Commit 0dcf4941 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 304477267
parent ed9b2039
...@@ -48,12 +48,143 @@ def nearest_upsampling(data, scale): ...@@ -48,12 +48,143 @@ def nearest_upsampling(data, scale):
return tf.reshape(data, [bs, h * scale, w * scale, c]) return tf.reshape(data, [bs, h * scale, w * scale, c])
def feature_bilinear_interpolation(features, kernel_y, kernel_x):
"""Feature bilinear interpolation.
The RoIAlign feature f can be computed by bilinear interpolation
of four neighboring feature points f0, f1, f2, and f3.
f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
[f10, f11]]
f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11
f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11
kernel_y = [hy, ly]
kernel_x = [hx, lx]
Args:
features: The features are in shape of [batch_size, num_boxes, output_size *
2, output_size * 2, num_filters].
kernel_y: Tensor of size [batch_size, boxes, output_size, 2, 1].
kernel_x: Tensor of size [batch_size, boxes, output_size, 2, 1].
Returns:
A 5-D tensor representing feature crop of shape
[batch_size, num_boxes, output_size, output_size, num_filters].
"""
(batch_size, num_boxes, output_size, _,
num_filters) = features.get_shape().as_list()
output_size = output_size // 2
kernel_y = tf.reshape(kernel_y, [batch_size, num_boxes, output_size * 2, 1])
kernel_x = tf.reshape(kernel_x, [batch_size, num_boxes, 1, output_size * 2])
# Use implicit broadcast to generate the interpolation kernel. The
# multiplier `4` is for avg pooling.
interpolation_kernel = kernel_y * kernel_x * 4
# Interpolate the gathered features with computed interpolation kernels.
features *= tf.cast(
tf.expand_dims(interpolation_kernel, axis=-1), dtype=features.dtype)
features = tf.reshape(
features,
[batch_size * num_boxes, output_size * 2, output_size * 2, num_filters])
features = tf.nn.avg_pool(features, [1, 2, 2, 1], [1, 2, 2, 1], 'VALID')
features = tf.reshape(
features, [batch_size, num_boxes, output_size, output_size, num_filters])
return features
def compute_grid_positions(boxes, boundaries, output_size, sample_offset):
"""Compute the grid position w.r.t.
the corresponding feature map.
Args:
boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the
information of each box w.r.t. the corresponding feature map.
boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left
corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float)
in terms of the number of pixels of the corresponding feature map size.
boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing
the boundary (in (y, x)) of the corresponding feature map for each box.
Any resampled grid points that go beyond the bounary will be clipped.
output_size: a scalar indicating the output crop size.
sample_offset: a float number in [0, 1] indicates the subpixel sample offset
from grid point.
Returns:
kernel_y: Tensor of size [batch_size, boxes, output_size, 2, 1].
kernel_x: Tensor of size [batch_size, boxes, output_size, 2, 1].
box_grid_y0y1: Tensor of size [batch_size, boxes, output_size, 2]
box_grid_x0x1: Tensor of size [batch_size, boxes, output_size, 2]
"""
batch_size, num_boxes, _ = boxes.get_shape().as_list()
box_grid_x = []
box_grid_y = []
for i in range(output_size):
box_grid_x.append(boxes[:, :, 1] +
(i + sample_offset) * boxes[:, :, 3] / output_size)
box_grid_y.append(boxes[:, :, 0] +
(i + sample_offset) * boxes[:, :, 2] / output_size)
box_grid_x = tf.stack(box_grid_x, axis=2)
box_grid_y = tf.stack(box_grid_y, axis=2)
box_grid_y0 = tf.floor(box_grid_y)
box_grid_x0 = tf.floor(box_grid_x)
box_grid_x0 = tf.maximum(0., box_grid_x0)
box_grid_y0 = tf.maximum(0., box_grid_y0)
box_grid_x0 = tf.minimum(box_grid_x0, tf.expand_dims(boundaries[:, :, 1], -1))
box_grid_x1 = tf.minimum(box_grid_x0 + 1,
tf.expand_dims(boundaries[:, :, 1], -1))
box_grid_y0 = tf.minimum(box_grid_y0, tf.expand_dims(boundaries[:, :, 0], -1))
box_grid_y1 = tf.minimum(box_grid_y0 + 1,
tf.expand_dims(boundaries[:, :, 0], -1))
box_gridx0x1 = tf.stack([box_grid_x0, box_grid_x1], axis=-1)
box_gridy0y1 = tf.stack([box_grid_y0, box_grid_y1], axis=-1)
# The RoIAlign feature f can be computed by bilinear interpolation of four
# neighboring feature points f0, f1, f2, and f3.
# f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
# [f10, f11]]
# f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11
# f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11
ly = box_grid_y - box_grid_y0
lx = box_grid_x - box_grid_x0
hy = 1.0 - ly
hx = 1.0 - lx
kernel_y = tf.reshape(
tf.stack([hy, ly], axis=3), [batch_size, num_boxes, output_size, 2, 1])
kernel_x = tf.reshape(
tf.stack([hx, lx], axis=3), [batch_size, num_boxes, output_size, 2, 1])
return kernel_y, kernel_x, box_gridy0y1, box_gridx0x1
def get_grid_one_hot(box_gridy0y1, box_gridx0x1, feature_height, feature_width):
"""Get grid_one_hot from indices and feature_size."""
(batch_size, num_boxes, output_size, _) = box_gridx0x1.get_shape().as_list()
y_indices = tf.cast(
tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size, 2]),
dtype=tf.int32)
x_indices = tf.cast(
tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size, 2]),
dtype=tf.int32)
# shape is [batch_size, num_boxes, output_size, 2, height]
grid_y_one_hot = tf.one_hot(tf.cast(y_indices, tf.int32), feature_height)
# shape is [batch_size, num_boxes, output_size, 2, width]
grid_x_one_hot = tf.one_hot(tf.cast(x_indices, tf.int32), feature_width)
return grid_y_one_hot, grid_x_one_hot
def selective_crop_and_resize(features, def selective_crop_and_resize(features,
boxes, boxes,
box_levels, box_levels,
boundaries, boundaries,
output_size=7, output_size=7,
sample_offset=0.5): sample_offset=0.5,
use_einsum_gather=False):
"""Crop and resize boxes on a set of feature maps. """Crop and resize boxes on a set of feature maps.
Given multiple features maps indexed by different levels, and a set of boxes Given multiple features maps indexed by different levels, and a set of boxes
...@@ -67,7 +198,7 @@ def selective_crop_and_resize(features, ...@@ -67,7 +198,7 @@ def selective_crop_and_resize(features,
pixel. pixel.
For performance, we perform the gather and interpolation on all layers as a For performance, we perform the gather and interpolation on all layers as a
single operation. This is op the multi-level features are first stacked and single operation. In this op the multi-level features are first stacked and
gathered into [2*output_size, 2*output_size] feature points. Then bilinear gathered into [2*output_size, 2*output_size] feature points. Then bilinear
interpolation is performed on the gathered feature points to generate interpolation is performed on the gathered feature points to generate
[output_size, output_size] RoIAlign feature map. [output_size, output_size] RoIAlign feature map.
...@@ -86,14 +217,13 @@ def selective_crop_and_resize(features, ...@@ -86,14 +217,13 @@ def selective_crop_and_resize(features,
output_size. output_size.
Args: Args:
features: a 5-D tensor of shape features: a 5-D tensor of shape [batch_size, num_levels, max_height,
[batch_size, num_levels, max_height, max_width, num_filters] where max_width, num_filters] where cropping and resizing are based.
cropping and resizing are based.
boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the
information of each box w.r.t. the corresponding feature map. information of each box w.r.t. the corresponding feature map.
boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left
corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float) corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float)
in terms of the number of pixels of the corresponding feature map size. in terms of the number of pixels of the corresponding feature map size.
box_levels: a 3-D tensor of shape [batch_size, num_boxes, 1] representing box_levels: a 3-D tensor of shape [batch_size, num_boxes, 1] representing
the 0-based corresponding feature level index of each box. the 0-based corresponding feature level index of each box.
boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing
...@@ -102,6 +232,10 @@ def selective_crop_and_resize(features, ...@@ -102,6 +232,10 @@ def selective_crop_and_resize(features,
output_size: a scalar indicating the output crop size. output_size: a scalar indicating the output crop size.
sample_offset: a float number in [0, 1] indicates the subpixel sample offset sample_offset: a float number in [0, 1] indicates the subpixel sample offset
from grid point. from grid point.
use_einsum_gather: use einsum to replace gather or not. Replacing einsum
with gather can improve performance when feature size is not large, einsum
is friendly with model partition as well. Gather's performance is better
when feature size is very large and there are multiple box levels.
Returns: Returns:
features_per_box: a 5-D tensor of shape features_per_box: a 5-D tensor of shape
...@@ -112,93 +246,77 @@ def selective_crop_and_resize(features, ...@@ -112,93 +246,77 @@ def selective_crop_and_resize(features,
num_filters) = features.get_shape().as_list() num_filters) = features.get_shape().as_list()
_, num_boxes, _ = boxes.get_shape().as_list() _, num_boxes, _ = boxes.get_shape().as_list()
# Compute the grid position w.r.t. the corresponding feature map. kernel_y, kernel_x, box_gridy0y1, box_gridx0x1 = compute_grid_positions(
box_grid_x = [] boxes, boundaries, output_size, sample_offset)
box_grid_y = []
for i in range(output_size):
box_grid_x.append(boxes[:, :, 1] +
(i + sample_offset) * boxes[:, :, 3] / output_size)
box_grid_y.append(boxes[:, :, 0] +
(i + sample_offset) * boxes[:, :, 2] / output_size)
box_grid_x = tf.stack(box_grid_x, axis=2)
box_grid_y = tf.stack(box_grid_y, axis=2)
# Compute indices for gather operation.
box_grid_y0 = tf.floor(box_grid_y)
box_grid_x0 = tf.floor(box_grid_x)
box_grid_x0 = tf.maximum(0., box_grid_x0)
box_grid_y0 = tf.maximum(0., box_grid_y0)
box_gridx0x1 = tf.stack(
[tf.minimum(box_grid_x0, tf.expand_dims(boundaries[:, :, 1], -1)),
tf.minimum(box_grid_x0 + 1, tf.expand_dims(boundaries[:, :, 1], -1))],
axis=3)
box_gridy0y1 = tf.stack(
[tf.minimum(box_grid_y0, tf.expand_dims(boundaries[:, :, 0], -1)),
tf.minimum(box_grid_y0 + 1, tf.expand_dims(boundaries[:, :, 0], -1))],
axis=3)
x_indices = tf.cast( x_indices = tf.cast(
tf.reshape(box_gridx0x1, tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size * 2]),
[batch_size, num_boxes, output_size * 2]), dtype=tf.int32) dtype=tf.int32)
y_indices = tf.cast( y_indices = tf.cast(
tf.reshape(box_gridy0y1, tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size * 2]),
[batch_size, num_boxes, output_size * 2]), dtype=tf.int32) dtype=tf.int32)
height_dim_offset = max_feature_width if use_einsum_gather:
level_dim_offset = max_feature_height * height_dim_offset # Blinear interpolation is done during the last two gathers:
batch_dim_offset = num_levels * level_dim_offset # f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
indices = tf.reshape( # [f10, f11]]
tf.tile(tf.reshape(tf.range(batch_size) * batch_dim_offset, # [[f00, f01],
[batch_size, 1, 1, 1]), # [f10, f11]] = tf.einsum(tf.einsum(features, y_one_hot), x_one_hot)
[1, num_boxes, output_size * 2, output_size * 2]) + # where [hy, ly] and [hx, lx] are the bilinear interpolation kernel.
tf.tile(tf.reshape(box_levels * level_dim_offset,
[batch_size, num_boxes, 1, 1]), # shape is [batch_size, boxes, output_size, 2, 1]
[1, 1, output_size * 2, output_size * 2]) + grid_y_one_hot, grid_x_one_hot = get_grid_one_hot(box_gridy0y1,
tf.tile(tf.reshape(y_indices * height_dim_offset, box_gridx0x1,
[batch_size, num_boxes, output_size * 2, 1]), max_feature_height,
[1, 1, 1, output_size * 2]) + max_feature_width)
tf.tile(tf.reshape(x_indices,
[batch_size, num_boxes, 1, output_size * 2]), # shape is [batch_size, num_boxes, output_size, height]
[1, 1, output_size * 2, 1]), [-1]) grid_y_weight = tf.reduce_sum(
tf.multiply(grid_y_one_hot, kernel_y), axis=-2)
features = tf.reshape(features, [-1, num_filters]) # shape is [batch_size, num_boxes, output_size, width]
features_per_box = tf.reshape( grid_x_weight = tf.reduce_sum(
tf.gather(features, indices), tf.multiply(grid_x_one_hot, kernel_x), axis=-2)
[batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])
# Gather for y_axis.
# The RoIAlign feature f can be computed by bilinear interpolation of four # shape is [batch_size, num_boxes, output_size, width, features]
# neighboring feature points f0, f1, f2, and f3. features_per_box = tf.einsum('bmhwf,bmoh->bmowf', features,
# f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T tf.cast(grid_y_weight, features.dtype))
# [f10, f11]] # Gather for x_axis.
# f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11 # shape is [batch_size, num_boxes, output_size, output_size, features]
# f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11 features_per_box = tf.einsum('bmhwf,bmow->bmhof', features_per_box,
ly = box_grid_y - box_grid_y0 tf.cast(grid_x_weight, features.dtype))
lx = box_grid_x - box_grid_x0 else:
hy = 1.0 - ly height_dim_offset = max_feature_width
hx = 1.0 - lx level_dim_offset = max_feature_height * height_dim_offset
kernel_x = tf.reshape(tf.stack([hx, lx], axis=3), batch_dim_offset = num_levels * level_dim_offset
[batch_size, num_boxes, 1, output_size*2])
kernel_y = tf.reshape(tf.stack([hy, ly], axis=3), batch_size_offset = tf.tile(
[batch_size, num_boxes, output_size*2, 1]) tf.reshape(
# Uses implicit broadcast to generate the interpolation kernel. The tf.range(batch_size) * batch_dim_offset, [batch_size, 1, 1, 1]),
# multiplier `4` is for avg pooling. [1, num_boxes, output_size * 2, output_size * 2])
interpolation_kernel = kernel_y * kernel_x * 4 box_levels_offset = tf.tile(
tf.reshape(box_levels * level_dim_offset,
# Interpolates the gathered features with computed interpolation kernels. [batch_size, num_boxes, 1, 1]),
features_per_box *= tf.cast( [1, 1, output_size * 2, output_size * 2])
tf.expand_dims(interpolation_kernel, axis=4), y_indices_offset = tf.tile(
dtype=features_per_box.dtype) tf.reshape(y_indices * height_dim_offset,
features_per_box = tf.reshape( [batch_size, num_boxes, output_size * 2, 1]),
features_per_box, [1, 1, 1, output_size * 2])
[batch_size * num_boxes, output_size*2, output_size*2, num_filters]) x_indices_offset = tf.tile(
features_per_box = tf.nn.avg_pool2d( tf.reshape(x_indices, [batch_size, num_boxes, 1, output_size * 2]),
input=features_per_box, [1, 1, output_size * 2, 1])
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], indices = tf.reshape(
padding='VALID') batch_size_offset + box_levels_offset + y_indices_offset +
features_per_box = tf.reshape( x_indices_offset, [-1])
features_per_box,
[batch_size, num_boxes, output_size, output_size, num_filters]) features = tf.reshape(features, [-1, num_filters])
# TODO(wangtao): replace tf.gather with tf.gather_nd and try to get similar
# performance.
features_per_box = tf.reshape(
tf.gather(features, indices),
[batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])
features_per_box = feature_bilinear_interpolation(features_per_box,
kernel_y, kernel_x)
return features_per_box return features_per_box
...@@ -211,29 +329,52 @@ def multilevel_crop_and_resize(features, boxes, output_size=7): ...@@ -211,29 +329,52 @@ def multilevel_crop_and_resize(features, boxes, output_size=7):
and resizing it using the correspoding feature map of that level. and resizing it using the correspoding feature map of that level.
Args: Args:
features: A dictionary with key as pyramid level and value as features. features: A dictionary with key as pyramid level and value as features. The
The features are in shape of [batch_size, height_l, width_l, num_filters]. features are in shape of [batch_size, height_l, width_l, num_filters].
boxes: A 3-D Tensor of shape [batch_size, num_boxes, 4]. Each row boxes: A 3-D Tensor of shape [batch_size, num_boxes, 4]. Each row represents
represents a box with [y1, x1, y2, x2] in un-normalized coordinates. a box with [y1, x1, y2, x2] in un-normalized coordinates.
output_size: A scalar to indicate the output crop size. output_size: A scalar to indicate the output crop size.
Returns: Returns:
A 5-D tensor representing feature crop of shape A 5-D tensor representing feature crop of shape
[batch_size, num_boxes, output_size, output_size, num_filters]. [batch_size, num_boxes, output_size, output_size, num_filters].
""" """
with tf.name_scope('multilevel_crop_and_resize'): with tf.name_scope('multilevel_crop_and_resize'):
levels = features.keys() levels = list(features.keys())
min_level = min(levels) min_level = min(levels)
max_level = max(levels) max_level = max(levels)
_, max_feature_height, max_feature_width, _ = ( batch_size, max_feature_height, max_feature_width, num_filters = (
features[min_level].get_shape().as_list()) features[min_level].get_shape().as_list())
# Stacks feature pyramid into a features_all of shape _, num_boxes, _ = boxes.get_shape().as_list()
# Stack feature pyramid into a features_all of shape
# [batch_size, levels, height, width, num_filters]. # [batch_size, levels, height, width, num_filters].
features_all = [] features_all = []
feature_heights = []
feature_widths = []
for level in range(min_level, max_level + 1): for level in range(min_level, max_level + 1):
features_all.append(tf.image.pad_to_bounding_box( shape = features[level].get_shape().as_list()
features[level], 0, 0, max_feature_height, max_feature_width)) feature_heights.append(shape[1])
features_all = tf.stack(features_all, axis=1) feature_widths.append(shape[2])
# Concat tensor of [batch_size, height_l * width_l, num_filters] for each
# levels.
features_all.append(
tf.reshape(features[level], [batch_size, -1, num_filters]))
features_r2 = tf.reshape(tf.concat(features_all, 1), [-1, num_filters])
# Calculate height_l * width_l for each level.
level_dim_sizes = [
feature_widths[i] * feature_heights[i]
for i in range(len(feature_widths))
]
# level_dim_offsets is accumulated sum of level_dim_size.
level_dim_offsets = [0]
for i in range(len(feature_widths) - 1):
level_dim_offsets.append(level_dim_offsets[i] + level_dim_sizes[i])
batch_dim_size = level_dim_offsets[-1] + level_dim_sizes[-1]
level_dim_offsets = tf.constant(level_dim_offsets, tf.int32)
height_dim_sizes = tf.constant(feature_widths, tf.int32)
# Assigns boxes to the right level. # Assigns boxes to the right level.
box_width = boxes[:, :, 3] - boxes[:, :, 1] box_width = boxes[:, :, 3] - boxes[:, :, 1]
...@@ -241,8 +382,8 @@ def multilevel_crop_and_resize(features, boxes, output_size=7): ...@@ -241,8 +382,8 @@ def multilevel_crop_and_resize(features, boxes, output_size=7):
areas_sqrt = tf.sqrt(box_height * box_width) areas_sqrt = tf.sqrt(box_height * box_width)
levels = tf.cast( levels = tf.cast(
tf.math.floordiv( tf.math.floordiv(
tf.math.log(tf.divide(areas_sqrt, 224.0)), tf.math.log(2.0)) tf.math.log(tf.divide(areas_sqrt, 224.0)), tf.math.log(2.0)) +
+ 4.0, 4.0,
dtype=tf.int32) dtype=tf.int32)
# Maps levels between [min_level, max_level]. # Maps levels between [min_level, max_level].
levels = tf.minimum(max_level, tf.maximum(levels, min_level)) levels = tf.minimum(max_level, tf.maximum(levels, min_level))
...@@ -263,17 +404,58 @@ def multilevel_crop_and_resize(features, boxes, output_size=7): ...@@ -263,17 +404,58 @@ def multilevel_crop_and_resize(features, boxes, output_size=7):
level_strides = tf.pow([[2.0]], tf.cast(levels, tf.float32)) level_strides = tf.pow([[2.0]], tf.cast(levels, tf.float32))
boundary = tf.cast( boundary = tf.cast(
tf.concat([ tf.concat([
tf.expand_dims([[tf.cast(max_feature_height, tf.float32)]] / tf.expand_dims(
level_strides - 1, [[tf.cast(max_feature_height, tf.float32)]] / level_strides - 1,
axis=-1), axis=-1),
tf.expand_dims([[tf.cast(max_feature_width, tf.float32)]] / tf.expand_dims(
level_strides - 1, [[tf.cast(max_feature_width, tf.float32)]] / level_strides - 1,
axis=-1), axis=-1),
], axis=-1), ],
boxes.dtype) axis=-1), boxes.dtype)
# Compute grid positions.
kernel_y, kernel_x, box_gridy0y1, box_gridx0x1 = compute_grid_positions(
boxes, boundary, output_size, sample_offset=0.5)
x_indices = tf.cast(
tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size * 2]),
dtype=tf.int32)
y_indices = tf.cast(
tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size * 2]),
dtype=tf.int32)
return selective_crop_and_resize( batch_size_offset = tf.tile(
features_all, boxes, levels, boundary, output_size) tf.reshape(
tf.range(batch_size) * batch_dim_size, [batch_size, 1, 1, 1]),
[1, num_boxes, output_size * 2, output_size * 2])
# Get level offset for each box. Each box belongs to one level.
levels_offset = tf.tile(
tf.reshape(
tf.gather(level_dim_offsets, levels),
[batch_size, num_boxes, 1, 1]),
[1, 1, output_size * 2, output_size * 2])
y_indices_offset = tf.tile(
tf.reshape(
y_indices * tf.expand_dims(tf.gather(height_dim_sizes, levels), -1),
[batch_size, num_boxes, output_size * 2, 1]),
[1, 1, 1, output_size * 2])
x_indices_offset = tf.tile(
tf.reshape(x_indices, [batch_size, num_boxes, 1, output_size * 2]),
[1, 1, output_size * 2, 1])
indices = tf.reshape(
batch_size_offset + levels_offset + y_indices_offset + x_indices_offset,
[-1])
# TODO(wangtao): replace tf.gather with tf.gather_nd and try to get similar
# performance.
features_per_box = tf.reshape(
tf.gather(features_r2, indices),
[batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])
# Bilinear interpolation.
features_per_box = feature_bilinear_interpolation(features_per_box,
kernel_y, kernel_x)
return features_per_box
def single_level_feature_crop(features, level_boxes, detection_prior_levels, def single_level_feature_crop(features, level_boxes, detection_prior_levels,
...@@ -355,7 +537,8 @@ def crop_mask_in_target_box(masks, ...@@ -355,7 +537,8 @@ def crop_mask_in_target_box(masks,
boxes, boxes,
target_boxes, target_boxes,
output_size, output_size,
sample_offset=0): sample_offset=0,
use_einsum=True):
"""Crop masks in target boxes. """Crop masks in target boxes.
Args: Args:
...@@ -370,6 +553,7 @@ def crop_mask_in_target_box(masks, ...@@ -370,6 +553,7 @@ def crop_mask_in_target_box(masks,
supports to output a square shape outputs. supports to output a square shape outputs.
sample_offset: a float number in [0, 1] indicates the subpixel sample offset sample_offset: a float number in [0, 1] indicates the subpixel sample offset
from grid point. from grid point.
use_einsum: Use einsum to replace gather in selective_crop_and_resize.
Returns: Returns:
A 4-D tensor representing feature crop of shape A 4-D tensor representing feature crop of shape
...@@ -417,7 +601,8 @@ def crop_mask_in_target_box(masks, ...@@ -417,7 +601,8 @@ def crop_mask_in_target_box(masks,
levels, levels,
boundaries, boundaries,
output_size, output_size,
sample_offset=sample_offset) sample_offset=sample_offset,
use_einsum_gather=use_einsum)
cropped_masks = tf.squeeze(cropped_masks, axis=-1) cropped_masks = tf.squeeze(cropped_masks, axis=-1)
return cropped_masks return cropped_masks
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment