Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
0225b135
Unverified
Commit
0225b135
authored
Mar 05, 2022
by
Srihari Humbarwadi
Committed by
GitHub
Mar 05, 2022
Browse files
Merge branch 'tensorflow:master' into panoptic-deeplab-modeling
parents
7479dbb8
4c571a3c
Changes
332
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1157 additions
and
0 deletions
+1157
-0
official/vision/configs/experiments/image_classification/imagenet_resnet50_tfds_tpu.yaml
...ents/image_classification/imagenet_resnet50_tfds_tpu.yaml
+56
-0
official/vision/configs/experiments/image_classification/imagenet_resnet50_tpu.yaml
...periments/image_classification/imagenet_resnet50_tpu.yaml
+47
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs101_i160.yaml
...ments/image_classification/imagenet_resnetrs101_i160.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs101_i192.yaml
...ments/image_classification/imagenet_resnetrs101_i192.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i192.yaml
...ments/image_classification/imagenet_resnetrs152_i192.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i224.yaml
...ments/image_classification/imagenet_resnetrs152_i224.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i256.yaml
...ments/image_classification/imagenet_resnetrs152_i256.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs200_i256.yaml
...ments/image_classification/imagenet_resnetrs200_i256.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs270_i256.yaml
...ments/image_classification/imagenet_resnetrs270_i256.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs350_i256.yaml
...ments/image_classification/imagenet_resnetrs350_i256.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs350_i320.yaml
...ments/image_classification/imagenet_resnetrs350_i320.yaml
+64
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs420_i320.yaml
...ments/image_classification/imagenet_resnetrs420_i320.yaml
+63
-0
official/vision/configs/experiments/image_classification/imagenet_resnetrs50_i160.yaml
...iments/image_classification/imagenet_resnetrs50_i160.yaml
+64
-0
official/vision/configs/experiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml
...xperiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml
+58
-0
official/vision/configs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml
...figs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml
+47
-0
official/vision/configs/experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml
...experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml
+58
-0
official/vision/configs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml
...nfigs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml
+47
-0
official/vision/configs/experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml
...experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml
+58
-0
official/vision/configs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml
...nfigs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml
+47
-0
official/vision/configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml
.../experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml
+36
-0
No files found.
official/vision/configs/experiments/image_classification/imagenet_resnet50_tfds_tpu.yaml
0 → 100644
View file @
0225b135
# ResNet-50 ImageNet classification. 78.1% top-1 and 93.9% top-5 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
224
,
224
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
50
norm_activation
:
activation
:
'
swish'
losses
:
l2_weight_decay
:
0.0001
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
'
tfds_name
:
'
imagenet2012'
tfds_split
:
'
train'
sharding
:
true
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
validation_data
:
input_path
:
'
'
tfds_name
:
'
imagenet2012'
tfds_split
:
'
validation'
sharding
:
true
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
62400
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
62400
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnet50_tpu.yaml
0 → 100644
View file @
0225b135
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
224
,
224
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
50
losses
:
l2_weight_decay
:
0.0001
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
28080
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
9360
,
18720
,
24960
]
values
:
[
1.6
,
0.16
,
0.016
,
0.0016
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs101_i160.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-101 ImageNet classification. 80.2% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
160
,
160
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
101
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs101_i192.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-101 ImageNet classification. 81.3% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
192
,
192
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
101
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i192.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-152 ImageNet classification. 81.9% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
192
,
192
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
152
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i224.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-152 ImageNet classification. 82.5% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
224
,
224
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
152
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i256.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-152 ImageNet classification. 83.1% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
152
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs200_i256.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-200 ImageNet classification. 83.5% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
200
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs270_i256.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-270 ImageNet classification. 83.6% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
270
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs350_i256.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-350 ImageNet classification. 83.7% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
350
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs350_i320.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-350 ImageNet classification. 84.2% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
320
,
320
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
350
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.4
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs420_i320.yaml
0 → 100644
View file @
0225b135
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
320
,
320
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
420
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.4
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/image_classification/imagenet_resnetrs50_i160.yaml
0 → 100644
View file @
0225b135
# ResNet-RS-50 ImageNet classification. 79.1% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
160
,
160
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
50
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
10
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/configs/experiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml
0 → 100644
View file @
0225b135
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.5
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
4.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1280
,
1280
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
143'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
detection_head
:
cascade_class_ensemble
:
true
class_agnostic_bbox_pred
:
true
rpn_head
:
num_convs
:
2
num_filters
:
256
roi_sampler
:
cascade_iou_thresholds
:
[
0.7
]
foreground_iou_threshold
:
0.6
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
activation
:
'
swish'
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/configs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml
0 → 100644
View file @
0225b135
# Expect to reach: box mAP: 49.3%, mask mAP: 43.4% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
4.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1280
,
1280
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
143'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/configs/experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml
0 → 100644
View file @
0225b135
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 46.4%, mask mAP: 40.0% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
3.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
640
,
640
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
detection_head
:
cascade_class_ensemble
:
true
class_agnostic_bbox_pred
:
true
rpn_head
:
num_convs
:
2
num_filters
:
256
roi_sampler
:
cascade_iou_thresholds
:
[
0.7
]
foreground_iou_threshold
:
0.6
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
activation
:
'
swish'
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/configs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml
0 → 100644
View file @
0225b135
# Expect to reach: box mAP: 43.2%, mask mAP: 38.3% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
3.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
640
,
640
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/configs/experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml
0 → 100644
View file @
0225b135
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.5
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
4.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1024
,
1024
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
96'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
detection_head
:
cascade_class_ensemble
:
true
class_agnostic_bbox_pred
:
true
rpn_head
:
num_convs
:
2
num_filters
:
256
roi_sampler
:
cascade_iou_thresholds
:
[
0.7
]
foreground_iou_threshold
:
0.6
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
activation
:
'
swish'
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/configs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml
0 → 100644
View file @
0225b135
# Expect to reach: box mAP: 48.1%, mask mAP: 42.4% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
3.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1024
,
1024
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
96'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml
0 → 100644
View file @
0225b135
# Expect to reach: box mAP: 42.3%, mask mAP: 37.6% on COCO
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.5
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00008
model
:
anchor
:
anchor_size
:
3.0
min_level
:
3
max_level
:
7
input_size
:
[
640
,
640
,
3
]
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
162050
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
148160
,
157420
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
Prev
1
2
3
4
5
6
7
8
9
10
…
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment