiece
(
self
.
_sentencepeice_input_path
,
20
,
sentencepeice_model_prefix
,
eos_id
=-
1
)
sentencepeice_model_path
=
"{}.model"
.
format
(
sentencepeice_model_prefix
)
config
=
translation
.
TranslationConfig
(
model
=
translation
.
ModelConfig
(
encoder
=
translation
.
EncDecoder
(),
decoder
=
translation
.
EncDecoder
()),
train_data
=
wmt_dataloader
.
WMTDataConfig
(
input_path
=
self
.
_record_input_path
,
src_lang
=
"en"
,
tgt_lang
=
"reverse_en"
,
is_training
=
True
,
static_batch
=
True
,
global_batch_size
=
4
,
max_seq_length
=
4
),
sentencepiece_model_path
=
sentencepeice_model_path
)
with
self
.
assertRaisesRegex
(
ValueError
,
"EOS token not in tokenizer vocab.*"
):
translation
.
TranslationTask
(
config
)
def
test_evaluation
(
self
):
config
=
translation
.
TranslationConfig
(
model
=
translation
.
ModelConfig
(
encoder
=
translation
.
EncDecoder
(),
decoder
=
translation
.
EncDecoder
(),
padded_decode
=
False
,
decode_max_length
=
64
),
validation_data
=
wmt_dataloader
.
WMTDataConfig
(
input_path
=
self
.
_record_input_path
,
src_lang
=
"en"
,
tgt_lang
=
"reverse_en"
,
static_batch
=
True
,
global_batch_size
=
4
),
sentencepiece_model_path
=
self
.
_sentencepeice_model_path
)
logging_dir
=
self
.
get_temp_dir
()
task
=
translation
.
TranslationTask
(
config
,
logging_dir
=
logging_dir
)
dataset
=
orbit
.
utils
.
make_distributed_dataset
(
tf
.
distribute
.
get_strategy
(),
task
.
build_inputs
,
config
.
validation_data
)
model
=
task
.
build_model
()
strategy
=
tf
.
distribute
.
get_strategy
()
aggregated
=
None
for
data
in
dataset
:
distributed_outputs
=
strategy
.
run
(
functools
.
partial
(
task
.
validation_step
,
model
=
model
),
args
=
(
data
,))
outputs
=
tf
.
nest
.
map_structure
(
strategy
.
experimental_local_results
,
distributed_outputs
)
aggregated
=
task
.
aggregate_logs
(
state
=
aggregated
,
step_outputs
=
outputs
)
metrics
=
task
.
reduce_aggregated_logs
(
aggregated
)
self
.
assertIn
(
"sacrebleu_score"
,
metrics
)
self
.
assertIn
(
"bleu_score"
,
metrics
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment