Commit 0415dd3e authored by Jonathan Huang's avatar Jonathan Huang Committed by GitHub
Browse files

Merge pull request #2363 from VastoLorde95/typo_fix

Object Detection API - Fixed tensor dimensions in function docstrings
parents bc86a539 1016fce9
......@@ -87,3 +87,6 @@ ENV/
# Rope project settings
.ropeproject
# PyCharm
.idea/
......@@ -491,7 +491,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
[total_num_proposals, num_classes, 4] representing predicted
(final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals
8) class_predictions_with_background: a 3-D tensor with shape
8) class_predictions_with_background: a 2-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
......@@ -553,10 +553,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_box_encodings: 4-D float tensor of shape
rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 2-D float tensor of shape
rpn_objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
......@@ -573,7 +573,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
[total_num_proposals, num_classes, 4] representing predicted
(final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals
2) class_predictions_with_background: a 3-D tensor with shape
2) class_predictions_with_background: a 2-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
......@@ -729,10 +729,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
extent of the window to clip/prune to.
Returns:
box_encodings: 4-D float tensor of shape
box_encodings: 3-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes, where num_valid_anchors <= num_anchors
objectness_predictions_with_background: 2-D float tensor of shape
objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors, where
num_valid_anchors <= num_anchors. Note that this
......@@ -1182,7 +1182,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
"""Decode tensor of refined box encodings.
Args:
refined_box_encodings: a 3-D tensor with shape
refined_box_encodings: a 4-D tensor with shape
[batch_size, max_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings.
proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
......@@ -1278,10 +1278,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
participate in the loss computation, and returns the RPN losses.
Args:
rpn_box_encodings: A 4-D float tensor of shape
rpn_box_encodings: A 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted proposal box encodings.
rpn_objectness_predictions_with_background: A 2-D float tensor of shape
rpn_objectness_predictions_with_background: A 3-D float tensor of shape
[batch_size, num_anchors, 2] containing objectness predictions
(logits) for each of the anchors with 0 corresponding to background
and 1 corresponding to object.
......@@ -1363,7 +1363,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, box_coder.code_size] representing
predicted (final) refined box encodings.
class_predictions_with_background: a 3-D tensor with shape
class_predictions_with_background: a 2-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors. Note that this tensor
*includes* background class predictions (at class index 0).
......
......@@ -198,10 +198,10 @@ class RFCNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
"""Predicts the output tensors from 2nd stage of FasterRCNN.
Args:
rpn_box_encodings: 4-D float tensor of shape
rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 2-D float tensor of shape
rpn_objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
......
......@@ -226,7 +226,7 @@ class SSDMetaArch(model.DetectionModel):
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
......@@ -258,9 +258,9 @@ class SSDMetaArch(model.DetectionModel):
[batch, height_i, width_i, depth_i]
Returns:
box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
class_predictions_with_background: 2-D float tensor of shape
class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
......@@ -342,9 +342,9 @@ class SSDMetaArch(model.DetectionModel):
Args:
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 2-D float tensor of shape
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
......@@ -391,9 +391,9 @@ class SSDMetaArch(model.DetectionModel):
Args:
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 2-D float tensor of shape
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
......@@ -527,9 +527,9 @@ class SSDMetaArch(model.DetectionModel):
cls_losses: Float tensor of shape [batch_size, num_anchors]
representing anchorwise classification losses.
prediction_dict: p a dictionary holding prediction tensors with
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 2-D float tensor of shape
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment