Unverified Commit 09d9656f authored by Srihari Humbarwadi's avatar Srihari Humbarwadi Committed by GitHub
Browse files

Merge branch 'panoptic-segmentation' into panoptic-deeplab-modeling

parents ac671306 49a5706c
......@@ -16,7 +16,7 @@
"""Definitions for high level configuration groups.."""
import dataclasses
from typing import Any, List, Mapping, Optional
from typing import Any, List, Optional
from official.core import config_definitions
from official.modeling import hyperparams
......
......@@ -20,10 +20,10 @@ from __future__ import print_function
import dataclasses
from official.vision.image_classification import dataset_factory
from official.vision.image_classification.configs import base_configs
from official.vision.image_classification.efficientnet import efficientnet_config
from official.vision.image_classification.resnet import resnet_config
from official.legacy.image_classification import dataset_factory
from official.legacy.image_classification.configs import base_configs
from official.legacy.image_classification.efficientnet import efficientnet_config
from official.legacy.image_classification.resnet import resnet_config
@dataclasses.dataclass
......@@ -40,10 +40,10 @@ class EfficientNetImageNetConfig(base_configs.ExperimentConfig):
"""
export: base_configs.ExportConfig = base_configs.ExportConfig()
runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
train_dataset: dataset_factory.DatasetConfig = \
dataset_factory.ImageNetConfig(split='train')
validation_dataset: dataset_factory.DatasetConfig = \
dataset_factory.ImageNetConfig(split='validation')
train_dataset: dataset_factory.DatasetConfig = dataset_factory.ImageNetConfig(
split='train')
validation_dataset: dataset_factory.DatasetConfig = dataset_factory.ImageNetConfig(
split='validation')
train: base_configs.TrainConfig = base_configs.TrainConfig(
resume_checkpoint=True,
epochs=500,
......@@ -57,8 +57,8 @@ class EfficientNetImageNetConfig(base_configs.ExperimentConfig):
set_epoch_loop=False)
evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
epochs_between_evals=1, steps=None)
model: base_configs.ModelConfig = \
efficientnet_config.EfficientNetModelConfig()
model: base_configs.ModelConfig = efficientnet_config.EfficientNetModelConfig(
)
@dataclasses.dataclass
......
......@@ -13,7 +13,7 @@ train_dataset:
num_classes: 1000
num_examples: 1281167
batch_size: 32
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'float32'
augmenter:
name: 'autoaugment'
......@@ -25,7 +25,7 @@ validation_dataset:
num_classes: 1000
num_examples: 50000
batch_size: 32
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'float32'
model:
model_params:
......@@ -46,7 +46,7 @@ model:
loss:
label_smoothing: 0.1
train:
resume_checkpoint: True
resume_checkpoint: true
epochs: 500
evaluation:
epochs_between_evals: 1
......@@ -12,7 +12,7 @@ train_dataset:
num_classes: 1000
num_examples: 1281167
batch_size: 128
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'bfloat16'
augmenter:
name: 'autoaugment'
......@@ -24,7 +24,7 @@ validation_dataset:
num_classes: 1000
num_examples: 50000
batch_size: 128
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'bfloat16'
model:
model_params:
......@@ -45,8 +45,8 @@ model:
loss:
label_smoothing: 0.1
train:
resume_checkpoint: True
resume_checkpoint: true
epochs: 500
set_epoch_loop: True
set_epoch_loop: true
evaluation:
epochs_between_evals: 1
......@@ -10,7 +10,7 @@ train_dataset:
num_classes: 1000
num_examples: 1281167
batch_size: 32
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'float32'
validation_dataset:
name: 'imagenet2012'
......@@ -20,7 +20,7 @@ validation_dataset:
num_classes: 1000
num_examples: 50000
batch_size: 32
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'float32'
model:
model_params:
......@@ -41,7 +41,7 @@ model:
loss:
label_smoothing: 0.1
train:
resume_checkpoint: True
resume_checkpoint: true
epochs: 500
evaluation:
epochs_between_evals: 1
......@@ -11,7 +11,7 @@ train_dataset:
num_classes: 1000
num_examples: 1281167
batch_size: 128
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'bfloat16'
augmenter:
name: 'autoaugment'
......@@ -23,7 +23,7 @@ validation_dataset:
num_classes: 1000
num_examples: 50000
batch_size: 128
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'bfloat16'
model:
model_params:
......@@ -44,8 +44,8 @@ model:
loss:
label_smoothing: 0.1
train:
resume_checkpoint: True
resume_checkpoint: true
epochs: 500
set_epoch_loop: True
set_epoch_loop: true
evaluation:
epochs_between_evals: 1
......@@ -4,7 +4,7 @@
runtime:
distribution_strategy: 'mirrored'
num_gpus: 1
batchnorm_spatial_persistent: True
batchnorm_spatial_persistent: true
train_dataset:
name: 'imagenet2012'
data_dir: null
......@@ -14,10 +14,10 @@ train_dataset:
num_classes: 1000
num_examples: 1281167
batch_size: 256
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'float16'
mean_subtract: True
standardize: True
mean_subtract: true
standardize: true
validation_dataset:
name: 'imagenet2012'
data_dir: null
......@@ -27,14 +27,14 @@ validation_dataset:
num_classes: 1000
num_examples: 50000
batch_size: 256
use_per_replica_batch_size: True
use_per_replica_batch_size: true
dtype: 'float16'
mean_subtract: True
standardize: True
mean_subtract: true
standardize: true
model:
name: 'resnet'
model_params:
rescale_inputs: False
rescale_inputs: false
optimizer:
name: 'momentum'
momentum: 0.9
......@@ -43,7 +43,7 @@ model:
loss:
label_smoothing: 0.1
train:
resume_checkpoint: True
resume_checkpoint: true
epochs: 90
evaluation:
epochs_between_evals: 1
......@@ -9,47 +9,47 @@ train_dataset:
data_dir: null
builder: 'tfds'
split: 'train'
one_hot: False
one_hot: false
image_size: 224
num_classes: 1000
num_examples: 1281167
batch_size: 128
use_per_replica_batch_size: True
mean_subtract: False
standardize: False
use_per_replica_batch_size: true
mean_subtract: false
standardize: false
dtype: 'bfloat16'
validation_dataset:
name: 'imagenet2012'
data_dir: null
builder: 'tfds'
split: 'validation'
one_hot: False
one_hot: false
image_size: 224
num_classes: 1000
num_examples: 50000
batch_size: 128
use_per_replica_batch_size: True
mean_subtract: False
standardize: False
use_per_replica_batch_size: true
mean_subtract: false
standardize: false
dtype: 'bfloat16'
model:
name: 'resnet'
model_params:
rescale_inputs: True
rescale_inputs: true
optimizer:
name: 'momentum'
momentum: 0.9
decay: 0.9
epsilon: 0.001
moving_average_decay: 0.
lookahead: False
lookahead: false
loss:
label_smoothing: 0.1
train:
callbacks:
enable_checkpoint_and_export: True
resume_checkpoint: True
enable_checkpoint_and_export: true
resume_checkpoint: true
epochs: 90
set_epoch_loop: True
set_epoch_loop: true
evaluation:
epochs_between_evals: 1
......@@ -17,18 +17,16 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import dataclasses
import os
from typing import Any, List, Optional, Tuple, Mapping, Union
from typing import Any, List, Mapping, Optional, Tuple, Union
from absl import logging
from dataclasses import dataclass
import tensorflow as tf
import tensorflow_datasets as tfds
from official.legacy.image_classification import augment
from official.legacy.image_classification import preprocessing
from official.modeling.hyperparams import base_config
from official.vision.image_classification import augment
from official.vision.image_classification import preprocessing
AUGMENTERS = {
'autoaugment': augment.AutoAugment,
......@@ -36,14 +34,14 @@ AUGMENTERS = {
}
@dataclass
@dataclasses.dataclass
class AugmentConfig(base_config.Config):
"""Configuration for image augmenters.
Attributes:
name: The name of the image augmentation to use. Possible options are None
(default), 'autoaugment', or 'randaugment'.
params: Any paramaters used to initialize the augmenter.
params: Any parameters used to initialize the augmenter.
"""
name: Optional[str] = None
params: Optional[Mapping[str, Any]] = None
......@@ -55,7 +53,7 @@ class AugmentConfig(base_config.Config):
return augmenter(**params) if augmenter is not None else None
@dataclass
@dataclasses.dataclass
class DatasetConfig(base_config.Config):
"""The base configuration for building datasets.
......@@ -135,7 +133,7 @@ class DatasetConfig(base_config.Config):
return self.name or self.data_dir or self.filenames
@dataclass
@dataclasses.dataclass
class ImageNetConfig(DatasetConfig):
"""The base ImageNet dataset config."""
name: str = 'imagenet2012'
......@@ -148,7 +146,7 @@ class ImageNetConfig(DatasetConfig):
batch_size: int = 128
@dataclass
@dataclasses.dataclass
class Cifar10Config(DatasetConfig):
"""The base CIFAR-10 dataset config."""
name: str = 'cifar10'
......@@ -338,7 +336,6 @@ class DatasetBuilder:
"""Return a dataset loading files from TFDS."""
logging.info('Using TFDS to load data.')
builder = tfds.builder(self.config.name, data_dir=self.config.data_dir)
if self.config.download:
......
......@@ -16,12 +16,10 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Optional, Text
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
from typing import Text, Optional
from tensorflow.python.tpu import tpu_function
......
......@@ -17,13 +17,9 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Mapping
import dataclasses
from official.legacy.image_classification.configs import base_configs
from official.modeling.hyperparams import base_config
from official.vision.image_classification.configs import base_configs
@dataclasses.dataclass
......
......@@ -23,22 +23,19 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import dataclasses
import math
import os
from typing import Any, Dict, Optional, Text, Tuple
from absl import logging
from dataclasses import dataclass
import tensorflow as tf
from official.legacy.image_classification import preprocessing
from official.legacy.image_classification.efficientnet import common_modules
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.vision.image_classification import preprocessing
from official.vision.image_classification.efficientnet import common_modules
@dataclass
@dataclasses.dataclass
class BlockConfig(base_config.Config):
"""Config for a single MB Conv Block."""
input_filters: int = 0
......@@ -53,7 +50,7 @@ class BlockConfig(base_config.Config):
conv_type: str = 'depthwise'
@dataclass
@dataclasses.dataclass
class ModelConfig(base_config.Config):
"""Default Config for Efficientnet-B0."""
width_coefficient: float = 1.0
......
......@@ -25,7 +25,7 @@ from absl import flags
import tensorflow as tf
from official.vision.image_classification.efficientnet import efficientnet_model
from official.legacy.image_classification.efficientnet import efficientnet_model
FLAGS = flags.FLAGS
......
......@@ -20,7 +20,7 @@ from __future__ import print_function
import tensorflow as tf
from official.vision.image_classification import learning_rate
from official.legacy.image_classification import learning_rate
class LearningRateTests(tf.test.TestCase):
......
......@@ -26,9 +26,9 @@ from absl import logging
import tensorflow as tf
import tensorflow_datasets as tfds
from official.common import distribute_utils
from official.legacy.image_classification.resnet import common
from official.utils.flags import core as flags_core
from official.utils.misc import model_helpers
from official.vision.image_classification.resnet import common
FLAGS = flags.FLAGS
......
......@@ -25,8 +25,8 @@ import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.legacy.image_classification import mnist_main
from official.utils.testing import integration
from official.vision.image_classification import mnist_main
mnist_main.define_mnist_flags()
......
......@@ -22,10 +22,9 @@ from typing import Any, Dict, Optional, Text
from absl import logging
import tensorflow as tf
import tensorflow_addons as tfa
from official.legacy.image_classification import learning_rate
from official.legacy.image_classification.configs import base_configs
from official.modeling import optimization
from official.vision.image_classification import learning_rate
from official.vision.image_classification.configs import base_configs
# pylint: disable=protected-access
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment